Browse Source

more work on reward model that turned out to be refactoring in disguise

Former-commit-id: 31a7fa4801
main
dehnert 10 years ago
parent
commit
b56766e993
  1. 8
      CMakeLists.txt
  2. 18
      src/modelchecker/csl/HybridCtmcCslModelChecker.cpp
  3. 39
      src/modelchecker/csl/SparseCtmcCslModelChecker.cpp
  4. 15
      src/modelchecker/csl/SparseCtmcCslModelChecker.h
  5. 0
      src/modelchecker/csl/helper/SparseCtmcCslHelper.cpp
  6. 25
      src/modelchecker/csl/helper/SparseCtmcCslHelper.h
  7. 0
      src/modelchecker/csl/helper/SymbolicCtmcCslHelper.cpp
  8. 0
      src/modelchecker/csl/helper/SymbolicCtmcCslHelper.h
  9. 6
      src/modelchecker/prctl/HybridDtmcPrctlModelChecker.h
  10. 254
      src/modelchecker/prctl/HybridMdpPrctlModelChecker.cpp
  11. 14
      src/modelchecker/prctl/HybridMdpPrctlModelChecker.h
  12. 226
      src/modelchecker/prctl/SparseDtmcPrctlModelChecker.cpp
  13. 19
      src/modelchecker/prctl/SparseDtmcPrctlModelChecker.h
  14. 399
      src/modelchecker/prctl/SparseMdpPrctlModelChecker.cpp
  15. 22
      src/modelchecker/prctl/SparseMdpPrctlModelChecker.h
  16. 211
      src/modelchecker/prctl/SymbolicDtmcPrctlModelChecker.cpp
  17. 19
      src/modelchecker/prctl/SymbolicDtmcPrctlModelChecker.h
  18. 0
      src/modelchecker/prctl/helper/HybridDtmcPrctlHelper.cpp
  19. 0
      src/modelchecker/prctl/helper/HybridDtmcPrctlHelper.h
  20. 248
      src/modelchecker/prctl/helper/HybridMdpPrctlHelper.cpp
  21. 34
      src/modelchecker/prctl/helper/HybridMdpPrctlHelper.h
  22. 196
      src/modelchecker/prctl/helper/SparseDtmcPrctlHelper.cpp
  23. 39
      src/modelchecker/prctl/helper/SparseDtmcPrctlHelper.h
  24. 407
      src/modelchecker/prctl/helper/SparseMdpPrctlHelper.cpp
  25. 45
      src/modelchecker/prctl/helper/SparseMdpPrctlHelper.h
  26. 195
      src/modelchecker/prctl/helper/SymbolicDtmcPrctlHelper.cpp
  27. 35
      src/modelchecker/prctl/helper/SymbolicDtmcPrctlHelper.h
  28. 0
      src/modelchecker/prctl/helper/SymbolicMdpPrctlHelper.cpp
  29. 0
      src/modelchecker/prctl/helper/SymbolicMdpPrctlHelper.h
  30. 3
      src/modelchecker/propositional/SparsePropositionalModelChecker.h
  31. 3
      src/models/sparse/Ctmc.h
  32. 2
      src/settings/ArgumentBuilder.h
  33. 29
      src/storage/MaximalEndComponentDecomposition.cpp
  34. 13
      src/storage/MaximalEndComponentDecomposition.h
  35. 12
      src/storage/StronglyConnectedComponentDecomposition.cpp
  36. 24
      src/storage/StronglyConnectedComponentDecomposition.h

8
CMakeLists.txt

@ -377,8 +377,10 @@ file(GLOB_RECURSE STORM_BUILDER_FILES ${PROJECT_SOURCE_DIR}/src/builder/*.h ${PR
file(GLOB_RECURSE STORM_EXCEPTIONS_FILES ${PROJECT_SOURCE_DIR}/src/exceptions/*.h ${PROJECT_SOURCE_DIR}/src/exceptions/*.cpp)
file(GLOB_RECURSE STORM_LOGIC_FILES ${PROJECT_SOURCE_DIR}/src/logic/*.h ${PROJECT_SOURCE_DIR}/src/logic/*.cpp)
file(GLOB STORM_MODELCHECKER_FILES ${PROJECT_SOURCE_DIR}/src/modelchecker/*.h ${PROJECT_SOURCE_DIR}/src/modelchecker/*.cpp)
file(GLOB_RECURSE STORM_MODELCHECKER_PRCTL_FILES ${PROJECT_SOURCE_DIR}/src/modelchecker/prctl/*.h ${PROJECT_SOURCE_DIR}/src/modelchecker/prctl/*.cpp)
file(GLOB_RECURSE STORM_MODELCHECKER_CSL_FILES ${PROJECT_SOURCE_DIR}/src/modelchecker/csl/*.h ${PROJECT_SOURCE_DIR}/src/modelchecker/csl/*.cpp)
file(GLOB STORM_MODELCHECKER_PRCTL_FILES ${PROJECT_SOURCE_DIR}/src/modelchecker/prctl/*.h ${PROJECT_SOURCE_DIR}/src/modelchecker/prctl/*.cpp)
file(GLOB_RECURSE STORM_MODELCHECKER_PRCTL_HELPER_FILES ${PROJECT_SOURCE_DIR}/src/modelchecker/prctl/helper/*.h ${PROJECT_SOURCE_DIR}/src/modelchecker/prctl/helper/*.cpp)
file(GLOB STORM_MODELCHECKER_CSL_FILES ${PROJECT_SOURCE_DIR}/src/modelchecker/csl/*.h ${PROJECT_SOURCE_DIR}/src/modelchecker/csl/*.cpp)
file(GLOB_RECURSE STORM_MODELCHECKER_CSL_HELPER_FILES ${PROJECT_SOURCE_DIR}/src/modelchecker/csl/helper/*.h ${PROJECT_SOURCE_DIR}/src/modelchecker/csl/helper/*.cpp)
file(GLOB_RECURSE STORM_MODELCHECKER_REACHABILITY_FILES ${PROJECT_SOURCE_DIR}/src/modelchecker/reachability/*.h ${PROJECT_SOURCE_DIR}/src/modelchecker/reachability/*.cpp)
file(GLOB_RECURSE STORM_MODELCHECKER_PROPOSITIONAL_FILES ${PROJECT_SOURCE_DIR}/src/modelchecker/propositional/*.h ${PROJECT_SOURCE_DIR}/src/modelchecker/propositional/*.cpp)
file(GLOB_RECURSE STORM_MODELCHECKER_RESULTS_FILES ${PROJECT_SOURCE_DIR}/src/modelchecker/results/*.h ${PROJECT_SOURCE_DIR}/src/modelchecker/results/*.cpp)
@ -416,7 +418,9 @@ source_group(logic FILES ${STORM_LOGIC_FILES})
source_group(generated FILES ${STORM_BUILD_HEADERS} ${STORM_BUILD_SOURCES})
source_group(modelchecker FILES ${STORM_MODELCHECKER_FILES})
source_group(modelchecker\\prctl FILES ${STORM_MODELCHECKER_PRCTL_FILES})
source_group(modelchecker\\prctl\\helper FILES ${STORM_MODELCHECKER_PRCTL_HELPER_FILES})
source_group(modelchecker\\csl FILES ${STORM_MODELCHECKER_CSL_FILES})
source_group(modelchecker\\csl\\helper FILES ${STORM_MODELCHECKER_CSL_HELPER_FILES})
source_group(modelchecker\\reachability FILES ${STORM_MODELCHECKER_REACHABILITY_FILES})
source_group(modelchecker\\propositional FILES ${STORM_MODELCHECKER_PROPOSITIONAL_FILES})
source_group(modelchecker\\results FILES ${STORM_MODELCHECKER_RESULTS_FILES})

18
src/modelchecker/csl/HybridCtmcCslModelChecker.cpp

@ -1,5 +1,5 @@
#include "src/modelchecker/csl/HybridCtmcCslModelChecker.h"
#include "src/modelchecker/csl/SparseCtmcCslModelChecker.h"
#include "src/modelchecker/csl/helper/SparseCtmcCslHelper.h"
#include "src/modelchecker/prctl/HybridDtmcPrctlModelChecker.h"
#include "src/storage/dd/CuddOdd.h"
@ -155,7 +155,7 @@ namespace storm {
// Finally compute the transient probabilities.
std::vector<ValueType> values(statesWithProbabilityGreater0NonPsi.getNonZeroCount(), storm::utility::zero<ValueType>());
std::vector<ValueType> subresult = SparseCtmcCslModelChecker<ValueType>::computeTransientProbabilities(explicitUniformizedMatrix, &explicitB, upperBound, uniformizationRate, values, *this->linearEquationSolverFactory);
std::vector<ValueType> subresult = SparseCtmcCslHelper<ValueType>::computeTransientProbabilities(explicitUniformizedMatrix, &explicitB, upperBound, uniformizationRate, values, *this->linearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new HybridQuantitativeCheckResult<DdType>(this->getModel().getReachableStates(),
(psiStates || !statesWithProbabilityGreater0) && this->getModel().getReachableStates(),
@ -195,7 +195,7 @@ namespace storm {
storm::storage::SparseMatrix<ValueType> explicitUniformizedMatrix = uniformizedMatrix.toMatrix(odd, odd);
// Compute the transient probabilities.
result = SparseCtmcCslModelChecker<ValueType>::computeTransientProbabilities(explicitUniformizedMatrix, nullptr, lowerBound, uniformizationRate, result, *this->linearEquationSolverFactory);
result = SparseCtmcCslHelper<ValueType>::computeTransientProbabilities(explicitUniformizedMatrix, nullptr, lowerBound, uniformizationRate, result, *this->linearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new HybridQuantitativeCheckResult<DdType>(this->getModel().getReachableStates(), !relevantStates && this->getModel().getReachableStates(), this->getModel().getManager().getAddZero(), relevantStates, odd, result));
} else {
@ -221,7 +221,7 @@ namespace storm {
// Compute the transient probabilities.
std::vector<ValueType> values(statesWithProbabilityGreater0NonPsi.getNonZeroCount(), storm::utility::zero<ValueType>());
std::vector<ValueType> subResult = SparseCtmcCslModelChecker<ValueType>::computeTransientProbabilities(explicitUniformizedMatrix, &explicitB, upperBound - lowerBound, uniformizationRate, values, *this->linearEquationSolverFactory);
std::vector<ValueType> subResult = SparseCtmcCslHelper<ValueType>::computeTransientProbabilities(explicitUniformizedMatrix, &explicitB, upperBound - lowerBound, uniformizationRate, values, *this->linearEquationSolverFactory);
// Transform the explicit result to a hybrid check result, so we can easily convert it to
// a symbolic qualitative format.
@ -256,7 +256,7 @@ namespace storm {
uniformizedMatrix = this->computeUniformizedMatrix(this->getModel(), this->getModel().getTransitionMatrix(), exitRates, relevantStates, uniformizationRate);
explicitUniformizedMatrix = uniformizedMatrix.toMatrix(odd, odd);
newSubresult = SparseCtmcCslModelChecker<ValueType>::computeTransientProbabilities(explicitUniformizedMatrix, nullptr, lowerBound, uniformizationRate, newSubresult, *this->linearEquationSolverFactory);
newSubresult = SparseCtmcCslHelper<ValueType>::computeTransientProbabilities(explicitUniformizedMatrix, nullptr, lowerBound, uniformizationRate, newSubresult, *this->linearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new HybridQuantitativeCheckResult<DdType>(this->getModel().getReachableStates(), !relevantStates && this->getModel().getReachableStates(), this->getModel().getManager().getAddZero(), relevantStates, odd, newSubresult));
} else {
@ -276,7 +276,7 @@ namespace storm {
storm::dd::Add<DdType> uniformizedMatrix = this->computeUniformizedMatrix(this->getModel(), this->getModel().getTransitionMatrix(), exitRates, statesWithProbabilityGreater0, uniformizationRate);
storm::storage::SparseMatrix<ValueType> explicitUniformizedMatrix = uniformizedMatrix.toMatrix(odd, odd);
newSubresult = SparseCtmcCslModelChecker<ValueType>::computeTransientProbabilities(explicitUniformizedMatrix, nullptr, lowerBound, uniformizationRate, newSubresult, *this->linearEquationSolverFactory);
newSubresult = SparseCtmcCslHelper<ValueType>::computeTransientProbabilities(explicitUniformizedMatrix, nullptr, lowerBound, uniformizationRate, newSubresult, *this->linearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new HybridQuantitativeCheckResult<DdType>(this->getModel().getReachableStates(), !statesWithProbabilityGreater0 && this->getModel().getReachableStates(), this->getModel().getManager().getAddZero(), statesWithProbabilityGreater0, odd, newSubresult));
}
@ -311,7 +311,7 @@ namespace storm {
storm::dd::Add<DdType> uniformizedMatrix = this->computeUniformizedMatrix(this->getModel(), this->getModel().getTransitionMatrix(), this->getModel().getExitRateVector(), this->getModel().getReachableStates(), uniformizationRate);
storm::storage::SparseMatrix<ValueType> explicitUniformizedMatrix = uniformizedMatrix.toMatrix(odd, odd);
result = SparseCtmcCslModelChecker<ValueType>::computeTransientProbabilities(explicitUniformizedMatrix, nullptr, timeBound, uniformizationRate, result, *this->linearEquationSolverFactory);
result = SparseCtmcCslHelper<ValueType>::computeTransientProbabilities(explicitUniformizedMatrix, nullptr, timeBound, uniformizationRate, result, *this->linearEquationSolverFactory);
}
return std::unique_ptr<CheckResult>(new HybridQuantitativeCheckResult<DdType>(this->getModel().getReachableStates(), this->getModel().getManager().getBddZero(), this->getModel().getManager().getAddZero(), this->getModel().getReachableStates(), odd, result));
@ -353,7 +353,7 @@ namespace storm {
std::vector<ValueType> explicitTotalRewardVector = totalRewardVector.template toVector<ValueType>(odd);
// Finally, compute the transient probabilities.
std::vector<ValueType> result = SparseCtmcCslModelChecker<ValueType>::template computeTransientProbabilities<true>(explicitUniformizedMatrix, nullptr, timeBound, uniformizationRate, explicitTotalRewardVector, *this->linearEquationSolverFactory);
std::vector<ValueType> result = SparseCtmcCslHelper<ValueType>::template computeTransientProbabilities<true>(explicitUniformizedMatrix, nullptr, timeBound, uniformizationRate, explicitTotalRewardVector, *this->linearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new HybridQuantitativeCheckResult<DdType>(this->getModel().getReachableStates(), this->getModel().getManager().getBddZero(), this->getModel().getManager().getAddZero(), this->getModel().getReachableStates(), std::move(odd), std::move(result)));
}
@ -370,7 +370,7 @@ namespace storm {
storm::storage::SparseMatrix<ValueType> explicitProbabilityMatrix = probabilityMatrix.toMatrix(odd, odd);
std::vector<ValueType> explicitExitRateVector = this->getModel().getExitRateVector().template toVector<ValueType>(odd);
std::vector<ValueType> result = SparseCtmcCslModelChecker<ValueType>::computeLongRunAverageHelper(explicitProbabilityMatrix, subResult.getTruthValuesVector().toVector(odd), &explicitExitRateVector, qualitative, *this->linearEquationSolverFactory);
std::vector<ValueType> result = SparseCtmcCslHelper<ValueType>::computeLongRunAverage(explicitProbabilityMatrix, subResult.getTruthValuesVector().toVector(odd), &explicitExitRateVector, qualitative, *this->linearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new HybridQuantitativeCheckResult<DdType>(this->getModel().getReachableStates(), this->getModel().getManager().getBddZero(), this->getModel().getManager().getAddZero(), this->getModel().getReachableStates(), std::move(odd), std::move(result)));
}

39
src/modelchecker/csl/SparseCtmcCslModelChecker.cpp

@ -21,12 +21,12 @@
namespace storm {
namespace modelchecker {
template <typename SparseCtmcModelType>
SparseCtmcCslModelChecker<SparseCtmcModelType>::SparseCtmcCslModelChecker(SparseCtmcModelType const& model) : SparsePropositionalModelChecker<ValueType>(model), linearEquationSolverFactory(new storm::utility::solver::LinearEquationSolverFactory<ValueType>()) {
SparseCtmcCslModelChecker<SparseCtmcModelType>::SparseCtmcCslModelChecker(SparseCtmcModelType const& model) : SparsePropositionalModelChecker<SparseCtmcModelType>(model), linearEquationSolverFactory(new storm::utility::solver::LinearEquationSolverFactory<ValueType>()) {
// Intentionally left empty.
}
template <typename SparseCtmcModelType>
SparseCtmcCslModelChecker<SparseCtmcModelType>::SparseCtmcCslModelChecker(SparseCtmcModelType const& model, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<ValueType>>&& linearEquationSolverFactory) : SparsePropositionalModelChecker<ValueType>(model), linearEquationSolverFactory(std::move(linearEquationSolverFactory)) {
SparseCtmcCslModelChecker<SparseCtmcModelType>::SparseCtmcCslModelChecker(SparseCtmcModelType const& model, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<ValueType>>&& linearEquationSolverFactory) : SparsePropositionalModelChecker<SparseCtmcModelType>(model), linearEquationSolverFactory(std::move(linearEquationSolverFactory)) {
// Intentionally left empty.
}
@ -58,7 +58,7 @@ namespace storm {
std::unique_ptr<CheckResult> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeNextProbabilities(storm::logic::NextFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
std::unique_ptr<CheckResult> subResultPointer = this->check(pathFormula.getSubformula());
ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult();
std::vector<ValueType> result = SparseDtmcPrctlModelChecker<ValueType>::computeNextProbabilitiesHelper(this->computeProbabilityMatrix(this->getModel().getTransitionMatrix(), this->getModel().getExitRateVector()), subResult.getTruthValuesVector(), *this->linearEquationSolverFactory);
std::vector<ValueType> result = SparseDtmcPrctlModelChecker<SparseCtmcModelType>::computeNextProbabilitiesHelper(this->computeProbabilityMatrix(this->getModel().getTransitionMatrix(), this->getModel().getExitRateVector()), subResult.getTruthValuesVector(), *this->linearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(result)));
}
@ -72,12 +72,7 @@ namespace storm {
}
template <typename SparseCtmcModelType>
storm::models::sparse::Ctmc<ValueType> const& SparseCtmcCslModelChecker<SparseCtmcModelType>::getModel() const {
return this->template getModelAs<storm::models::sparse::Ctmc<ValueType>>();
}
template <typename SparseCtmcModelType>
std::vector<ValueType> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeBoundedUntilProbabilitiesHelper(storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, std::vector<ValueType> const& exitRates, bool qualitative, double lowerBound, double upperBound) const {
std::vector<typename SparseCtmcModelType::ValueType> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeBoundedUntilProbabilitiesHelper(storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, std::vector<ValueType> const& exitRates, bool qualitative, double lowerBound, double upperBound) const {
// If the time bounds are [0, inf], we rather call untimed reachability.
storm::utility::ConstantsComparator<ValueType> comparator;
if (comparator.isZero(lowerBound) && comparator.isInfinity(upperBound)) {
@ -241,7 +236,7 @@ namespace storm {
}
template <typename SparseCtmcModelType>
storm::storage::SparseMatrix<ValueType> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeUniformizedMatrix(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& maybeStates, ValueType uniformizationRate, std::vector<ValueType> const& exitRates) {
storm::storage::SparseMatrix<typename SparseCtmcModelType::ValueType> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeUniformizedMatrix(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& maybeStates, ValueType uniformizationRate, std::vector<ValueType> const& exitRates) {
STORM_LOG_DEBUG("Computing uniformized matrix using uniformization rate " << uniformizationRate << ".");
STORM_LOG_DEBUG("Keeping " << maybeStates.getNumberOfSetBits() << " rows.");
@ -269,7 +264,7 @@ namespace storm {
template <typename SparseCtmcModelType>
template<bool computeCumulativeReward>
std::vector<ValueType> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeTransientProbabilities(storm::storage::SparseMatrix<ValueType> const& uniformizedMatrix, std::vector<ValueType> const* addVector, ValueType timeBound, ValueType uniformizationRate, std::vector<ValueType> values, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
std::vector<typename SparseCtmcModelType::ValueType> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeTransientProbabilities(storm::storage::SparseMatrix<ValueType> const& uniformizedMatrix, std::vector<ValueType> const* addVector, ValueType timeBound, ValueType uniformizationRate, std::vector<ValueType> values, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
ValueType lambda = timeBound * uniformizationRate;
@ -351,17 +346,17 @@ namespace storm {
}
template <typename SparseCtmcModelType>
std::vector<ValueType> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeUntilProbabilitiesHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
return SparseDtmcPrctlModelChecker<ValueType>::computeUntilProbabilitiesHelper(transitionMatrix, backwardTransitions, phiStates, psiStates, qualitative, linearEquationSolverFactory);
std::vector<typename SparseCtmcModelType::ValueType> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeUntilProbabilitiesHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
return SparseDtmcPrctlModelChecker<SparseCtmcModelType>::computeUntilProbabilitiesHelper(transitionMatrix, backwardTransitions, phiStates, psiStates, qualitative, linearEquationSolverFactory);
}
template <typename SparseCtmcModelType>
std::unique_ptr<CheckResult> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
std::unique_ptr<CheckResult> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeInstantaneousRewardsHelper(rewardPathFormula.getContinuousTimeBound())));
}
template <typename SparseCtmcModelType>
std::vector<ValueType> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeInstantaneousRewardsHelper(double timeBound) const {
std::vector<typename SparseCtmcModelType::ValueType> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeInstantaneousRewardsHelper(double timeBound) const {
// Only compute the result if the model has a state-based reward this->getModel().
STORM_LOG_THROW(this->getModel().hasStateRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
@ -385,12 +380,12 @@ namespace storm {
}
template <typename SparseCtmcModelType>
std::unique_ptr<CheckResult> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
std::unique_ptr<CheckResult> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeCumulativeRewardsHelper(rewardPathFormula.getContinuousTimeBound())));
}
template <typename SparseCtmcModelType>
std::vector<ValueType> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeCumulativeRewardsHelper(double timeBound) const {
std::vector<typename SparseCtmcModelType::ValueType> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeCumulativeRewardsHelper(double timeBound) const {
// Only compute the result if the model has a state-based reward this->getModel().
STORM_LOG_THROW(this->getModel().hasStateRewards() || this->getModel().hasTransitionRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
@ -427,7 +422,7 @@ namespace storm {
}
template <typename SparseCtmcModelType>
storm::storage::SparseMatrix<ValueType> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeProbabilityMatrix(storm::storage::SparseMatrix<ValueType> const& rateMatrix, std::vector<ValueType> const& exitRates) {
storm::storage::SparseMatrix<typename SparseCtmcModelType::ValueType> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeProbabilityMatrix(storm::storage::SparseMatrix<ValueType> const& rateMatrix, std::vector<ValueType> const& exitRates) {
// Turn the rates into probabilities by scaling each row with the exit rate of the state.
storm::storage::SparseMatrix<ValueType> result(rateMatrix);
for (uint_fast64_t row = 0; row < result.getRowCount(); ++row) {
@ -439,7 +434,7 @@ namespace storm {
}
template <typename SparseCtmcModelType>
storm::storage::SparseMatrix<ValueType> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeGeneratorMatrix(storm::storage::SparseMatrix<ValueType> const& rateMatrix, std::vector<ValueType> const& exitRates) {
storm::storage::SparseMatrix<typename SparseCtmcModelType::ValueType> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeGeneratorMatrix(storm::storage::SparseMatrix<ValueType> const& rateMatrix, std::vector<ValueType> const& exitRates) {
storm::storage::SparseMatrix<ValueType> generatorMatrix(rateMatrix, true);
// Place the negative exit rate on the diagonal.
@ -455,7 +450,7 @@ namespace storm {
}
template <typename SparseCtmcModelType>
std::unique_ptr<CheckResult> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
std::unique_ptr<CheckResult> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
std::unique_ptr<CheckResult> subResultPointer = this->check(rewardPathFormula.getSubformula());
ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult();
storm::storage::SparseMatrix<ValueType> probabilityMatrix = computeProbabilityMatrix(this->getModel().getTransitionMatrix(), this->getModel().getExitRateVector());
@ -482,8 +477,8 @@ namespace storm {
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(computeLongRunAverageHelper(probabilityMatrix, subResult.getTruthValuesVector(), &this->getModel().getExitRateVector(), qualitative, *linearEquationSolverFactory)));
}
template<typename ValueType>
std::vector<ValueType> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeLongRunAverageHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& psiStates, std::vector<ValueType> const* exitRateVector, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
template <typename SparseCtmcModelType>
std::vector<typename SparseCtmcModelType::ValueType> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeLongRunAverageHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& psiStates, std::vector<ValueType> const* exitRateVector, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// If there are no goal states, we avoid the computation and directly return zero.
uint_fast64_t numOfStates = transitionMatrix.getRowCount();
if (psiStates.empty()) {

15
src/modelchecker/csl/SparseCtmcCslModelChecker.h

@ -20,9 +20,7 @@ namespace storm {
class SparseCtmcCslModelChecker : public SparsePropositionalModelChecker<SparseCtmcModelType> {
public:
typedef typename SparseCtmcModelType::ValueType ValueType;
friend class HybridCtmcCslModelChecker<storm::dd::DdType::CUDD, ValueType>;
friend class SparseDtmcPrctlModelChecker<SparseCtmcModelType>;
typedef typename SparseCtmcModelType::RewardModelType RewardModelType;
explicit SparseCtmcCslModelChecker(SparseCtmcModelType const& model);
explicit SparseCtmcCslModelChecker(SparseCtmcModelType const& model, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<ValueType>>&& linearEquationSolverFactory);
@ -32,17 +30,16 @@ namespace storm {
virtual std::unique_ptr<CheckResult> computeBoundedUntilProbabilities(storm::logic::BoundedUntilFormula const& pathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeNextProbabilities(storm::logic::NextFormula const& pathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeUntilProbabilities(storm::logic::UntilFormula const& pathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeLongRunAverage(storm::logic::StateFormula const& stateFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
private:
// The methods that perform the actual checking.
std::vector<ValueType> computeBoundedUntilProbabilitiesHelper(storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, std::vector<ValueType> const& exitRates, bool qualitative, double lowerBound, double upperBound) const;
static std::vector<ValueType> computeUntilProbabilitiesHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
std::vector<ValueType> computeInstantaneousRewardsHelper(double timeBound) const;
std::vector<ValueType> computeCumulativeRewardsHelper(double timeBound) const;
std::vector<ValueType> computeInstantaneousRewardsHelper(RewardModelType const& rewardModel, double timeBound) const;
std::vector<ValueType> computeCumulativeRewardsHelper(RewardModelType const& rewardModel, double timeBound) const;
static std::vector<ValueType> computeLongRunAverageHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& psiStates, std::vector<ValueType> const* exitRateVector, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
/*!
* Computes the matrix representing the transitions of the uniformized CTMC.

0
src/modelchecker/csl/helper/SparseCtmcCslHelper.cpp

25
src/modelchecker/csl/helper/SparseCtmcCslHelper.h

@ -0,0 +1,25 @@
#ifndef STORM_MODELCHECKER_SPARSE_CTMC_CSL_MODELCHECKER_HELPER_H_
#define STORM_MODELCHECKER_SPARSE_CTMC_CSL_MODELCHECKER_HELPER_H_
#include <vector>
#include "src/models/sparse/StandardRewardModel.h"
#include "src/storage/SparseMatrix.h"
#include "src/storage/BitVector.h"
#include "src/utility/solver.h"
namespace storm {
namespace modelchecker {
namespace helper {
template <typename ValueType, typename RewardModelType = storm::models::sparse::StandardRewardModel<ValueType>>
class SparseCtmcCslHelper {
public:
}
}
}
}
#endif /* STORM_MODELCHECKER_SPARSE_CTMC_CSL_MODELCHECKER_HELPER_H_ */

0
src/modelchecker/csl/helper/SymbolicCtmcCslHelper.cpp

0
src/modelchecker/csl/helper/SymbolicCtmcCslHelper.h

6
src/modelchecker/prctl/HybridDtmcPrctlModelChecker.h

@ -23,9 +23,9 @@ namespace storm {
virtual std::unique_ptr<CheckResult> computeBoundedUntilProbabilities(storm::logic::BoundedUntilFormula const& pathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeNextProbabilities(storm::logic::NextFormula const& pathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeUntilProbabilities(storm::logic::UntilFormula const& pathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeLongRunAverage(storm::logic::StateFormula const& stateFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
protected:

254
src/modelchecker/prctl/HybridMdpPrctlModelChecker.cpp

@ -28,71 +28,7 @@ namespace storm {
bool HybridMdpPrctlModelChecker<DdType, ValueType>::canHandle(storm::logic::Formula const& formula) const {
return formula.isPctlStateFormula() || formula.isPctlPathFormula() || formula.isRewardPathFormula();
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridMdpPrctlModelChecker<DdType, ValueType>::computeUntilProbabilitiesHelper(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// We need to identify the states which have to be taken out of the matrix, i.e. all states that have
// probability 0 and 1 of satisfying the until-formula.
std::pair<storm::dd::Bdd<DdType>, storm::dd::Bdd<DdType>> statesWithProbability01;
if (minimize) {
statesWithProbability01 = storm::utility::graph::performProb01Min(model, phiStates, psiStates);
} else {
statesWithProbability01 = storm::utility::graph::performProb01Max(model, phiStates, psiStates);
}
storm::dd::Bdd<DdType> maybeStates = !statesWithProbability01.first && !statesWithProbability01.second && model.getReachableStates();
// Perform some logging.
STORM_LOG_INFO("Found " << statesWithProbability01.first.getNonZeroCount() << " 'no' states.");
STORM_LOG_INFO("Found " << statesWithProbability01.second.getNonZeroCount() << " 'yes' states.");
STORM_LOG_INFO("Found " << maybeStates.getNonZeroCount() << " 'maybe' states.");
// Check whether we need to compute exact probabilities for some states.
if (qualitative) {
// Set the values for all maybe-states to 0.5 to indicate that their probability values are neither 0 nor 1.
return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), statesWithProbability01.second.toAdd() + maybeStates.toAdd() * model.getManager().getConstant(0.5)));
} else {
// If there are maybe states, we need to solve an equation system.
if (!maybeStates.isZero()) {
// Create the ODD for the translation between symbolic and explicit storage.
storm::dd::Odd<DdType> odd(maybeStates);
// Create the matrix and the vector for the equation system.
storm::dd::Add<DdType> maybeStatesAdd = maybeStates.toAdd();
// Start by cutting away all rows that do not belong to maybe states. Note that this leaves columns targeting
// non-maybe states in the matrix.
storm::dd::Add<DdType> submatrix = transitionMatrix * maybeStatesAdd;
// Then compute the vector that contains the one-step probabilities to a state with probability 1 for all
// maybe states.
storm::dd::Add<DdType> prob1StatesAsColumn = statesWithProbability01.second.toAdd();
prob1StatesAsColumn = prob1StatesAsColumn.swapVariables(model.getRowColumnMetaVariablePairs());
storm::dd::Add<DdType> subvector = submatrix * prob1StatesAsColumn;
subvector = subvector.sumAbstract(model.getColumnVariables());
// Before cutting the non-maybe columns, we need to compute the sizes of the row groups.
std::vector<uint_fast64_t> rowGroupSizes = submatrix.notZero().existsAbstract(model.getColumnVariables()).toAdd().sumAbstract(model.getNondeterminismVariables()).template toVector<uint_fast64_t>(odd);
// Finally cut away all columns targeting non-maybe states.
submatrix *= maybeStatesAdd.swapVariables(model.getRowColumnMetaVariablePairs());
// Create the solution vector.
std::vector<ValueType> x(maybeStates.getNonZeroCount(), ValueType(0.5));
// Translate the symbolic matrix/vector to their explicit representations and solve the equation system.
std::pair<storm::storage::SparseMatrix<ValueType>, std::vector<ValueType>> explicitRepresentation = submatrix.toMatrixVector(subvector, std::move(rowGroupSizes), model.getNondeterminismVariables(), odd, odd);
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(explicitRepresentation.first);
solver->solveEquationSystem(minimize, x, explicitRepresentation.second);
// Return a hybrid check result that stores the numerical values explicitly.
return std::unique_ptr<CheckResult>(new storm::modelchecker::HybridQuantitativeCheckResult<DdType>(model.getReachableStates(), model.getReachableStates() && !maybeStates, statesWithProbability01.second.toAdd(), maybeStates, odd, x));
} else {
return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), statesWithProbability01.second.toAdd()));
}
}
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridMdpPrctlModelChecker<DdType, ValueType>::computeUntilProbabilities(storm::logic::UntilFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
@ -110,13 +46,7 @@ namespace storm {
SymbolicQualitativeCheckResult<DdType> const& subResult = subResultPointer->asSymbolicQualitativeCheckResult<DdType>();
return std::unique_ptr<CheckResult>(new SymbolicQuantitativeCheckResult<DdType>(this->getModel().getReachableStates(), this->computeNextProbabilitiesHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel(), this->getModel().getTransitionMatrix(), subResult.getTruthValuesVector())));
}
template<storm::dd::DdType DdType, typename ValueType>
storm::dd::Add<DdType> HybridMdpPrctlModelChecker<DdType, ValueType>::computeNextProbabilitiesHelper(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& nextStates) {
storm::dd::Add<DdType> result = transitionMatrix * nextStates.swapVariables(model.getRowColumnMetaVariablePairs()).toAdd();
return result.sumAbstract(model.getColumnVariables());
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridMdpPrctlModelChecker<DdType, ValueType>::computeBoundedUntilProbabilities(storm::logic::BoundedUntilFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
@ -129,197 +59,27 @@ namespace storm {
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridMdpPrctlModelChecker<DdType, ValueType>::computeBoundedUntilProbabilitiesHelper(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// We need to identify the states which have to be taken out of the matrix, i.e. all states that have
// probability 0 or 1 of satisfying the until-formula.
storm::dd::Bdd<DdType> statesWithProbabilityGreater0;
if (minimize) {
statesWithProbabilityGreater0 = storm::utility::graph::performProbGreater0A(model, transitionMatrix.notZero(), phiStates, psiStates);
} else {
statesWithProbabilityGreater0 = storm::utility::graph::performProbGreater0E(model, transitionMatrix.notZero(), phiStates, psiStates);
}
storm::dd::Bdd<DdType> maybeStates = statesWithProbabilityGreater0 && !psiStates && model.getReachableStates();
// If there are maybe states, we need to perform matrix-vector multiplications.
if (!maybeStates.isZero()) {
// Create the ODD for the translation between symbolic and explicit storage.
storm::dd::Odd<DdType> odd(maybeStates);
// Create the matrix and the vector for the equation system.
storm::dd::Add<DdType> maybeStatesAdd = maybeStates.toAdd();
// Start by cutting away all rows that do not belong to maybe states. Note that this leaves columns targeting
// non-maybe states in the matrix.
storm::dd::Add<DdType> submatrix = transitionMatrix * maybeStatesAdd;
// Then compute the vector that contains the one-step probabilities to a state with probability 1 for all
// maybe states.
storm::dd::Add<DdType> prob1StatesAsColumn = psiStates.toAdd().swapVariables(model.getRowColumnMetaVariablePairs());
storm::dd::Add<DdType> subvector = (submatrix * prob1StatesAsColumn).sumAbstract(model.getColumnVariables());
// Before cutting the non-maybe columns, we need to compute the sizes of the row groups.
std::vector<uint_fast64_t> rowGroupSizes = submatrix.notZero().existsAbstract(model.getColumnVariables()).toAdd().sumAbstract(model.getNondeterminismVariables()).template toVector<uint_fast64_t>(odd);
// Finally cut away all columns targeting non-maybe states.
submatrix *= maybeStatesAdd.swapVariables(model.getRowColumnMetaVariablePairs());
// Create the solution vector.
std::vector<ValueType> x(maybeStates.getNonZeroCount(), storm::utility::zero<ValueType>());
// Translate the symbolic matrix/vector to their explicit representations.
std::pair<storm::storage::SparseMatrix<ValueType>, std::vector<ValueType>> explicitRepresentation = submatrix.toMatrixVector(subvector, std::move(rowGroupSizes), model.getNondeterminismVariables(), odd, odd);
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(explicitRepresentation.first);
solver->performMatrixVectorMultiplication(minimize, x, &explicitRepresentation.second, stepBound);
// Return a hybrid check result that stores the numerical values explicitly.
return std::unique_ptr<CheckResult>(new storm::modelchecker::HybridQuantitativeCheckResult<DdType>(model.getReachableStates(), model.getReachableStates() && !maybeStates, psiStates.toAdd(), maybeStates, odd, x));
} else {
return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), psiStates.toAdd()));
}
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridMdpPrctlModelChecker<DdType, ValueType>::computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
std::unique_ptr<CheckResult> HybridMdpPrctlModelChecker<DdType, ValueType>::computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
STORM_LOG_THROW(rewardPathFormula.hasDiscreteTimeBound(), storm::exceptions::InvalidArgumentException, "Formula needs to have a discrete time bound.");
return this->computeCumulativeRewardsHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel(), this->getModel().getTransitionMatrix(), rewardPathFormula.getDiscreteTimeBound(), *this->linearEquationSolverFactory);
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridMdpPrctlModelChecker<DdType, ValueType>::computeCumulativeRewardsHelper(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// Only compute the result if the model has at least one reward this->getModel().
STORM_LOG_THROW(model.hasStateRewards() || model.hasTransitionRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
// Compute the reward vector to add in each step based on the available reward models.
storm::dd::Add<DdType> totalRewardVector = model.hasStateRewards() ? model.getStateRewardVector() : model.getManager().getAddZero();
if (model.hasTransitionRewards()) {
totalRewardVector += (transitionMatrix * model.getTransitionRewardMatrix()).sumAbstract(model.getColumnVariables());
}
// Create the ODD for the translation between symbolic and explicit storage.
storm::dd::Odd<DdType> odd(model.getReachableStates());
// Create the solution vector.
std::vector<ValueType> x(model.getNumberOfStates(), storm::utility::zero<ValueType>());
// Translate the symbolic matrix/vector to their explicit representations.
storm::storage::SparseMatrix<ValueType> explicitMatrix = transitionMatrix.toMatrix(model.getNondeterminismVariables(), odd, odd);
std::vector<ValueType> b = totalRewardVector.template toVector<ValueType>(model.getNondeterminismVariables(), odd, explicitMatrix.getRowGroupIndices());
// Perform the matrix-vector multiplication.
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(explicitMatrix);
solver->performMatrixVectorMultiplication(minimize, x, &b, stepBound);
// Return a hybrid check result that stores the numerical values explicitly.
return std::unique_ptr<CheckResult>(new HybridQuantitativeCheckResult<DdType>(model.getReachableStates(), model.getManager().getBddZero(), model.getManager().getAddZero(), model.getReachableStates(), odd, x));
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridMdpPrctlModelChecker<DdType, ValueType>::computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
std::unique_ptr<CheckResult> HybridMdpPrctlModelChecker<DdType, ValueType>::computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
STORM_LOG_THROW(rewardPathFormula.hasDiscreteTimeBound(), storm::exceptions::InvalidArgumentException, "Formula needs to have a discrete time bound.");
return this->computeInstantaneousRewardsHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel(), this->getModel().getTransitionMatrix(), rewardPathFormula.getDiscreteTimeBound(), *this->linearEquationSolverFactory);
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridMdpPrctlModelChecker<DdType, ValueType>::computeInstantaneousRewardsHelper(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// Only compute the result if the model has at least one reward this->getModel().
STORM_LOG_THROW(model.hasStateRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
// Create the ODD for the translation between symbolic and explicit storage.
storm::dd::Odd<DdType> odd(model.getReachableStates());
// Translate the symbolic matrix to its explicit representations.
storm::storage::SparseMatrix<ValueType> explicitMatrix = transitionMatrix.toMatrix(model.getNondeterminismVariables(), odd, odd);
// Create the solution vector (and initialize it to the state rewards of the model).
std::vector<ValueType> x = model.getStateRewardVector().template toVector<ValueType>(model.getNondeterminismVariables(), odd, explicitMatrix.getRowGroupIndices());
// Perform the matrix-vector multiplication.
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(explicitMatrix);
solver->performMatrixVectorMultiplication(minimize, x, nullptr, stepBound);
// Return a hybrid check result that stores the numerical values explicitly.
return std::unique_ptr<CheckResult>(new HybridQuantitativeCheckResult<DdType>(model.getReachableStates(), model.getManager().getBddZero(), model.getManager().getAddZero(), model.getReachableStates(), odd, x));
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridMdpPrctlModelChecker<DdType, ValueType>::computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
std::unique_ptr<CheckResult> HybridMdpPrctlModelChecker<DdType, ValueType>::computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
std::unique_ptr<CheckResult> subResultPointer = this->check(rewardPathFormula.getSubformula());
SymbolicQualitativeCheckResult<DdType> const& subResult = subResultPointer->asSymbolicQualitativeCheckResult<DdType>();
return this->computeReachabilityRewardsHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel(), this->getModel().getTransitionMatrix(), this->getModel().getOptionalStateRewardVector(), this->getModel().getOptionalTransitionRewardMatrix(), subResult.getTruthValuesVector(), *this->linearEquationSolverFactory, qualitative);
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridMdpPrctlModelChecker<DdType, ValueType>::computeReachabilityRewardsHelper(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, boost::optional<storm::dd::Add<DdType>> const& stateRewardVector, boost::optional<storm::dd::Add<DdType>> const& transitionRewardMatrix, storm::dd::Bdd<DdType> const& targetStates, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory, bool qualitative) {
// Only compute the result if there is at least one reward model.
STORM_LOG_THROW(stateRewardVector || transitionRewardMatrix, storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
// Determine which states have a reward of infinity by definition.
storm::dd::Bdd<DdType> infinityStates;
storm::dd::Bdd<DdType> transitionMatrixBdd = transitionMatrix.notZero();
if (minimize) {
infinityStates = storm::utility::graph::performProb1A(model, transitionMatrixBdd, model.getReachableStates(), targetStates, storm::utility::graph::performProbGreater0A(model, transitionMatrixBdd, model.getReachableStates(), targetStates));
} else {
infinityStates = storm::utility::graph::performProb1E(model, transitionMatrixBdd, model.getReachableStates(), targetStates, storm::utility::graph::performProbGreater0E(model, transitionMatrixBdd, model.getReachableStates(), targetStates));
}
infinityStates = !infinityStates && model.getReachableStates();
storm::dd::Bdd<DdType> maybeStates = (!targetStates && !infinityStates) && model.getReachableStates();
STORM_LOG_INFO("Found " << infinityStates.getNonZeroCount() << " 'infinity' states.");
STORM_LOG_INFO("Found " << targetStates.getNonZeroCount() << " 'target' states.");
STORM_LOG_INFO("Found " << maybeStates.getNonZeroCount() << " 'maybe' states.");
// Check whether we need to compute exact rewards for some states.
if (qualitative) {
// Set the values for all maybe-states to 1 to indicate that their reward values
// are neither 0 nor infinity.
return std::unique_ptr<CheckResult>(new SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), infinityStates.toAdd() * model.getManager().getConstant(storm::utility::infinity<ValueType>()) + maybeStates.toAdd() * model.getManager().getConstant(storm::utility::one<ValueType>())));
} else {
// If there are maybe states, we need to solve an equation system.
if (!maybeStates.isZero()) {
// Create the ODD for the translation between symbolic and explicit storage.
storm::dd::Odd<DdType> odd(maybeStates);
// Create the matrix and the vector for the equation system.
storm::dd::Add<DdType> maybeStatesAdd = maybeStates.toAdd();
// Start by cutting away all rows that do not belong to maybe states. Note that this leaves columns targeting
// non-maybe states in the matrix.
storm::dd::Add<DdType> submatrix = transitionMatrix * maybeStatesAdd;
// Then compute the state reward vector to use in the computation.
storm::dd::Add<DdType> subvector = stateRewardVector ? maybeStatesAdd * stateRewardVector.get() : model.getManager().getAddZero();
if (transitionRewardMatrix) {
subvector += (submatrix * transitionRewardMatrix.get()).sumAbstract(model.getColumnVariables());
}
// Before cutting the non-maybe columns, we need to compute the sizes of the row groups.
std::vector<uint_fast64_t> rowGroupSizes = submatrix.notZero().existsAbstract(model.getColumnVariables()).toAdd().sumAbstract(model.getNondeterminismVariables()).template toVector<uint_fast64_t>(odd);
// Finally cut away all columns targeting non-maybe states.
submatrix *= maybeStatesAdd.swapVariables(model.getRowColumnMetaVariablePairs());
// Create the solution vector.
std::vector<ValueType> x(maybeStates.getNonZeroCount(), ValueType(0.5));
// Translate the symbolic matrix/vector to their explicit representations.
std::pair<storm::storage::SparseMatrix<ValueType>, std::vector<ValueType>> explicitRepresentation = submatrix.toMatrixVector(subvector, std::move(rowGroupSizes), model.getNondeterminismVariables(), odd, odd);
// Now solve the resulting equation system.
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(explicitRepresentation.first);
solver->solveEquationSystem(minimize, x, explicitRepresentation.second);
// Return a hybrid check result that stores the numerical values explicitly.
return std::unique_ptr<CheckResult>(new storm::modelchecker::HybridQuantitativeCheckResult<DdType>(model.getReachableStates(), model.getReachableStates() && !maybeStates, infinityStates.toAdd() * model.getManager().getConstant(storm::utility::infinity<ValueType>()), maybeStates, odd, x));
} else {
return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), infinityStates.toAdd() * model.getManager().getConstant(storm::utility::infinity<ValueType>())));
}
}
}
template<storm::dd::DdType DdType, typename ValueType>
storm::models::symbolic::Mdp<DdType> const& HybridMdpPrctlModelChecker<DdType, ValueType>::getModel() const {
return this->template getModelAs<storm::models::symbolic::Mdp<DdType>>();

14
src/modelchecker/prctl/HybridMdpPrctlModelChecker.h

@ -18,22 +18,14 @@ namespace storm {
virtual std::unique_ptr<CheckResult> computeBoundedUntilProbabilities(storm::logic::BoundedUntilFormula const& pathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeNextProbabilities(storm::logic::NextFormula const& pathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeUntilProbabilities(storm::logic::UntilFormula const& pathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
protected:
storm::models::symbolic::Mdp<DdType> const& getModel() const override;
private:
// The methods that perform the actual checking.
static std::unique_ptr<CheckResult> computeBoundedUntilProbabilitiesHelper(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static storm::dd::Add<DdType> computeNextProbabilitiesHelper(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& nextStates);
static std::unique_ptr<CheckResult> computeUntilProbabilitiesHelper(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static std::unique_ptr<CheckResult> computeCumulativeRewardsHelper(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static std::unique_ptr<CheckResult> computeInstantaneousRewardsHelper(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static std::unique_ptr<CheckResult> computeReachabilityRewardsHelper(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, boost::optional<storm::dd::Add<DdType>> const& stateRewardVector, boost::optional<storm::dd::Add<DdType>> const& transitionRewardMatrix, storm::dd::Bdd<DdType> const& targetStates, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory, bool qualitative);
// An object that is used for retrieving linear equation solvers.
std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType>> linearEquationSolverFactory;
};

226
src/modelchecker/prctl/SparseDtmcPrctlModelChecker.cpp

@ -4,17 +4,11 @@
#include <memory>
#include "src/utility/macros.h"
#include "src/utility/vector.h"
#include "src/utility/graph.h"
#include "src/utility/solver.h"
#include "src/modelchecker/csl/SparseCtmcCslModelChecker.h"
#include "src/modelchecker/results/ExplicitQualitativeCheckResult.h"
#include "src/modelchecker/results/ExplicitQuantitativeCheckResult.h"
#include "src/exceptions/InvalidStateException.h"
#include "src/exceptions/InvalidPropertyException.h"
#include "src/modelchecker/prctl/helper/SparseDtmcPrctlHelper.h"
namespace storm {
namespace modelchecker {
@ -33,58 +27,15 @@ namespace storm {
return formula.isPctlStateFormula() || formula.isPctlPathFormula() || formula.isRewardPathFormula();
}
template<typename SparseDtmcModelType>
std::vector<typename SparseDtmcPrctlModelChecker<SparseDtmcModelType>::ValueType> SparseDtmcPrctlModelChecker<SparseDtmcModelType>::computeBoundedUntilProbabilitiesHelper(storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, uint_fast64_t stepBound) const {
std::vector<ValueType> result(this->getModel().getNumberOfStates(), storm::utility::zero<ValueType>());
// If we identify the states that have probability 0 of reaching the target states, we can exclude them in the further analysis.
storm::storage::BitVector maybeStates = storm::utility::graph::performProbGreater0(this->getModel().getBackwardTransitions(), phiStates, psiStates, true, stepBound);
maybeStates &= ~psiStates;
STORM_LOG_INFO("Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states.");
if (!maybeStates.empty()) {
// We can eliminate the rows and columns from the original transition probability matrix that have probability 0.
storm::storage::SparseMatrix<ValueType> submatrix = this->getModel().getTransitionMatrix().getSubmatrix(true, maybeStates, maybeStates, true);
// Create the vector of one-step probabilities to go to target states.
std::vector<ValueType> b = this->getModel().getTransitionMatrix().getConstrainedRowSumVector(maybeStates, psiStates);
// Create the vector with which to multiply.
std::vector<ValueType> subresult(maybeStates.getNumberOfSetBits());
// Perform the matrix vector multiplication as often as required by the formula bound.
STORM_LOG_THROW(linearEquationSolverFactory != nullptr, storm::exceptions::InvalidStateException, "No valid linear equation solver available.");
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory->create(submatrix);
solver->performMatrixVectorMultiplication(subresult, &b, stepBound);
// Set the values of the resulting vector accordingly.
storm::utility::vector::setVectorValues(result, maybeStates, subresult);
}
storm::utility::vector::setVectorValues<ValueType>(result, psiStates, storm::utility::one<ValueType>());
return result;
}
template<typename SparseDtmcModelType>
std::unique_ptr<CheckResult> SparseDtmcPrctlModelChecker<SparseDtmcModelType>::computeBoundedUntilProbabilities(storm::logic::BoundedUntilFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
STORM_LOG_THROW(pathFormula.hasDiscreteTimeBound(), storm::exceptions::InvalidArgumentException, "Formula needs to have a discrete time bound.");
std::unique_ptr<CheckResult> leftResultPointer = this->check(pathFormula.getLeftSubformula());
std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula());
ExplicitQualitativeCheckResult const& leftResult = leftResultPointer->asExplicitQualitativeCheckResult();;
ExplicitQualitativeCheckResult const& leftResult = leftResultPointer->asExplicitQualitativeCheckResult();
ExplicitQualitativeCheckResult const& rightResult = rightResultPointer->asExplicitQualitativeCheckResult();
std::unique_ptr<CheckResult> result = std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeBoundedUntilProbabilitiesHelper(leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), pathFormula.getDiscreteTimeBound())));
return result;
}
template<typename SparseDtmcModelType>
std::vector<typename SparseDtmcPrctlModelChecker<SparseDtmcModelType>::ValueType> SparseDtmcPrctlModelChecker<SparseDtmcModelType>::computeNextProbabilitiesHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& nextStates, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// Create the vector with which to multiply and initialize it correctly.
std::vector<ValueType> result(transitionMatrix.getRowCount());
storm::utility::vector::setVectorValues(result, nextStates, storm::utility::one<ValueType>());
// Perform one single matrix-vector multiplication.
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(transitionMatrix);
solver->performMatrixVectorMultiplication(result);
std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseDtmcPrctlHelper<ValueType>::computeBoundedUntilProbabilities(this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), pathFormula.getDiscreteTimeBound(), *linearEquationSolverFactory);
std::unique_ptr<CheckResult> result = std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
return result;
}
@ -92,189 +43,50 @@ namespace storm {
std::unique_ptr<CheckResult> SparseDtmcPrctlModelChecker<SparseDtmcModelType>::computeNextProbabilities(storm::logic::NextFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
std::unique_ptr<CheckResult> subResultPointer = this->check(pathFormula.getSubformula());
ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult();
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeNextProbabilitiesHelper(this->getModel().getTransitionMatrix(), subResult.getTruthValuesVector(), *this->linearEquationSolverFactory)));
}
template<typename SparseDtmcModelType>
std::vector<typename SparseDtmcPrctlModelChecker<SparseDtmcModelType>::ValueType> SparseDtmcPrctlModelChecker<SparseDtmcModelType>::computeUntilProbabilitiesHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// We need to identify the states which have to be taken out of the matrix, i.e.
// all states that have probability 0 and 1 of satisfying the until-formula.
std::pair<storm::storage::BitVector, storm::storage::BitVector> statesWithProbability01 = storm::utility::graph::performProb01(backwardTransitions, phiStates, psiStates);
storm::storage::BitVector statesWithProbability0 = std::move(statesWithProbability01.first);
storm::storage::BitVector statesWithProbability1 = std::move(statesWithProbability01.second);
// Perform some logging.
storm::storage::BitVector maybeStates = ~(statesWithProbability0 | statesWithProbability1);
STORM_LOG_INFO("Found " << statesWithProbability0.getNumberOfSetBits() << " 'no' states.");
STORM_LOG_INFO("Found " << statesWithProbability1.getNumberOfSetBits() << " 'yes' states.");
STORM_LOG_INFO("Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states.");
// Create resulting vector.
std::vector<ValueType> result(transitionMatrix.getRowCount());
// Check whether we need to compute exact probabilities for some states.
if (qualitative) {
// Set the values for all maybe-states to 0.5 to indicate that their probability values are neither 0 nor 1.
storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, ValueType(0.5));
} else {
if (!maybeStates.empty()) {
// In this case we have have to compute the probabilities.
// We can eliminate the rows and columns from the original transition probability matrix.
storm::storage::SparseMatrix<ValueType> submatrix = transitionMatrix.getSubmatrix(true, maybeStates, maybeStates, true);
// Converting the matrix from the fixpoint notation to the form needed for the equation
// system. That is, we go from x = A*x + b to (I-A)x = b.
submatrix.convertToEquationSystem();
// Initialize the x vector with 0.5 for each element. This is the initial guess for
// the iterative solvers. It should be safe as for all 'maybe' states we know that the
// probability is strictly larger than 0.
std::vector<ValueType> x(maybeStates.getNumberOfSetBits(), ValueType(0.5));
// Prepare the right-hand side of the equation system. For entry i this corresponds to
// the accumulated probability of going from state i to some 'yes' state.
std::vector<ValueType> b = transitionMatrix.getConstrainedRowSumVector(maybeStates, statesWithProbability1);
// Now solve the created system of linear equations.
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(submatrix);
solver->solveEquationSystem(x, b);
// Set values of resulting vector according to result.
storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, x);
}
}
// Set values of resulting vector that are known exactly.
storm::utility::vector::setVectorValues<ValueType>(result, statesWithProbability0, storm::utility::zero<ValueType>());
storm::utility::vector::setVectorValues<ValueType>(result, statesWithProbability1, storm::utility::one<ValueType>());
return result;
std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseDtmcPrctlHelper<ValueType>::computeNextProbabilities(this->getModel().getTransitionMatrix(), subResult.getTruthValuesVector(), *linearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
}
template<typename SparseDtmcModelType>
std::unique_ptr<CheckResult> SparseDtmcPrctlModelChecker<SparseDtmcModelType>::computeUntilProbabilities(storm::logic::UntilFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
std::unique_ptr<CheckResult> leftResultPointer = this->check(pathFormula.getLeftSubformula());
std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula());
ExplicitQualitativeCheckResult const& leftResult = leftResultPointer->asExplicitQualitativeCheckResult();;
ExplicitQualitativeCheckResult const& rightResult = rightResultPointer->asExplicitQualitativeCheckResult();;
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeUntilProbabilitiesHelper(this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), qualitative, *this->linearEquationSolverFactory)));
}
template<typename SparseDtmcModelType>
std::vector<typename SparseDtmcPrctlModelChecker<SparseDtmcModelType>::ValueType> SparseDtmcPrctlModelChecker<SparseDtmcModelType>::computeCumulativeRewardsHelper(RewardModelType const& rewardModel, uint_fast64_t stepBound) const {
// Compute the reward vector to add in each step based on the available reward models.
std::vector<ValueType> totalRewardVector = rewardModel.getTotalRewardVector(this->getModel().getTransitionMatrix());
// Initialize result to either the state rewards of the model or the null vector.
std::vector<ValueType> result = rewardModel.getTotalStateActionRewardVector(this->getModel().getNumberOfStates(), this->getModel().getTransitionMatrix().getRowGroupIndices());
// Perform the matrix vector multiplication as often as required by the formula bound.
STORM_LOG_THROW(linearEquationSolverFactory != nullptr, storm::exceptions::InvalidStateException, "No valid linear equation solver available.");
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory->create(this->getModel().getTransitionMatrix());
solver->performMatrixVectorMultiplication(result, &totalRewardVector, stepBound);
return result;
ExplicitQualitativeCheckResult const& leftResult = leftResultPointer->asExplicitQualitativeCheckResult();
ExplicitQualitativeCheckResult const& rightResult = rightResultPointer->asExplicitQualitativeCheckResult();
std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseDtmcPrctlHelper<ValueType>::computeUntilProbabilities(this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), qualitative, *linearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
}
template<typename SparseDtmcModelType>
std::unique_ptr<CheckResult> SparseDtmcPrctlModelChecker<SparseDtmcModelType>::computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
STORM_LOG_THROW(rewardPathFormula.hasDiscreteTimeBound(), storm::exceptions::InvalidArgumentException, "Formula needs to have a discrete time bound.");
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeCumulativeRewardsHelper(rewardModelName ? this->getModel().getRewardModel(rewardModelName.get()) : this->getModel().getRewardModel(""), rewardPathFormula.getDiscreteTimeBound())));
}
template<typename SparseDtmcModelType>
std::vector<typename SparseDtmcPrctlModelChecker<SparseDtmcModelType>::ValueType> SparseDtmcPrctlModelChecker<SparseDtmcModelType>::computeInstantaneousRewardsHelper(RewardModelType const& rewardModel, uint_fast64_t stepCount) const {
// Only compute the result if the model has a state-based reward this->getModel().
STORM_LOG_THROW(rewardModel.hasStateRewards() || rewardModel.hasStateActionRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
// Initialize result to state rewards of the model.
std::vector<ValueType> result = rewardModel.getTotalStateActionRewardVector(this->getModel().getNumberOfStates(), this->getModel().getTransitionMatrix().getRowGroupIndices());
// Perform the matrix vector multiplication as often as required by the formula bound.
STORM_LOG_THROW(linearEquationSolverFactory != nullptr, storm::exceptions::InvalidStateException, "No valid linear equation solver available.");
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory->create(this->getModel().getTransitionMatrix());
solver->performMatrixVectorMultiplication(result, nullptr, stepCount);
return result;
std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseDtmcPrctlHelper<ValueType>::computeCumulativeRewards(this->getModel().getTransitionMatrix(), rewardModelName ? this->getModel().getRewardModel(rewardModelName.get()) : this->getModel().getRewardModel(""), rewardPathFormula.getDiscreteTimeBound(), *linearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
}
template<typename SparseDtmcModelType>
std::unique_ptr<CheckResult> SparseDtmcPrctlModelChecker<SparseDtmcModelType>::computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
STORM_LOG_THROW(rewardPathFormula.hasDiscreteTimeBound(), storm::exceptions::InvalidArgumentException, "Formula needs to have a discrete time bound.");
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeInstantaneousRewardsHelper(rewardModelName ? this->getModel().getRewardModel(rewardModelName.get()) : this->getModel().getRewardModel(""), rewardPathFormula.getDiscreteTimeBound())));
}
template<typename SparseDtmcModelType>
std::vector<typename SparseDtmcPrctlModelChecker<SparseDtmcModelType>::ValueType> SparseDtmcPrctlModelChecker<SparseDtmcModelType>::computeReachabilityRewardsHelper(RewardModelType const& rewardModel, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& targetStates, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory, bool qualitative) {
// Determine which states have a reward of infinity by definition.
storm::storage::BitVector trueStates(transitionMatrix.getRowCount(), true);
storm::storage::BitVector infinityStates = storm::utility::graph::performProb1(backwardTransitions, trueStates, targetStates);
infinityStates.complement();
storm::storage::BitVector maybeStates = ~targetStates & ~infinityStates;
STORM_LOG_INFO("Found " << infinityStates.getNumberOfSetBits() << " 'infinity' states.");
STORM_LOG_INFO("Found " << targetStates.getNumberOfSetBits() << " 'target' states.");
STORM_LOG_INFO("Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states.");
// Create resulting vector.
std::vector<ValueType> result(transitionMatrix.getRowCount(), storm::utility::zero<ValueType>());
// Check whether we need to compute exact rewards for some states.
if (qualitative) {
// Set the values for all maybe-states to 1 to indicate that their reward values
// are neither 0 nor infinity.
storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, storm::utility::one<ValueType>());
} else {
// In this case we have to compute the reward values for the remaining states.
// We can eliminate the rows and columns from the original transition probability matrix.
storm::storage::SparseMatrix<ValueType> submatrix = transitionMatrix.getSubmatrix(true, maybeStates, maybeStates, true);
// Converting the matrix from the fixpoint notation to the form needed for the equation
// system. That is, we go from x = A*x + b to (I-A)x = b.
submatrix.convertToEquationSystem();
// Initialize the x vector with 1 for each element. This is the initial guess for
// the iterative solvers.
std::vector<ValueType> x(submatrix.getColumnCount(), storm::utility::one<ValueType>());
// Prepare the right-hand side of the equation system.
std::vector<ValueType> b = rewardModel.getTotalRewardVector(submatrix.getRowCount(), transitionMatrix, maybeStates);
// Now solve the resulting equation system.
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(submatrix);
solver->solveEquationSystem(x, b);
// Set values of resulting vector according to result.
storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, x);
}
// Set values of resulting vector that are known exactly.
storm::utility::vector::setVectorValues(result, infinityStates, storm::utility::infinity<ValueType>());
return result;
std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseDtmcPrctlHelper<ValueType>::computeInstantaneousRewards(this->getModel().getTransitionMatrix(), rewardModelName ? this->getModel().getRewardModel(rewardModelName.get()) : this->getModel().getRewardModel(""), rewardPathFormula.getDiscreteTimeBound(), *linearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
}
template<typename SparseDtmcModelType>
std::unique_ptr<CheckResult> SparseDtmcPrctlModelChecker<SparseDtmcModelType>::computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
std::unique_ptr<CheckResult> subResultPointer = this->check(rewardPathFormula.getSubformula());
ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult();
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeReachabilityRewardsHelper(rewardModelName ? this->getModel().getRewardModel(rewardModelName.get()) : this->getModel().getRewardModel(""), this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), subResult.getTruthValuesVector(), *this->linearEquationSolverFactory, qualitative)));
std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseDtmcPrctlHelper<ValueType>::computeReachabilityRewards(this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), rewardModelName ? this->getModel().getRewardModel(rewardModelName.get()) : this->getModel().getRewardModel(""), subResult.getTruthValuesVector(), qualitative, *linearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
}
template<typename SparseDtmcModelType>
std::unique_ptr<CheckResult> SparseDtmcPrctlModelChecker<SparseDtmcModelType>::computeLongRunAverage(storm::logic::StateFormula const& stateFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
std::unique_ptr<CheckResult> subResultPointer = this->check(stateFormula);
ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult();
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(computeLongRunAverageHelper(this->getModel().getTransitionMatrix(), subResult.getTruthValuesVector(), qualitative, *linearEquationSolverFactory)));
std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseCtmcCslHelper<ValueType>::computeLongRunAverage(this->getModel().getTransitionMatrix(), this->getModel().getTransitionMatrix(), subResult.getTruthValuesVector(), qualitative, *linearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
}
template<typename SparseDtmcModelType>
std::vector<typename SparseDtmcPrctlModelChecker<SparseDtmcModelType>::ValueType> SparseDtmcPrctlModelChecker<SparseDtmcModelType>::computeLongRunAverageHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
return SparseCtmcCslModelChecker<ValueType>::computeLongRunAverageHelper(transitionMatrix, psiStates, nullptr, qualitative, linearEquationSolverFactory);
}
template class SparseDtmcPrctlModelChecker<storm::models::sparse::Dtmc<double>>;
}
}

19
src/modelchecker/prctl/SparseDtmcPrctlModelChecker.h

@ -12,9 +12,6 @@ namespace storm {
template<storm::dd::DdType DdType, typename ValueType>
class HybridDtmcPrctlModelChecker;
// Forward-declare CTMC model checker so we can make it a friend.
template<typename SparseModelType> class SparseCtmcCslModelChecker;
template<class SparseDtmcModelType>
class SparseDtmcPrctlModelChecker : public SparsePropositionalModelChecker<SparseDtmcModelType> {
public:
@ -22,7 +19,6 @@ namespace storm {
typedef typename SparseDtmcModelType::RewardModelType RewardModelType;
friend class HybridDtmcPrctlModelChecker<storm::dd::DdType::CUDD, ValueType>;
friend class SparseCtmcCslModelChecker<ValueType>;
explicit SparseDtmcPrctlModelChecker(SparseDtmcModelType const& model);
explicit SparseDtmcPrctlModelChecker(SparseDtmcModelType const& model, std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<ValueType>>&& linearEquationSolverFactory);
@ -32,21 +28,12 @@ namespace storm {
virtual std::unique_ptr<CheckResult> computeBoundedUntilProbabilities(storm::logic::BoundedUntilFormula const& pathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeNextProbabilities(storm::logic::NextFormula const& pathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeUntilProbabilities(storm::logic::UntilFormula const& pathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>());
virtual std::unique_ptr<CheckResult> computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>());
virtual std::unique_ptr<CheckResult> computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>());
virtual std::unique_ptr<CheckResult> computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeLongRunAverage(storm::logic::StateFormula const& stateFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
private:
// The methods that perform the actual checking.
std::vector<ValueType> computeBoundedUntilProbabilitiesHelper(storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, uint_fast64_t stepBound) const;
static std::vector<ValueType> computeNextProbabilitiesHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& nextStates, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static std::vector<ValueType> computeUntilProbabilitiesHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
std::vector<ValueType> computeInstantaneousRewardsHelper(RewardModelType const& rewardModel, uint_fast64_t stepCount) const;
std::vector<ValueType> computeCumulativeRewardsHelper(RewardModelType const& rewardModel, uint_fast64_t stepBound) const;
static std::vector<ValueType> computeReachabilityRewardsHelper(RewardModelType const& rewardModel, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& targetStates, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory, bool qualitative);
static std::vector<ValueType> computeLongRunAverageHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
// An object that is used for retrieving linear equation solvers.
std::unique_ptr<storm::utility::solver::LinearEquationSolverFactory<ValueType>> linearEquationSolverFactory;
};

399
src/modelchecker/prctl/SparseMdpPrctlModelChecker.cpp

@ -36,40 +36,6 @@ namespace storm {
return formula.isPctlStateFormula() || formula.isPctlPathFormula() || formula.isRewardPathFormula();
}
template<typename SparseMdpModelType>
std::vector<typename SparseMdpModelType::ValueType> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeBoundedUntilProbabilitiesHelper(bool minimize, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, uint_fast64_t stepBound) const {
std::vector<ValueType> result(this->getModel().getNumberOfStates(), storm::utility::zero<ValueType>());
// Determine the states that have 0 probability of reaching the target states.
storm::storage::BitVector maybeStates;
if (minimize) {
maybeStates = storm::utility::graph::performProbGreater0A(this->getModel().getTransitionMatrix(), this->getModel().getTransitionMatrix().getRowGroupIndices(), this->getModel().getBackwardTransitions(), phiStates, psiStates, true, stepBound);
} else {
maybeStates = storm::utility::graph::performProbGreater0E(this->getModel().getTransitionMatrix(), this->getModel().getTransitionMatrix().getRowGroupIndices(), this->getModel().getBackwardTransitions(), phiStates, psiStates, true, stepBound);
}
maybeStates &= ~psiStates;
STORM_LOG_INFO("Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states.");
if (!maybeStates.empty()) {
// We can eliminate the rows and columns from the original transition probability matrix that have probability 0.
storm::storage::SparseMatrix<ValueType> submatrix = this->getModel().getTransitionMatrix().getSubmatrix(true, maybeStates, maybeStates, false);
std::vector<ValueType> b = this->getModel().getTransitionMatrix().getConstrainedRowGroupSumVector(maybeStates, psiStates);
// Create the vector with which to multiply.
std::vector<ValueType> subresult(maybeStates.getNumberOfSetBits());
STORM_LOG_THROW(MinMaxLinearEquationSolverFactory != nullptr, storm::exceptions::InvalidStateException, "No valid equation solver available.");
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = MinMaxLinearEquationSolverFactory->create(submatrix);
solver->performMatrixVectorMultiplication(minimize, subresult, &b, stepBound);
// Set the values of the resulting vector accordingly.
storm::utility::vector::setVectorValues(result, maybeStates, subresult);
}
storm::utility::vector::setVectorValues(result, psiStates, storm::utility::one<ValueType>());
return result;
}
template<typename SparseMdpModelType>
std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeBoundedUntilProbabilities(storm::logic::BoundedUntilFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
@ -81,19 +47,6 @@ namespace storm {
return result;
}
template<typename SparseMdpModelType>
std::vector<typename SparseMdpModelType::ValueType> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeNextProbabilitiesHelper(bool minimize, storm::storage::BitVector const& nextStates) {
// Create the vector with which to multiply and initialize it correctly.
std::vector<ValueType> result(this->getModel().getNumberOfStates());
storm::utility::vector::setVectorValues(result, nextStates, storm::utility::one<ValueType>());
STORM_LOG_THROW(MinMaxLinearEquationSolverFactory != nullptr, storm::exceptions::InvalidStateException, "No valid equation solver available.");
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = MinMaxLinearEquationSolverFactory->create(this->getModel().getTransitionMatrix());
solver->performMatrixVectorMultiplication(minimize, result);
return result;
}
template<typename SparseMdpModelType>
std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeNextProbabilities(storm::logic::NextFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
@ -102,68 +55,6 @@ namespace storm {
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeNextProbabilitiesHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, subResult.getTruthValuesVector())));
}
template<typename SparseMdpModelType>
std::vector<typename SparseMdpModelType::ValueType> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeUntilProbabilitiesHelper(bool minimize, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative) const {
return computeUntilProbabilitiesHelper(minimize, this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), phiStates, psiStates, *MinMaxLinearEquationSolverFactory, qualitative);
}
template<typename SparseMdpModelType>
std::vector<typename SparseMdpModelType::ValueType> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeUntilProbabilitiesHelper(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& MinMaxLinearEquationSolverFactory, bool qualitative) {
size_t numberOfStates = phiStates.size();
// We need to identify the states which have to be taken out of the matrix, i.e.
// all states that have probability 0 and 1 of satisfying the until-formula.
std::pair<storm::storage::BitVector, storm::storage::BitVector> statesWithProbability01;
if (minimize) {
statesWithProbability01 = storm::utility::graph::performProb01Min(transitionMatrix, transitionMatrix.getRowGroupIndices(), backwardTransitions, phiStates, psiStates);
} else {
statesWithProbability01 = storm::utility::graph::performProb01Max(transitionMatrix, transitionMatrix.getRowGroupIndices(), backwardTransitions, phiStates, psiStates);
}
storm::storage::BitVector statesWithProbability0 = std::move(statesWithProbability01.first);
storm::storage::BitVector statesWithProbability1 = std::move(statesWithProbability01.second);
storm::storage::BitVector maybeStates = ~(statesWithProbability0 | statesWithProbability1);
LOG4CPLUS_INFO(logger, "Found " << statesWithProbability0.getNumberOfSetBits() << " 'no' states.");
LOG4CPLUS_INFO(logger, "Found " << statesWithProbability1.getNumberOfSetBits() << " 'yes' states.");
LOG4CPLUS_INFO(logger, "Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states.");
// Create resulting vector.
std::vector<ValueType> result(numberOfStates);
// Check whether we need to compute exact probabilities for some states.
if (qualitative) {
// Set the values for all maybe-states to 0.5 to indicate that their probability values are neither 0 nor 1.
storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, ValueType(0.5));
} else {
if (!maybeStates.empty()) {
// In this case we have have to compute the probabilities.
// First, we can eliminate the rows and columns from the original transition probability matrix for states
// whose probabilities are already known.
storm::storage::SparseMatrix<ValueType> submatrix = transitionMatrix.getSubmatrix(true, maybeStates, maybeStates, false);
// Prepare the right-hand side of the equation system. For entry i this corresponds to
// the accumulated probability of going from state i to some 'yes' state.
std::vector<ValueType> b = transitionMatrix.getConstrainedRowGroupSumVector(maybeStates, statesWithProbability1);
// Create vector for results for maybe states.
std::vector<ValueType> x(maybeStates.getNumberOfSetBits());
// Solve the corresponding system of equations.
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = MinMaxLinearEquationSolverFactory.create(submatrix);
solver->solveEquationSystem(minimize, x, b);
// Set values of resulting vector according to result.
storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, x);
}
}
// Set values of resulting vector that are known exactly.
storm::utility::vector::setVectorValues<ValueType>(result, statesWithProbability0, storm::utility::zero<ValueType>());
storm::utility::vector::setVectorValues<ValueType>(result, statesWithProbability1, storm::utility::one<ValueType>());
return result;
}
template<typename SparseMdpModelType>
std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeUntilProbabilities(storm::logic::UntilFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
@ -174,28 +65,6 @@ namespace storm {
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(SparseMdpPrctlModelChecker<SparseMdpModelType>::computeUntilProbabilitiesHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), *MinMaxLinearEquationSolverFactory, qualitative)));
}
template<typename SparseMdpModelType>
std::vector<typename SparseMdpModelType::ValueType> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeCumulativeRewardsHelper(RewardModelType const& rewardModel, bool minimize, uint_fast64_t stepBound) const {
// Only compute the result if the model has at least one reward this->getModel().
STORM_LOG_THROW(!rewardModel.empty(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
// Compute the reward vector to add in each step based on the available reward models.
std::vector<ValueType> totalRewardVector = rewardModel.getTotalRewardVector(this->getModel().getTransitionMatrix());
// Initialize result to either the state rewards of the model or the null vector.
std::vector<ValueType> result;
if (rewardModel.hasStateRewards()) {
result = rewardModel.getStateRewardVector();
} else {
result.resize(this->getModel().getNumberOfStates());
}
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = MinMaxLinearEquationSolverFactory->create(this->getModel().getTransitionMatrix());
solver->performMatrixVectorMultiplication(minimize, result, &totalRewardVector, stepBound);
return result;
}
template<typename SparseMdpModelType>
std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
@ -203,85 +72,13 @@ namespace storm {
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeCumulativeRewardsHelper(rewardModelName ? this->getModel().getRewardModel(rewardModelName.get()) : this->getModel().getRewardModel(""), optimalityType.get() == storm::logic::OptimalityType::Minimize, rewardPathFormula.getDiscreteTimeBound())));
}
template<typename SparseMdpModelType>
std::vector<typename SparseMdpModelType::ValueType> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeInstantaneousRewardsHelper(RewardModelType const& rewardModel, bool minimize, uint_fast64_t stepCount) const {
// Only compute the result if the model has a state-based reward this->getModel().
STORM_LOG_THROW(rewardModel.hasStateRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
// Initialize result to state rewards of the this->getModel().
std::vector<ValueType> result(rewardModel.getStateRewardVector());
STORM_LOG_THROW(MinMaxLinearEquationSolverFactory != nullptr, storm::exceptions::InvalidStateException, "No valid linear equation solver available.");
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = MinMaxLinearEquationSolverFactory->create(this->getModel().getTransitionMatrix());
solver->performMatrixVectorMultiplication(minimize, result, nullptr, stepCount);
return result;
}
template<typename SparseMdpModelType>
std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
STORM_LOG_THROW(rewardPathFormula.hasDiscreteTimeBound(), storm::exceptions::InvalidArgumentException, "Formula needs to have a discrete time bound.");
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeInstantaneousRewardsHelper(rewardModelName ? this->getModel().getRewardModel(rewardModelName.get()) : this->getModel().getRewardModel(""), optimalityType.get() == storm::logic::OptimalityType::Minimize, rewardPathFormula.getDiscreteTimeBound())));
}
template<typename SparseMdpModelType>
std::vector<typename SparseMdpModelType::ValueType> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeReachabilityRewardsHelper(RewardModelType const& rewardModel, bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& targetStates, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& MinMaxLinearEquationSolverFactory, bool qualitative) const {
// Only compute the result if the model has at least one reward this->getModel().
STORM_LOG_THROW(!rewardModel.empty(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
// Determine which states have a reward of infinity by definition.
storm::storage::BitVector infinityStates;
storm::storage::BitVector trueStates(transitionMatrix.getRowCount(), true);
if (minimize) {
infinityStates = std::move(storm::utility::graph::performProb1A(transitionMatrix, transitionMatrix.getRowGroupIndices(), backwardTransitions, trueStates, targetStates));
} else {
infinityStates = std::move(storm::utility::graph::performProb1E(transitionMatrix, transitionMatrix.getRowGroupIndices(), backwardTransitions, trueStates, targetStates));
}
infinityStates.complement();
storm::storage::BitVector maybeStates = ~targetStates & ~infinityStates;
LOG4CPLUS_INFO(logger, "Found " << infinityStates.getNumberOfSetBits() << " 'infinity' states.");
LOG4CPLUS_INFO(logger, "Found " << targetStates.getNumberOfSetBits() << " 'target' states.");
LOG4CPLUS_INFO(logger, "Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states.");
// Create resulting vector.
std::vector<ValueType> result(transitionMatrix.getRowCount());
// Check whether we need to compute exact rewards for some states.
if (qualitative) {
LOG4CPLUS_INFO(logger, "The rewards for the initial states were determined in a preprocessing step. No exact rewards were computed.");
// Set the values for all maybe-states to 1 to indicate that their reward values
// are neither 0 nor infinity.
storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, storm::utility::one<ValueType>());
} else {
// In this case we have to compute the reward values for the remaining states.
// We can eliminate the rows and columns from the original transition probability matrix for states
// whose reward values are already known.
storm::storage::SparseMatrix<ValueType> submatrix = transitionMatrix.getSubmatrix(true, maybeStates, maybeStates, false);
// Prepare the right-hand side of the equation system.
std::vector<ValueType> b = rewardModel.getTotalRewardVector(submatrix.getRowCount(), transitionMatrix, maybeStates);
// Create vector for results for maybe states.
std::vector<ValueType> x(maybeStates.getNumberOfSetBits());
// Solve the corresponding system of equations.
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = MinMaxLinearEquationSolverFactory.create(submatrix);
solver->solveEquationSystem(minimize, x, b);
// Set values of resulting vector according to result.
storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, x);
}
// Set values of resulting vector that are known exactly.
storm::utility::vector::setVectorValues(result, targetStates, storm::utility::zero<ValueType>());
storm::utility::vector::setVectorValues(result, infinityStates, storm::utility::infinity<ValueType>());
return result;
}
template<typename SparseMdpModelType>
std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
@ -289,158 +86,6 @@ namespace storm {
ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult();
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeReachabilityRewardsHelper(rewardModelName ? this->getModel().getRewardModel(rewardModelName.get()) : this->getModel().getRewardModel(""), optimalityType.get() == storm::logic::OptimalityType::Minimize, this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), subResult.getTruthValuesVector(), *this->MinMaxLinearEquationSolverFactory, qualitative)));
}
template<typename SparseMdpModelType>
std::vector<typename SparseMdpModelType::ValueType> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeLongRunAverageHelper(bool minimize, storm::storage::BitVector const& psiStates, bool qualitative) const {
// If there are no goal states, we avoid the computation and directly return zero.
auto numOfStates = this->getModel().getNumberOfStates();
if (psiStates.empty()) {
return std::vector<ValueType>(numOfStates, storm::utility::zero<ValueType>());
}
// Likewise, if all bits are set, we can avoid the computation and set.
if ((~psiStates).empty()) {
return std::vector<ValueType>(numOfStates, storm::utility::one<ValueType>());
}
// Start by decomposing the MDP into its MECs.
storm::storage::MaximalEndComponentDecomposition<double> mecDecomposition(this->getModel());
// Get some data members for convenience.
typename storm::storage::SparseMatrix<ValueType> const& transitionMatrix = this->getModel().getTransitionMatrix();
std::vector<uint_fast64_t> const& nondeterministicChoiceIndices = this->getModel().getNondeterministicChoiceIndices();
ValueType zero = storm::utility::zero<ValueType>();
//first calculate LRA for the Maximal End Components.
storm::storage::BitVector statesInMecs(numOfStates);
std::vector<uint_fast64_t> stateToMecIndexMap(transitionMatrix.getColumnCount());
std::vector<ValueType> lraValuesForEndComponents(mecDecomposition.size(), zero);
for (uint_fast64_t currentMecIndex = 0; currentMecIndex < mecDecomposition.size(); ++currentMecIndex) {
storm::storage::MaximalEndComponent const& mec = mecDecomposition[currentMecIndex];
lraValuesForEndComponents[currentMecIndex] = computeLraForMaximalEndComponent(minimize, transitionMatrix, psiStates, mec);
// Gather information for later use.
for (auto const& stateChoicesPair : mec) {
statesInMecs.set(stateChoicesPair.first);
stateToMecIndexMap[stateChoicesPair.first] = currentMecIndex;
}
}
// For fast transition rewriting, we build some auxiliary data structures.
storm::storage::BitVector statesNotContainedInAnyMec = ~statesInMecs;
uint_fast64_t firstAuxiliaryStateIndex = statesNotContainedInAnyMec.getNumberOfSetBits();
uint_fast64_t lastStateNotInMecs = 0;
uint_fast64_t numberOfStatesNotInMecs = 0;
std::vector<uint_fast64_t> statesNotInMecsBeforeIndex;
statesNotInMecsBeforeIndex.reserve(this->getModel().getNumberOfStates());
for (auto state : statesNotContainedInAnyMec) {
while (lastStateNotInMecs <= state) {
statesNotInMecsBeforeIndex.push_back(numberOfStatesNotInMecs);
++lastStateNotInMecs;
}
++numberOfStatesNotInMecs;
}
// Finally, we are ready to create the SSP matrix and right-hand side of the SSP.
std::vector<ValueType> b;
typename storm::storage::SparseMatrixBuilder<ValueType> sspMatrixBuilder(0, 0, 0, false, true, numberOfStatesNotInMecs + mecDecomposition.size());
// If the source state is not contained in any MEC, we copy its choices (and perform the necessary modifications).
uint_fast64_t currentChoice = 0;
for (auto state : statesNotContainedInAnyMec) {
sspMatrixBuilder.newRowGroup(currentChoice);
for (uint_fast64_t choice = nondeterministicChoiceIndices[state]; choice < nondeterministicChoiceIndices[state + 1]; ++choice, ++currentChoice) {
std::vector<ValueType> auxiliaryStateToProbabilityMap(mecDecomposition.size());
b.push_back(storm::utility::zero<ValueType>());
for (auto element : transitionMatrix.getRow(choice)) {
if (statesNotContainedInAnyMec.get(element.getColumn())) {
// If the target state is not contained in an MEC, we can copy over the entry.
sspMatrixBuilder.addNextValue(currentChoice, statesNotInMecsBeforeIndex[element.getColumn()], element.getValue());
} else {
// If the target state is contained in MEC i, we need to add the probability to the corresponding field in the vector
// so that we are able to write the cumulative probability to the MEC into the matrix.
auxiliaryStateToProbabilityMap[stateToMecIndexMap[element.getColumn()]] += element.getValue();
}
}
// Now insert all (cumulative) probability values that target an MEC.
for (uint_fast64_t mecIndex = 0; mecIndex < auxiliaryStateToProbabilityMap.size(); ++mecIndex) {
if (auxiliaryStateToProbabilityMap[mecIndex] != 0) {
sspMatrixBuilder.addNextValue(currentChoice, firstAuxiliaryStateIndex + mecIndex, auxiliaryStateToProbabilityMap[mecIndex]);
}
}
}
}
// Now we are ready to construct the choices for the auxiliary states.
for (uint_fast64_t mecIndex = 0; mecIndex < mecDecomposition.size(); ++mecIndex) {
storm::storage::MaximalEndComponent const& mec = mecDecomposition[mecIndex];
sspMatrixBuilder.newRowGroup(currentChoice);
for (auto const& stateChoicesPair : mec) {
uint_fast64_t state = stateChoicesPair.first;
boost::container::flat_set<uint_fast64_t> const& choicesInMec = stateChoicesPair.second;
for (uint_fast64_t choice = nondeterministicChoiceIndices[state]; choice < nondeterministicChoiceIndices[state + 1]; ++choice) {
std::vector<ValueType> auxiliaryStateToProbabilityMap(mecDecomposition.size());
// If the choice is not contained in the MEC itself, we have to add a similar distribution to the auxiliary state.
if (choicesInMec.find(choice) == choicesInMec.end()) {
b.push_back(storm::utility::zero<ValueType>());
for (auto element : transitionMatrix.getRow(choice)) {
if (statesNotContainedInAnyMec.get(element.getColumn())) {
// If the target state is not contained in an MEC, we can copy over the entry.
sspMatrixBuilder.addNextValue(currentChoice, statesNotInMecsBeforeIndex[element.getColumn()], element.getValue());
} else {
// If the target state is contained in MEC i, we need to add the probability to the corresponding field in the vector
// so that we are able to write the cumulative probability to the MEC into the matrix.
auxiliaryStateToProbabilityMap[stateToMecIndexMap[element.getColumn()]] += element.getValue();
}
}
// Now insert all (cumulative) probability values that target an MEC.
for (uint_fast64_t targetMecIndex = 0; targetMecIndex < auxiliaryStateToProbabilityMap.size(); ++targetMecIndex) {
if (auxiliaryStateToProbabilityMap[targetMecIndex] != 0) {
sspMatrixBuilder.addNextValue(currentChoice, firstAuxiliaryStateIndex + targetMecIndex, auxiliaryStateToProbabilityMap[targetMecIndex]);
}
}
++currentChoice;
}
}
}
// For each auxiliary state, there is the option to achieve the reward value of the LRA associated with the MEC.
++currentChoice;
b.push_back(lraValuesForEndComponents[mecIndex]);
}
// Finalize the matrix and solve the corresponding system of equations.
storm::storage::SparseMatrix<ValueType> sspMatrix = sspMatrixBuilder.build(currentChoice);
std::vector<ValueType> sspResult(numberOfStatesNotInMecs + mecDecomposition.size());
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = MinMaxLinearEquationSolverFactory->create(sspMatrix);
solver->solveEquationSystem(minimize, sspResult, b);
// Prepare result vector.
std::vector<ValueType> result(this->getModel().getNumberOfStates());
// Set the values for states not contained in MECs.
storm::utility::vector::setVectorValues(result, statesNotContainedInAnyMec, sspResult);
// Set the values for all states in MECs.
for (auto state : statesInMecs) {
result[state] = sspResult[firstAuxiliaryStateIndex + stateToMecIndexMap[state]];
}
return result;
}
template<typename SparseMdpModelType>
std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeLongRunAverage(storm::logic::StateFormula const& stateFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
@ -451,50 +96,6 @@ namespace storm {
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(this->computeLongRunAverageHelper(optimalityType.get() == storm::logic::OptimalityType::Minimize, subResult.getTruthValuesVector(), qualitative)));
}
template<typename SparseMdpModelType>
typename SparseMdpModelType::ValueType SparseMdpPrctlModelChecker<SparseMdpModelType>::computeLraForMaximalEndComponent(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& psiStates, storm::storage::MaximalEndComponent const& mec) {
std::shared_ptr<storm::solver::LpSolver> solver = storm::utility::solver::getLpSolver("LRA for MEC");
solver->setModelSense(minimize ? storm::solver::LpSolver::ModelSense::Maximize : storm::solver::LpSolver::ModelSense::Minimize);
//// First, we need to create the variables for the problem.
std::map<uint_fast64_t, storm::expressions::Variable> stateToVariableMap;
for (auto const& stateChoicesPair : mec) {
std::string variableName = "h" + std::to_string(stateChoicesPair.first);
stateToVariableMap[stateChoicesPair.first] = solver->addUnboundedContinuousVariable(variableName);
}
storm::expressions::Variable lambda = solver->addUnboundedContinuousVariable("L", 1);
solver->update();
// Now we encode the problem as constraints.
for (auto const& stateChoicesPair : mec) {
uint_fast64_t state = stateChoicesPair.first;
// Now, based on the type of the state, create a suitable constraint.
for (auto choice : stateChoicesPair.second) {
storm::expressions::Expression constraint = -lambda;
ValueType r = 0;
for (auto element : transitionMatrix.getRow(choice)) {
constraint = constraint + stateToVariableMap.at(element.getColumn()) * solver->getConstant(element.getValue());
if (psiStates.get(element.getColumn())) {
r += element.getValue();
}
}
constraint = solver->getConstant(r) + constraint;
if (minimize) {
constraint = stateToVariableMap.at(state) <= constraint;
} else {
constraint = stateToVariableMap.at(state) >= constraint;
}
solver->addConstraint("state" + std::to_string(state) + "," + std::to_string(choice), constraint);
}
}
solver->optimize();
return solver->getContinuousValue(lambda);
}
template class SparseMdpPrctlModelChecker<storm::models::sparse::Mdp<double>>;
}

22
src/modelchecker/prctl/SparseMdpPrctlModelChecker.h

@ -5,8 +5,6 @@
#include "src/models/sparse/Mdp.h"
#include "src/utility/solver.h"
#include "src/solver/MinMaxLinearEquationSolver.h"
#include "src/storage/MaximalEndComponent.h"
namespace storm {
namespace counterexamples {
@ -18,18 +16,12 @@ namespace storm {
}
namespace modelchecker {
// Forward-declare other model checkers to make them friend classes.
template<typename SparseMarkovAutomatonModelType>
class SparseMarkovAutomatonCslModelChecker;
template<class SparseMdpModelType>
class SparseMdpPrctlModelChecker : public SparsePropositionalModelChecker<SparseMdpModelType> {
public:
typedef typename SparseMdpModelType::ValueType ValueType;
typedef typename SparseMdpModelType::RewardModelType RewardModelType;
friend class SparseMarkovAutomatonCslModelChecker<SparseMdpModelType>;
friend class storm::counterexamples::SMTMinimalCommandSetGenerator<ValueType>;
friend class storm::counterexamples::MILPMinimalLabelSetGenerator<ValueType>;
@ -47,20 +39,8 @@ namespace storm {
virtual std::unique_ptr<CheckResult> computeLongRunAverage(storm::logic::StateFormula const& stateFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
private:
// The methods that perform the actual checking.
std::vector<ValueType> computeBoundedUntilProbabilitiesHelper(bool minimize, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, uint_fast64_t stepBound) const;
std::vector<ValueType> computeNextProbabilitiesHelper(bool minimize, storm::storage::BitVector const& nextStates);
std::vector<ValueType> computeUntilProbabilitiesHelper(bool minimize, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative) const;
static std::vector<ValueType> computeUntilProbabilitiesHelper(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& MinMaxLinearEquationSolverFactory, bool qualitative);
std::vector<ValueType> computeInstantaneousRewardsHelper(RewardModelType const& rewardModel, bool minimize, uint_fast64_t stepCount) const;
std::vector<ValueType> computeCumulativeRewardsHelper(RewardModelType const& rewardModel, bool minimize, uint_fast64_t stepBound) const;
std::vector<ValueType> computeReachabilityRewardsHelper(RewardModelType const& rewardModel, bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& targetStates, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& MinMaxLinearEquationSolverFactory, bool qualitative) const;
std::vector<ValueType> computeLongRunAverageHelper(bool minimize, storm::storage::BitVector const& psiStates, bool qualitative) const;
static ValueType computeLraForMaximalEndComponent(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& goalStates, storm::storage::MaximalEndComponent const& mec);
// An object that is used for retrieving solvers for systems of linear equations that are the result of nondeterministic choices.
std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType>> MinMaxLinearEquationSolverFactory;
std::unique_ptr<storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType>> minMaxLinearEquationSolverFactory;
};
} // namespace modelchecker
} // namespace storm

211
src/modelchecker/prctl/SymbolicDtmcPrctlModelChecker.cpp

@ -1,13 +1,13 @@
#include "src/modelchecker/prctl/SymbolicDtmcPrctlModelChecker.h"
#include "src/storage/dd/CuddOdd.h"
#include "src/modelchecker/prctl/helper/SymbolicDtmcPrctlHelper.h"
#include "src/storage/dd/Add.h"
#include "src/utility/macros.h"
#include "src/utility/graph.h"
#include "src/modelchecker/results/SymbolicQualitativeCheckResult.h"
#include "src/modelchecker/results/SymbolicQuantitativeCheckResult.h"
#include "src/modelchecker/results/HybridQuantitativeCheckResult.h"
#include "src/exceptions/InvalidStateException.h"
#include "src/exceptions/InvalidPropertyException.h"
@ -29,80 +29,24 @@ namespace storm {
return formula.isPctlStateFormula() || formula.isPctlPathFormula() || formula.isRewardPathFormula();
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> SymbolicDtmcPrctlModelChecker<DdType, ValueType>::computeUntilProbabilitiesHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, bool qualitative, storm::utility::solver::SymbolicLinearEquationSolverFactory<DdType, ValueType> const& linearEquationSolverFactory) {
// We need to identify the states which have to be taken out of the matrix, i.e. all states that have
// probability 0 and 1 of satisfying the until-formula.
std::pair<storm::dd::Bdd<DdType>, storm::dd::Bdd<DdType>> statesWithProbability01 = storm::utility::graph::performProb01(model, transitionMatrix, phiStates, psiStates);
storm::dd::Bdd<DdType> maybeStates = !statesWithProbability01.first && !statesWithProbability01.second && model.getReachableStates();
// Perform some logging.
STORM_LOG_INFO("Found " << statesWithProbability01.first.getNonZeroCount() << " 'no' states.");
STORM_LOG_INFO("Found " << statesWithProbability01.second.getNonZeroCount() << " 'yes' states.");
STORM_LOG_INFO("Found " << maybeStates.getNonZeroCount() << " 'maybe' states.");
// Check whether we need to compute exact probabilities for some states.
if (qualitative) {
// Set the values for all maybe-states to 0.5 to indicate that their probability values are neither 0 nor 1.
return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), statesWithProbability01.second.toAdd() + maybeStates.toAdd() * model.getManager().getConstant(0.5)));
} else {
// If there are maybe states, we need to solve an equation system.
if (!maybeStates.isZero()) {
// Create the ODD for the translation between symbolic and explicit storage.
storm::dd::Odd<DdType> odd(maybeStates);
// Create the matrix and the vector for the equation system.
storm::dd::Add<DdType> maybeStatesAdd = maybeStates.toAdd();
// Start by cutting away all rows that do not belong to maybe states. Note that this leaves columns targeting
// non-maybe states in the matrix.
storm::dd::Add<DdType> submatrix = transitionMatrix * maybeStatesAdd;
// Then compute the vector that contains the one-step probabilities to a state with probability 1 for all
// maybe states.
storm::dd::Add<DdType> prob1StatesAsColumn = statesWithProbability01.second.toAdd();
prob1StatesAsColumn = prob1StatesAsColumn.swapVariables(model.getRowColumnMetaVariablePairs());
storm::dd::Add<DdType> subvector = submatrix * prob1StatesAsColumn;
subvector = subvector.sumAbstract(model.getColumnVariables());
// Finally cut away all columns targeting non-maybe states and convert the matrix into the matrix needed
// for solving the equation system (i.e. compute (I-A)).
submatrix *= maybeStatesAdd.swapVariables(model.getRowColumnMetaVariablePairs());
submatrix = (model.getRowColumnIdentity() * maybeStatesAdd) - submatrix;
// Solve the equation system.
std::unique_ptr<storm::solver::SymbolicLinearEquationSolver<DdType, ValueType>> solver = linearEquationSolverFactory.create(submatrix, maybeStates, model.getRowVariables(), model.getColumnVariables(), model.getRowColumnMetaVariablePairs());
storm::dd::Add<DdType> result = solver->solveEquationSystem(model.getManager().getConstant(0.5) * maybeStatesAdd, subvector);
return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), statesWithProbability01.second.toAdd() + result));
} else {
return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), statesWithProbability01.second.toAdd()));
}
}
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> SymbolicDtmcPrctlModelChecker<DdType, ValueType>::computeUntilProbabilities(storm::logic::UntilFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
std::unique_ptr<CheckResult> leftResultPointer = this->check(pathFormula.getLeftSubformula());
std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula());
SymbolicQualitativeCheckResult<DdType> const& leftResult = leftResultPointer->asSymbolicQualitativeCheckResult<DdType>();
SymbolicQualitativeCheckResult<DdType> const& rightResult = rightResultPointer->asSymbolicQualitativeCheckResult<DdType>();
return this->computeUntilProbabilitiesHelper(this->getModel(), this->getModel().getTransitionMatrix(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), qualitative, *this->linearEquationSolverFactory);
storm::dd::Add<DdType> numericResult = storm::modelchecker::helper::SymbolicDtmcPrctlHelper<DdType, ValueType>::computeUntilProbabilities(this->getModel(), this->getModel().getTransitionMatrix(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), qualitative, *this->linearEquationSolverFactory);
return std::unique_ptr<SymbolicQuantitativeCheckResult<DdType>>(new SymbolicQuantitativeCheckResult<DdType>(this->getModel().getReachableStates(), numericResult));
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> SymbolicDtmcPrctlModelChecker<DdType, ValueType>::computeNextProbabilities(storm::logic::NextFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
std::unique_ptr<CheckResult> subResultPointer = this->check(pathFormula.getSubformula());
SymbolicQualitativeCheckResult<DdType> const& subResult = subResultPointer->asSymbolicQualitativeCheckResult<DdType>();
return std::unique_ptr<CheckResult>(new SymbolicQuantitativeCheckResult<DdType>(this->getModel().getReachableStates(), this->computeNextProbabilitiesHelper(this->getModel(), this->getModel().getTransitionMatrix(), subResult.getTruthValuesVector())));
}
template<storm::dd::DdType DdType, typename ValueType>
storm::dd::Add<DdType> SymbolicDtmcPrctlModelChecker<DdType, ValueType>::computeNextProbabilitiesHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& nextStates) {
storm::dd::Add<DdType> result = transitionMatrix * nextStates.swapVariables(model.getRowColumnMetaVariablePairs()).toAdd();
return result.sumAbstract(model.getColumnVariables());
storm::dd::Add<DdType> numericResult = storm::modelchecker::helper::SymbolicDtmcPrctlHelper<DdType, ValueType>::computeNextProbabilities(this->getModel(), this->getModel().getTransitionMatrix(), subResult.getTruthValuesVector());
return std::unique_ptr<SymbolicQuantitativeCheckResult<DdType>>(new SymbolicQuantitativeCheckResult<DdType>(this->getModel().getReachableStates(), numericResult));
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> SymbolicDtmcPrctlModelChecker<DdType, ValueType>::computeBoundedUntilProbabilities(storm::logic::BoundedUntilFormula const& pathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
STORM_LOG_THROW(pathFormula.hasDiscreteTimeBound(), storm::exceptions::InvalidArgumentException, "Formula needs to have a discrete time bound.");
@ -110,147 +54,30 @@ namespace storm {
std::unique_ptr<CheckResult> rightResultPointer = this->check(pathFormula.getRightSubformula());
SymbolicQualitativeCheckResult<DdType> const& leftResult = leftResultPointer->asSymbolicQualitativeCheckResult<DdType>();
SymbolicQualitativeCheckResult<DdType> const& rightResult = rightResultPointer->asSymbolicQualitativeCheckResult<DdType>();
return this->computeBoundedUntilProbabilitiesHelper(this->getModel(), this->getModel().getTransitionMatrix(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), pathFormula.getDiscreteTimeBound(), *this->linearEquationSolverFactory);
storm::dd::Add<DdType> numericResult = storm::modelchecker::helper::SymbolicDtmcPrctlHelper<DdType, ValueType>::computeBoundedUntilProbabilities(this->getModel(), this->getModel().getTransitionMatrix(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), pathFormula.getDiscreteTimeBound(), *this->linearEquationSolverFactory);
return std::unique_ptr<SymbolicQuantitativeCheckResult<DdType>>(new SymbolicQuantitativeCheckResult<DdType>(this->getModel().getReachableStates(), numericResult));
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> SymbolicDtmcPrctlModelChecker<DdType, ValueType>::computeBoundedUntilProbabilitiesHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, uint_fast64_t stepBound, storm::utility::solver::SymbolicLinearEquationSolverFactory<DdType, ValueType> const& linearEquationSolverFactory) {
// We need to identify the states which have to be taken out of the matrix, i.e. all states that have
// probability 0 or 1 of satisfying the until-formula.
storm::dd::Bdd<DdType> statesWithProbabilityGreater0 = storm::utility::graph::performProbGreater0(model, transitionMatrix.notZero(), phiStates, psiStates, stepBound);
storm::dd::Bdd<DdType> maybeStates = statesWithProbabilityGreater0 && !psiStates && model.getReachableStates();
// If there are maybe states, we need to perform matrix-vector multiplications.
if (!maybeStates.isZero()) {
// Create the ODD for the translation between symbolic and explicit storage.
storm::dd::Odd<DdType> odd(maybeStates);
// Create the matrix and the vector for the equation system.
storm::dd::Add<DdType> maybeStatesAdd = maybeStates.toAdd();
// Start by cutting away all rows that do not belong to maybe states. Note that this leaves columns targeting
// non-maybe states in the matrix.
storm::dd::Add<DdType> submatrix = transitionMatrix * maybeStatesAdd;
// Then compute the vector that contains the one-step probabilities to a state with probability 1 for all
// maybe states.
storm::dd::Add<DdType> prob1StatesAsColumn = psiStates.toAdd().swapVariables(model.getRowColumnMetaVariablePairs());
storm::dd::Add<DdType> subvector = (submatrix * prob1StatesAsColumn).sumAbstract(model.getColumnVariables());
// Finally cut away all columns targeting non-maybe states.
submatrix *= maybeStatesAdd.swapVariables(model.getRowColumnMetaVariablePairs());
// Perform the matrix-vector multiplication.
std::unique_ptr<storm::solver::SymbolicLinearEquationSolver<DdType, ValueType>> solver = linearEquationSolverFactory.create(submatrix, maybeStates, model.getRowVariables(), model.getColumnVariables(), model.getRowColumnMetaVariablePairs());
storm::dd::Add<DdType> result = solver->performMatrixVectorMultiplication(model.getManager().getAddZero(), &subvector, stepBound);
return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), psiStates.toAdd() + result));
} else {
return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), psiStates.toAdd()));
}
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> SymbolicDtmcPrctlModelChecker<DdType, ValueType>::computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
std::unique_ptr<CheckResult> SymbolicDtmcPrctlModelChecker<DdType, ValueType>::computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
STORM_LOG_THROW(rewardPathFormula.hasDiscreteTimeBound(), storm::exceptions::InvalidArgumentException, "Formula needs to have a discrete time bound.");
return this->computeCumulativeRewardsHelper(this->getModel(), this->getModel().getTransitionMatrix(), rewardPathFormula.getDiscreteTimeBound(), *this->linearEquationSolverFactory);
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> SymbolicDtmcPrctlModelChecker<DdType, ValueType>::computeCumulativeRewardsHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::SymbolicLinearEquationSolverFactory<DdType, ValueType> const& linearEquationSolverFactory) {
// Only compute the result if the model has at least one reward this->getModel().
STORM_LOG_THROW(model.hasStateRewards() || model.hasTransitionRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
// Compute the reward vector to add in each step based on the available reward models.
storm::dd::Add<DdType> totalRewardVector = model.hasStateRewards() ? model.getStateRewardVector() : model.getManager().getAddZero();
if (model.hasTransitionRewards()) {
totalRewardVector += (transitionMatrix * model.getTransitionRewardMatrix()).sumAbstract(model.getColumnVariables());
}
// Perform the matrix-vector multiplication.
std::unique_ptr<storm::solver::SymbolicLinearEquationSolver<DdType, ValueType>> solver = linearEquationSolverFactory.create(transitionMatrix, model.getReachableStates(), model.getRowVariables(), model.getColumnVariables(), model.getRowColumnMetaVariablePairs());
storm::dd::Add<DdType> result = solver->performMatrixVectorMultiplication(model.getManager().getAddZero(), &totalRewardVector, stepBound);
return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), result));
storm::dd::Add<DdType> numericResult = storm::modelchecker::helper::SymbolicDtmcPrctlHelper<DdType, ValueType>::computeCumulativeRewards(this->getModel(), this->getModel().getTransitionMatrix(), rewardPathFormula.getDiscreteTimeBound(), *this->linearEquationSolverFactory);
return std::unique_ptr<SymbolicQuantitativeCheckResult<DdType>>(new SymbolicQuantitativeCheckResult<DdType>(this->getModel().getReachableStates(), numericResult));
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> SymbolicDtmcPrctlModelChecker<DdType, ValueType>::computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
std::unique_ptr<CheckResult> SymbolicDtmcPrctlModelChecker<DdType, ValueType>::computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
STORM_LOG_THROW(rewardPathFormula.hasDiscreteTimeBound(), storm::exceptions::InvalidArgumentException, "Formula needs to have a discrete time bound.");
return this->computeInstantaneousRewardsHelper(this->getModel(), this->getModel().getTransitionMatrix(), rewardPathFormula.getDiscreteTimeBound(), *this->linearEquationSolverFactory);
storm::dd::Add<DdType> numericResult = storm::modelchecker::helper::SymbolicDtmcPrctlHelper<DdType, ValueType>::computeInstantaneousRewards(this->getModel(), this->getModel().getTransitionMatrix(), rewardPathFormula.getDiscreteTimeBound(), *this->linearEquationSolverFactory);
return std::unique_ptr<SymbolicQuantitativeCheckResult<DdType>>(new SymbolicQuantitativeCheckResult<DdType>(this->getModel().getReachableStates(), numericResult));
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> SymbolicDtmcPrctlModelChecker<DdType, ValueType>::computeInstantaneousRewardsHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::SymbolicLinearEquationSolverFactory<DdType, ValueType> const& linearEquationSolverFactory) {
// Only compute the result if the model has at least one reward this->getModel().
STORM_LOG_THROW(model.hasStateRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
// Perform the matrix-vector multiplication.
std::unique_ptr<storm::solver::SymbolicLinearEquationSolver<DdType, ValueType>> solver = linearEquationSolverFactory.create(transitionMatrix, model.getReachableStates(), model.getRowVariables(), model.getColumnVariables(), model.getRowColumnMetaVariablePairs());
storm::dd::Add<DdType> result = solver->performMatrixVectorMultiplication(model.getStateRewardVector(), nullptr, stepBound);
return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), result));
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> SymbolicDtmcPrctlModelChecker<DdType, ValueType>::computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
std::unique_ptr<CheckResult> SymbolicDtmcPrctlModelChecker<DdType, ValueType>::computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
std::unique_ptr<CheckResult> subResultPointer = this->check(rewardPathFormula.getSubformula());
SymbolicQualitativeCheckResult<DdType> const& subResult = subResultPointer->asSymbolicQualitativeCheckResult<DdType>();
return this->computeReachabilityRewardsHelper(this->getModel(), this->getModel().getTransitionMatrix(), this->getModel().getOptionalStateRewardVector(), this->getModel().getOptionalTransitionRewardMatrix(), subResult.getTruthValuesVector(), *this->linearEquationSolverFactory, qualitative);
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> SymbolicDtmcPrctlModelChecker<DdType, ValueType>::computeReachabilityRewardsHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, boost::optional<storm::dd::Add<DdType>> const& stateRewardVector, boost::optional<storm::dd::Add<DdType>> const& transitionRewardMatrix, storm::dd::Bdd<DdType> const& targetStates, storm::utility::solver::SymbolicLinearEquationSolverFactory<DdType, ValueType> const& linearEquationSolverFactory, bool qualitative) {
// Only compute the result if there is at least one reward model.
STORM_LOG_THROW(stateRewardVector || transitionRewardMatrix, storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
// Determine which states have a reward of infinity by definition.
storm::dd::Bdd<DdType> infinityStates = storm::utility::graph::performProb1(model, transitionMatrix.notZero(), model.getReachableStates(), targetStates);
infinityStates = !infinityStates && model.getReachableStates();
storm::dd::Bdd<DdType> maybeStates = (!targetStates && !infinityStates) && model.getReachableStates();
STORM_LOG_INFO("Found " << infinityStates.getNonZeroCount() << " 'infinity' states.");
STORM_LOG_INFO("Found " << targetStates.getNonZeroCount() << " 'target' states.");
STORM_LOG_INFO("Found " << maybeStates.getNonZeroCount() << " 'maybe' states.");
// Check whether we need to compute exact rewards for some states.
if (qualitative) {
// Set the values for all maybe-states to 1 to indicate that their reward values
// are neither 0 nor infinity.
return std::unique_ptr<CheckResult>(new SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), infinityStates.toAdd() * model.getManager().getConstant(storm::utility::infinity<ValueType>()) + maybeStates.toAdd() * model.getManager().getConstant(storm::utility::one<ValueType>())));
} else {
// If there are maybe states, we need to solve an equation system.
if (!maybeStates.isZero()) {
// Create the ODD for the translation between symbolic and explicit storage.
storm::dd::Odd<DdType> odd(maybeStates);
// Create the matrix and the vector for the equation system.
storm::dd::Add<DdType> maybeStatesAdd = maybeStates.toAdd();
// Start by cutting away all rows that do not belong to maybe states. Note that this leaves columns targeting
// non-maybe states in the matrix.
storm::dd::Add<DdType> submatrix = transitionMatrix * maybeStatesAdd;
// Then compute the state reward vector to use in the computation.
storm::dd::Add<DdType> subvector = stateRewardVector ? maybeStatesAdd * stateRewardVector.get() : model.getManager().getAddZero();
if (transitionRewardMatrix) {
subvector += (submatrix * transitionRewardMatrix.get()).sumAbstract(model.getColumnVariables());
}
// Finally cut away all columns targeting non-maybe states and convert the matrix into the matrix needed
// for solving the equation system (i.e. compute (I-A)).
submatrix *= maybeStatesAdd.swapVariables(model.getRowColumnMetaVariablePairs());
submatrix = (model.getRowColumnIdentity() * maybeStatesAdd) - submatrix;
// Solve the equation system.
std::unique_ptr<storm::solver::SymbolicLinearEquationSolver<DdType, ValueType>> solver = linearEquationSolverFactory.create(submatrix, maybeStates, model.getRowVariables(), model.getColumnVariables(), model.getRowColumnMetaVariablePairs());
storm::dd::Add<DdType> result = solver->solveEquationSystem(model.getManager().getConstant(0.5) * maybeStatesAdd, subvector);
return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), infinityStates.toAdd() * model.getManager().getConstant(storm::utility::infinity<ValueType>()) + result));
} else {
return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), infinityStates.toAdd() * model.getManager().getConstant(storm::utility::infinity<ValueType>())));
}
}
storm::dd::Add<DdType> numericResult = storm::modelchecker::helper::SymbolicDtmcPrctlHelper<DdType, ValueType>::computeReachabilityRewards(this->getModel(), this->getModel().getTransitionMatrix(), this->getModel().getOptionalStateRewardVector(), this->getModel().getOptionalTransitionRewardMatrix(), subResult.getTruthValuesVector(), qualitative, *this->linearEquationSolverFactory);
return std::unique_ptr<SymbolicQuantitativeCheckResult<DdType>>(new SymbolicQuantitativeCheckResult<DdType>(this->getModel().getReachableStates(), numericResult));
}
template<storm::dd::DdType DdType, typename ValueType>

19
src/modelchecker/prctl/SymbolicDtmcPrctlModelChecker.h

@ -7,14 +7,9 @@
namespace storm {
namespace modelchecker {
template<storm::dd::DdType DdType, typename ValueType>
class SymbolicCtmcCslModelChecker;
template<storm::dd::DdType DdType, typename ValueType>
class SymbolicDtmcPrctlModelChecker : public SymbolicPropositionalModelChecker<DdType> {
public:
friend class SymbolicCtmcCslModelChecker<DdType, ValueType>;
explicit SymbolicDtmcPrctlModelChecker(storm::models::symbolic::Dtmc<DdType> const& model);
explicit SymbolicDtmcPrctlModelChecker(storm::models::symbolic::Dtmc<DdType> const& model, std::unique_ptr<storm::utility::solver::SymbolicLinearEquationSolverFactory<DdType, ValueType>>&& linearEquationSolverFactory);
@ -23,22 +18,14 @@ namespace storm {
virtual std::unique_ptr<CheckResult> computeBoundedUntilProbabilities(storm::logic::BoundedUntilFormula const& pathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeNextProbabilities(storm::logic::NextFormula const& pathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeUntilProbabilities(storm::logic::UntilFormula const& pathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
virtual std::unique_ptr<CheckResult> computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<storm::logic::OptimalityType> const& optimalityType = boost::optional<storm::logic::OptimalityType>()) override;
protected:
storm::models::symbolic::Dtmc<DdType> const& getModel() const override;
private:
// The methods that perform the actual checking.
static std::unique_ptr<CheckResult> computeBoundedUntilProbabilitiesHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, uint_fast64_t stepBound, storm::utility::solver::SymbolicLinearEquationSolverFactory<DdType, ValueType> const& linearEquationSolverFactory);
static storm::dd::Add<DdType> computeNextProbabilitiesHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& nextStates);
static std::unique_ptr<CheckResult> computeUntilProbabilitiesHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, bool qualitative, storm::utility::solver::SymbolicLinearEquationSolverFactory<DdType, ValueType> const& linearEquationSolverFactory);
static std::unique_ptr<CheckResult> computeCumulativeRewardsHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::SymbolicLinearEquationSolverFactory<DdType, ValueType> const& linearEquationSolverFactory);
static std::unique_ptr<CheckResult> computeInstantaneousRewardsHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::SymbolicLinearEquationSolverFactory<DdType, ValueType> const& linearEquationSolverFactory);
static std::unique_ptr<CheckResult> computeReachabilityRewardsHelper(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, boost::optional<storm::dd::Add<DdType>> const& stateRewardVector, boost::optional<storm::dd::Add<DdType>> const& transitionRewardMatrix, storm::dd::Bdd<DdType> const& targetStates, storm::utility::solver::SymbolicLinearEquationSolverFactory<DdType, ValueType> const& linearEquationSolverFactory, bool qualitative);
// An object that is used for retrieving linear equation solvers.
std::unique_ptr<storm::utility::solver::SymbolicLinearEquationSolverFactory<DdType, ValueType>> linearEquationSolverFactory;
};

0
src/modelchecker/prctl/helper/HybridDtmcPrctlHelper.cpp

0
src/modelchecker/prctl/helper/HybridDtmcPrctlHelper.h

248
src/modelchecker/prctl/helper/HybridMdpPrctlHelper.cpp

@ -0,0 +1,248 @@
#include "src/modelchecker/prctl/helper/HybridMdpPrctlHelper.h"
namespace storm {
namespace modelchecker {
namespace helper {
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridMdpPrctlModelChecker<DdType, ValueType>::computeUntilProbabilities(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// We need to identify the states which have to be taken out of the matrix, i.e. all states that have
// probability 0 and 1 of satisfying the until-formula.
std::pair<storm::dd::Bdd<DdType>, storm::dd::Bdd<DdType>> statesWithProbability01;
if (minimize) {
statesWithProbability01 = storm::utility::graph::performProb01Min(model, phiStates, psiStates);
} else {
statesWithProbability01 = storm::utility::graph::performProb01Max(model, phiStates, psiStates);
}
storm::dd::Bdd<DdType> maybeStates = !statesWithProbability01.first && !statesWithProbability01.second && model.getReachableStates();
// Perform some logging.
STORM_LOG_INFO("Found " << statesWithProbability01.first.getNonZeroCount() << " 'no' states.");
STORM_LOG_INFO("Found " << statesWithProbability01.second.getNonZeroCount() << " 'yes' states.");
STORM_LOG_INFO("Found " << maybeStates.getNonZeroCount() << " 'maybe' states.");
// Check whether we need to compute exact probabilities for some states.
if (qualitative) {
// Set the values for all maybe-states to 0.5 to indicate that their probability values are neither 0 nor 1.
return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), statesWithProbability01.second.toAdd() + maybeStates.toAdd() * model.getManager().getConstant(0.5)));
} else {
// If there are maybe states, we need to solve an equation system.
if (!maybeStates.isZero()) {
// Create the ODD for the translation between symbolic and explicit storage.
storm::dd::Odd<DdType> odd(maybeStates);
// Create the matrix and the vector for the equation system.
storm::dd::Add<DdType> maybeStatesAdd = maybeStates.toAdd();
// Start by cutting away all rows that do not belong to maybe states. Note that this leaves columns targeting
// non-maybe states in the matrix.
storm::dd::Add<DdType> submatrix = transitionMatrix * maybeStatesAdd;
// Then compute the vector that contains the one-step probabilities to a state with probability 1 for all
// maybe states.
storm::dd::Add<DdType> prob1StatesAsColumn = statesWithProbability01.second.toAdd();
prob1StatesAsColumn = prob1StatesAsColumn.swapVariables(model.getRowColumnMetaVariablePairs());
storm::dd::Add<DdType> subvector = submatrix * prob1StatesAsColumn;
subvector = subvector.sumAbstract(model.getColumnVariables());
// Before cutting the non-maybe columns, we need to compute the sizes of the row groups.
std::vector<uint_fast64_t> rowGroupSizes = submatrix.notZero().existsAbstract(model.getColumnVariables()).toAdd().sumAbstract(model.getNondeterminismVariables()).template toVector<uint_fast64_t>(odd);
// Finally cut away all columns targeting non-maybe states.
submatrix *= maybeStatesAdd.swapVariables(model.getRowColumnMetaVariablePairs());
// Create the solution vector.
std::vector<ValueType> x(maybeStates.getNonZeroCount(), ValueType(0.5));
// Translate the symbolic matrix/vector to their explicit representations and solve the equation system.
std::pair<storm::storage::SparseMatrix<ValueType>, std::vector<ValueType>> explicitRepresentation = submatrix.toMatrixVector(subvector, std::move(rowGroupSizes), model.getNondeterminismVariables(), odd, odd);
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(explicitRepresentation.first);
solver->solveEquationSystem(minimize, x, explicitRepresentation.second);
// Return a hybrid check result that stores the numerical values explicitly.
return std::unique_ptr<CheckResult>(new storm::modelchecker::HybridQuantitativeCheckResult<DdType>(model.getReachableStates(), model.getReachableStates() && !maybeStates, statesWithProbability01.second.toAdd(), maybeStates, odd, x));
} else {
return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), statesWithProbability01.second.toAdd()));
}
}
}
template<storm::dd::DdType DdType, typename ValueType>
storm::dd::Add<DdType> HybridMdpPrctlModelChecker<DdType, ValueType>::computeNextProbabilitiesHelper(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& nextStates) {
storm::dd::Add<DdType> result = transitionMatrix * nextStates.swapVariables(model.getRowColumnMetaVariablePairs()).toAdd();
return result.sumAbstract(model.getColumnVariables());
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridMdpPrctlModelChecker<DdType, ValueType>::computeBoundedUntilProbabilitiesHelper(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// We need to identify the states which have to be taken out of the matrix, i.e. all states that have
// probability 0 or 1 of satisfying the until-formula.
storm::dd::Bdd<DdType> statesWithProbabilityGreater0;
if (minimize) {
statesWithProbabilityGreater0 = storm::utility::graph::performProbGreater0A(model, transitionMatrix.notZero(), phiStates, psiStates);
} else {
statesWithProbabilityGreater0 = storm::utility::graph::performProbGreater0E(model, transitionMatrix.notZero(), phiStates, psiStates);
}
storm::dd::Bdd<DdType> maybeStates = statesWithProbabilityGreater0 && !psiStates && model.getReachableStates();
// If there are maybe states, we need to perform matrix-vector multiplications.
if (!maybeStates.isZero()) {
// Create the ODD for the translation between symbolic and explicit storage.
storm::dd::Odd<DdType> odd(maybeStates);
// Create the matrix and the vector for the equation system.
storm::dd::Add<DdType> maybeStatesAdd = maybeStates.toAdd();
// Start by cutting away all rows that do not belong to maybe states. Note that this leaves columns targeting
// non-maybe states in the matrix.
storm::dd::Add<DdType> submatrix = transitionMatrix * maybeStatesAdd;
// Then compute the vector that contains the one-step probabilities to a state with probability 1 for all
// maybe states.
storm::dd::Add<DdType> prob1StatesAsColumn = psiStates.toAdd().swapVariables(model.getRowColumnMetaVariablePairs());
storm::dd::Add<DdType> subvector = (submatrix * prob1StatesAsColumn).sumAbstract(model.getColumnVariables());
// Before cutting the non-maybe columns, we need to compute the sizes of the row groups.
std::vector<uint_fast64_t> rowGroupSizes = submatrix.notZero().existsAbstract(model.getColumnVariables()).toAdd().sumAbstract(model.getNondeterminismVariables()).template toVector<uint_fast64_t>(odd);
// Finally cut away all columns targeting non-maybe states.
submatrix *= maybeStatesAdd.swapVariables(model.getRowColumnMetaVariablePairs());
// Create the solution vector.
std::vector<ValueType> x(maybeStates.getNonZeroCount(), storm::utility::zero<ValueType>());
// Translate the symbolic matrix/vector to their explicit representations.
std::pair<storm::storage::SparseMatrix<ValueType>, std::vector<ValueType>> explicitRepresentation = submatrix.toMatrixVector(subvector, std::move(rowGroupSizes), model.getNondeterminismVariables(), odd, odd);
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(explicitRepresentation.first);
solver->performMatrixVectorMultiplication(minimize, x, &explicitRepresentation.second, stepBound);
// Return a hybrid check result that stores the numerical values explicitly.
return std::unique_ptr<CheckResult>(new storm::modelchecker::HybridQuantitativeCheckResult<DdType>(model.getReachableStates(), model.getReachableStates() && !maybeStates, psiStates.toAdd(), maybeStates, odd, x));
} else {
return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), psiStates.toAdd()));
}
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridMdpPrctlModelChecker<DdType, ValueType>::computeInstantaneousRewardsHelper(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// Only compute the result if the model has at least one reward this->getModel().
STORM_LOG_THROW(model.hasStateRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
// Create the ODD for the translation between symbolic and explicit storage.
storm::dd::Odd<DdType> odd(model.getReachableStates());
// Translate the symbolic matrix to its explicit representations.
storm::storage::SparseMatrix<ValueType> explicitMatrix = transitionMatrix.toMatrix(model.getNondeterminismVariables(), odd, odd);
// Create the solution vector (and initialize it to the state rewards of the model).
std::vector<ValueType> x = model.getStateRewardVector().template toVector<ValueType>(model.getNondeterminismVariables(), odd, explicitMatrix.getRowGroupIndices());
// Perform the matrix-vector multiplication.
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(explicitMatrix);
solver->performMatrixVectorMultiplication(minimize, x, nullptr, stepBound);
// Return a hybrid check result that stores the numerical values explicitly.
return std::unique_ptr<CheckResult>(new HybridQuantitativeCheckResult<DdType>(model.getReachableStates(), model.getManager().getBddZero(), model.getManager().getAddZero(), model.getReachableStates(), odd, x));
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridMdpPrctlModelChecker<DdType, ValueType>::computeCumulativeRewardsHelper(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// Only compute the result if the model has at least one reward this->getModel().
STORM_LOG_THROW(model.hasStateRewards() || model.hasTransitionRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
// Compute the reward vector to add in each step based on the available reward models.
storm::dd::Add<DdType> totalRewardVector = model.hasStateRewards() ? model.getStateRewardVector() : model.getManager().getAddZero();
if (model.hasTransitionRewards()) {
totalRewardVector += (transitionMatrix * model.getTransitionRewardMatrix()).sumAbstract(model.getColumnVariables());
}
// Create the ODD for the translation between symbolic and explicit storage.
storm::dd::Odd<DdType> odd(model.getReachableStates());
// Create the solution vector.
std::vector<ValueType> x(model.getNumberOfStates(), storm::utility::zero<ValueType>());
// Translate the symbolic matrix/vector to their explicit representations.
storm::storage::SparseMatrix<ValueType> explicitMatrix = transitionMatrix.toMatrix(model.getNondeterminismVariables(), odd, odd);
std::vector<ValueType> b = totalRewardVector.template toVector<ValueType>(model.getNondeterminismVariables(), odd, explicitMatrix.getRowGroupIndices());
// Perform the matrix-vector multiplication.
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(explicitMatrix);
solver->performMatrixVectorMultiplication(minimize, x, &b, stepBound);
// Return a hybrid check result that stores the numerical values explicitly.
return std::unique_ptr<CheckResult>(new HybridQuantitativeCheckResult<DdType>(model.getReachableStates(), model.getManager().getBddZero(), model.getManager().getAddZero(), model.getReachableStates(), odd, x));
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridMdpPrctlModelChecker<DdType, ValueType>::computeReachabilityRewardsHelper(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, boost::optional<storm::dd::Add<DdType>> const& stateRewardVector, boost::optional<storm::dd::Add<DdType>> const& transitionRewardMatrix, storm::dd::Bdd<DdType> const& targetStates, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory, bool qualitative) {
// Only compute the result if there is at least one reward model.
STORM_LOG_THROW(stateRewardVector || transitionRewardMatrix, storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
// Determine which states have a reward of infinity by definition.
storm::dd::Bdd<DdType> infinityStates;
storm::dd::Bdd<DdType> transitionMatrixBdd = transitionMatrix.notZero();
if (minimize) {
infinityStates = storm::utility::graph::performProb1A(model, transitionMatrixBdd, model.getReachableStates(), targetStates, storm::utility::graph::performProbGreater0A(model, transitionMatrixBdd, model.getReachableStates(), targetStates));
} else {
infinityStates = storm::utility::graph::performProb1E(model, transitionMatrixBdd, model.getReachableStates(), targetStates, storm::utility::graph::performProbGreater0E(model, transitionMatrixBdd, model.getReachableStates(), targetStates));
}
infinityStates = !infinityStates && model.getReachableStates();
storm::dd::Bdd<DdType> maybeStates = (!targetStates && !infinityStates) && model.getReachableStates();
STORM_LOG_INFO("Found " << infinityStates.getNonZeroCount() << " 'infinity' states.");
STORM_LOG_INFO("Found " << targetStates.getNonZeroCount() << " 'target' states.");
STORM_LOG_INFO("Found " << maybeStates.getNonZeroCount() << " 'maybe' states.");
// Check whether we need to compute exact rewards for some states.
if (qualitative) {
// Set the values for all maybe-states to 1 to indicate that their reward values
// are neither 0 nor infinity.
return std::unique_ptr<CheckResult>(new SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), infinityStates.toAdd() * model.getManager().getConstant(storm::utility::infinity<ValueType>()) + maybeStates.toAdd() * model.getManager().getConstant(storm::utility::one<ValueType>())));
} else {
// If there are maybe states, we need to solve an equation system.
if (!maybeStates.isZero()) {
// Create the ODD for the translation between symbolic and explicit storage.
storm::dd::Odd<DdType> odd(maybeStates);
// Create the matrix and the vector for the equation system.
storm::dd::Add<DdType> maybeStatesAdd = maybeStates.toAdd();
// Start by cutting away all rows that do not belong to maybe states. Note that this leaves columns targeting
// non-maybe states in the matrix.
storm::dd::Add<DdType> submatrix = transitionMatrix * maybeStatesAdd;
// Then compute the state reward vector to use in the computation.
storm::dd::Add<DdType> subvector = stateRewardVector ? maybeStatesAdd * stateRewardVector.get() : model.getManager().getAddZero();
if (transitionRewardMatrix) {
subvector += (submatrix * transitionRewardMatrix.get()).sumAbstract(model.getColumnVariables());
}
// Before cutting the non-maybe columns, we need to compute the sizes of the row groups.
std::vector<uint_fast64_t> rowGroupSizes = submatrix.notZero().existsAbstract(model.getColumnVariables()).toAdd().sumAbstract(model.getNondeterminismVariables()).template toVector<uint_fast64_t>(odd);
// Finally cut away all columns targeting non-maybe states.
submatrix *= maybeStatesAdd.swapVariables(model.getRowColumnMetaVariablePairs());
// Create the solution vector.
std::vector<ValueType> x(maybeStates.getNonZeroCount(), ValueType(0.5));
// Translate the symbolic matrix/vector to their explicit representations.
std::pair<storm::storage::SparseMatrix<ValueType>, std::vector<ValueType>> explicitRepresentation = submatrix.toMatrixVector(subvector, std::move(rowGroupSizes), model.getNondeterminismVariables(), odd, odd);
// Now solve the resulting equation system.
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(explicitRepresentation.first);
solver->solveEquationSystem(minimize, x, explicitRepresentation.second);
// Return a hybrid check result that stores the numerical values explicitly.
return std::unique_ptr<CheckResult>(new storm::modelchecker::HybridQuantitativeCheckResult<DdType>(model.getReachableStates(), model.getReachableStates() && !maybeStates, infinityStates.toAdd() * model.getManager().getConstant(storm::utility::infinity<ValueType>()), maybeStates, odd, x));
} else {
return std::unique_ptr<CheckResult>(new storm::modelchecker::SymbolicQuantitativeCheckResult<DdType>(model.getReachableStates(), infinityStates.toAdd() * model.getManager().getConstant(storm::utility::infinity<ValueType>())));
}
}
}
}
}
}

34
src/modelchecker/prctl/helper/HybridMdpPrctlHelper.h

@ -0,0 +1,34 @@
#ifndef STORM_MODELCHECKER_SPARSE_MDP_PRCTL_MODELCHECKER_HELPER_H_
#define STORM_MODELCHECKER_SPARSE_MDP_PRCTL_MODELCHECKER_HELPER_H_
#include "src/models/symbolic/Model.h"
#include "src/storage/dd/Add.h"
#include "src/storage/dd/Bdd.h"
#include "src/utility/solver.h"
namespace storm {
namespace modelchecker {
namespace helper {
template<storm::dd::DdType DdType, typename ValueType>
class HybridMdpPrctlHelper {
public:
static std::unique_ptr<CheckResult> computeBoundedUntilProbabilities(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static storm::dd::Add<DdType> computeNextProbabilities(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& nextStates);
static std::unique_ptr<CheckResult> computeUntilProbabilities(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static std::unique_ptr<CheckResult> computeCumulativeRewards(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static std::unique_ptr<CheckResult> computeInstantaneousRewards(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static std::unique_ptr<CheckResult> computeReachabilityRewards(bool minimize, storm::models::symbolic::NondeterministicModel<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, boost::optional<storm::dd::Add<DdType>> const& stateRewardVector, boost::optional<storm::dd::Add<DdType>> const& transitionRewardMatrix, storm::dd::Bdd<DdType> const& targetStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
}
}
}
}
#endif /* STORM_MODELCHECKER_SPARSE_MDP_PRCTL_MODELCHECKER_HELPER_H_ */

196
src/modelchecker/prctl/helper/SparseDtmcPrctlHelper.cpp

@ -0,0 +1,196 @@
#include "src/modelchecker/prctl/helper/SparseDtmcPrctlHelper.h"
#include "src/utility/macros.h"
#include "src/utility/vector.h"
#include "src/utility/graph.h"
#include "src/exceptions/InvalidStateException.h"
#include "src/exceptions/InvalidPropertyException.h"
namespace storm {
namespace modelchecker {
namespace helper {
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeBoundedUntilProbabilities(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, uint_fast64_t stepBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
std::vector<ValueType> result(transitionMatrix.getRowCount(), storm::utility::zero<ValueType>());
// If we identify the states that have probability 0 of reaching the target states, we can exclude them in the further analysis.
storm::storage::BitVector maybeStates = storm::utility::graph::performProbGreater0(backwardTransitions, phiStates, psiStates, true, stepBound);
maybeStates &= ~psiStates;
STORM_LOG_INFO("Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states.");
if (!maybeStates.empty()) {
// We can eliminate the rows and columns from the original transition probability matrix that have probability 0.
storm::storage::SparseMatrix<ValueType> submatrix = transitionMatrix.getSubmatrix(true, maybeStates, maybeStates, true);
// Create the vector of one-step probabilities to go to target states.
std::vector<ValueType> b = transitionMatrix.getConstrainedRowSumVector(maybeStates, psiStates);
// Create the vector with which to multiply.
std::vector<ValueType> subresult(maybeStates.getNumberOfSetBits());
// Perform the matrix vector multiplication as often as required by the formula bound.
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(submatrix);
solver->performMatrixVectorMultiplication(subresult, &b, stepBound);
// Set the values of the resulting vector accordingly.
storm::utility::vector::setVectorValues(result, maybeStates, subresult);
}
storm::utility::vector::setVectorValues<ValueType>(result, psiStates, storm::utility::one<ValueType>());
return result;
}
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeUntilProbabilities(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// We need to identify the states which have to be taken out of the matrix, i.e.
// all states that have probability 0 and 1 of satisfying the until-formula.
std::pair<storm::storage::BitVector, storm::storage::BitVector> statesWithProbability01 = storm::utility::graph::performProb01(backwardTransitions, phiStates, psiStates);
storm::storage::BitVector statesWithProbability0 = std::move(statesWithProbability01.first);
storm::storage::BitVector statesWithProbability1 = std::move(statesWithProbability01.second);
// Perform some logging.
storm::storage::BitVector maybeStates = ~(statesWithProbability0 | statesWithProbability1);
STORM_LOG_INFO("Found " << statesWithProbability0.getNumberOfSetBits() << " 'no' states.");
STORM_LOG_INFO("Found " << statesWithProbability1.getNumberOfSetBits() << " 'yes' states.");
STORM_LOG_INFO("Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states.");
// Create resulting vector.
std::vector<ValueType> result(transitionMatrix.getRowCount());
// Check whether we need to compute exact probabilities for some states.
if (qualitative) {
// Set the values for all maybe-states to 0.5 to indicate that their probability values are neither 0 nor 1.
storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, ValueType(0.5));
} else {
if (!maybeStates.empty()) {
// In this case we have have to compute the probabilities.
// We can eliminate the rows and columns from the original transition probability matrix.
storm::storage::SparseMatrix<ValueType> submatrix = transitionMatrix.getSubmatrix(true, maybeStates, maybeStates, true);
// Converting the matrix from the fixpoint notation to the form needed for the equation
// system. That is, we go from x = A*x + b to (I-A)x = b.
submatrix.convertToEquationSystem();
// Initialize the x vector with 0.5 for each element. This is the initial guess for
// the iterative solvers. It should be safe as for all 'maybe' states we know that the
// probability is strictly larger than 0.
std::vector<ValueType> x(maybeStates.getNumberOfSetBits(), ValueType(0.5));
// Prepare the right-hand side of the equation system. For entry i this corresponds to
// the accumulated probability of going from state i to some 'yes' state.
std::vector<ValueType> b = transitionMatrix.getConstrainedRowSumVector(maybeStates, statesWithProbability1);
// Now solve the created system of linear equations.
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(submatrix);
solver->solveEquationSystem(x, b);
// Set values of resulting vector according to result.
storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, x);
}
}
// Set values of resulting vector that are known exactly.
storm::utility::vector::setVectorValues<ValueType>(result, statesWithProbability0, storm::utility::zero<ValueType>());
storm::utility::vector::setVectorValues<ValueType>(result, statesWithProbability1, storm::utility::one<ValueType>());
return result;
}
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeNextProbabilities(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& nextStates, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// Create the vector with which to multiply and initialize it correctly.
std::vector<ValueType> result(transitionMatrix.getRowCount());
storm::utility::vector::setVectorValues(result, nextStates, storm::utility::one<ValueType>());
// Perform one single matrix-vector multiplication.
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(transitionMatrix);
solver->performMatrixVectorMultiplication(result);
return result;
}
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeCumulativeRewards(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, RewardModelType const& rewardModel, uint_fast64_t stepBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// Compute the reward vector to add in each step based on the available reward models.
std::vector<ValueType> totalRewardVector = rewardModel.getTotalRewardVector(transitionMatrix);
// Initialize result to either the state rewards of the model or the null vector.
std::vector<ValueType> result = rewardModel.getTotalStateActionRewardVector(transitionMatrix.getRowCount(), transitionMatrix.getRowGroupIndices());
// Perform the matrix vector multiplication as often as required by the formula bound.
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(transitionMatrix);
solver->performMatrixVectorMultiplication(result, &totalRewardVector, stepBound);
return result;
}
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeInstantaneousRewards(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, RewardModelType const& rewardModel, uint_fast64_t stepCount, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// Only compute the result if the model has a state-based reward this->getModel().
STORM_LOG_THROW(rewardModel.hasStateRewards() || rewardModel.hasStateActionRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
// Initialize result to state rewards of the model.
std::vector<ValueType> result = rewardModel.getTotalStateActionRewardVector(transitionMatrix.getRowCount(), transitionMatrix.getRowGroupIndices());
// Perform the matrix vector multiplication as often as required by the formula bound.
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(transitionMatrix);
solver->performMatrixVectorMultiplication(result, nullptr, stepCount);
return result;
}
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeReachabilityRewards(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, RewardModelType const& rewardModel, storm::storage::BitVector const& targetStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// Determine which states have a reward of infinity by definition.
storm::storage::BitVector trueStates(transitionMatrix.getRowCount(), true);
storm::storage::BitVector infinityStates = storm::utility::graph::performProb1(backwardTransitions, trueStates, targetStates);
infinityStates.complement();
storm::storage::BitVector maybeStates = ~targetStates & ~infinityStates;
STORM_LOG_INFO("Found " << infinityStates.getNumberOfSetBits() << " 'infinity' states.");
STORM_LOG_INFO("Found " << targetStates.getNumberOfSetBits() << " 'target' states.");
STORM_LOG_INFO("Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states.");
// Create resulting vector.
std::vector<ValueType> result(transitionMatrix.getRowCount(), storm::utility::zero<ValueType>());
// Check whether we need to compute exact rewards for some states.
if (qualitative) {
// Set the values for all maybe-states to 1 to indicate that their reward values
// are neither 0 nor infinity.
storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, storm::utility::one<ValueType>());
} else {
// In this case we have to compute the reward values for the remaining states.
// We can eliminate the rows and columns from the original transition probability matrix.
storm::storage::SparseMatrix<ValueType> submatrix = transitionMatrix.getSubmatrix(true, maybeStates, maybeStates, true);
// Converting the matrix from the fixpoint notation to the form needed for the equation
// system. That is, we go from x = A*x + b to (I-A)x = b.
submatrix.convertToEquationSystem();
// Initialize the x vector with 1 for each element. This is the initial guess for
// the iterative solvers.
std::vector<ValueType> x(submatrix.getColumnCount(), storm::utility::one<ValueType>());
// Prepare the right-hand side of the equation system.
std::vector<ValueType> b = rewardModel.getTotalRewardVector(submatrix.getRowCount(), transitionMatrix, maybeStates);
// Now solve the resulting equation system.
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(submatrix);
solver->solveEquationSystem(x, b);
// Set values of resulting vector according to result.
storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, x);
}
// Set values of resulting vector that are known exactly.
storm::utility::vector::setVectorValues(result, infinityStates, storm::utility::infinity<ValueType>());
return result;
}
template class SparseDtmcPrctlHelper<double>;
}
}
}

39
src/modelchecker/prctl/helper/SparseDtmcPrctlHelper.h

@ -0,0 +1,39 @@
#ifndef STORM_MODELCHECKER_SPARSE_DTMC_PRCTL_MODELCHECKER_HELPER_H_
#define STORM_MODELCHECKER_SPARSE_DTMC_PRCTL_MODELCHECKER_HELPER_H_
#include <vector>
#include "src/models/sparse/StandardRewardModel.h"
#include "src/storage/SparseMatrix.h"
#include "src/storage/BitVector.h"
#include "src/utility/solver.h"
namespace storm {
namespace modelchecker {
namespace helper {
template <typename ValueType, typename RewardModelType = storm::models::sparse::StandardRewardModel<ValueType>>
class SparseDtmcPrctlHelper {
public:
static std::vector<ValueType> computeBoundedUntilProbabilities(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, uint_fast64_t stepBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static std::vector<ValueType> computeNextProbabilities(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& nextStates, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static std::vector<ValueType> computeUntilProbabilities(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static std::vector<ValueType> computeCumulativeRewards(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, RewardModelType const& rewardModel, uint_fast64_t stepBound, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static std::vector<ValueType> computeInstantaneousRewards(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, RewardModelType const& rewardModel, uint_fast64_t stepCount, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static std::vector<ValueType> computeReachabilityRewards(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, RewardModelType const& rewardModel, storm::storage::BitVector const& targetStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static std::vector<ValueType> computeLongRunAverage(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
};
}
}
}
#endif /* STORM_MODELCHECKER_SPARSE_DTMC_PRCTL_MODELCHECKER_HELPER_H_ */

407
src/modelchecker/prctl/helper/SparseMdpPrctlHelper.cpp

@ -0,0 +1,407 @@
#include "src/modelchecker/prctl/helper/SparseMdpPrctlHelper.h"
#include "src/storage/MaximalEndComponentDecomposition.h"
#include "src/utility/macros.h"
#include "src/utility/vector.h"
#include "src/utility/graph.h"
#include "src/exceptions/InvalidStateException.h"
#include "src/exceptions/InvalidPropertyException.h"
namespace storm {
namespace modelchecker {
namespace helper {
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseMdpPrctlHelper<ValueType, RewardModelType>::computeBoundedUntilProbabilities(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) {
std::vector<ValueType> result(transitionMatrix.getRowCount(), storm::utility::zero<ValueType>());
// Determine the states that have 0 probability of reaching the target states.
storm::storage::BitVector maybeStates;
if (minimize) {
maybeStates = storm::utility::graph::performProbGreater0A(transitionMatrix, transitionMatrix.getRowGroupIndices(), backwardTransitions, phiStates, psiStates, true, stepBound);
} else {
maybeStates = storm::utility::graph::performProbGreater0E(transitionMatrix, transitionMatrix.getRowGroupIndices(), backwardTransitions, phiStates, psiStates, true, stepBound);
}
maybeStates &= ~psiStates;
STORM_LOG_INFO("Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states.");
if (!maybeStates.empty()) {
// We can eliminate the rows and columns from the original transition probability matrix that have probability 0.
storm::storage::SparseMatrix<ValueType> submatrix = transitionMatrix.getSubmatrix(true, maybeStates, maybeStates, false);
std::vector<ValueType> b = transitionMatrix.getConstrainedRowGroupSumVector(maybeStates, psiStates);
// Create the vector with which to multiply.
std::vector<ValueType> subresult(maybeStates.getNumberOfSetBits());
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = minMaxLinearEquationSolverFactory.create(submatrix);
solver->performMatrixVectorMultiplication(minimize, subresult, &b, stepBound);
// Set the values of the resulting vector accordingly.
storm::utility::vector::setVectorValues(result, maybeStates, subresult);
}
storm::utility::vector::setVectorValues(result, psiStates, storm::utility::one<ValueType>());
return result;
}
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseMdpPrctlHelper<ValueType, RewardModelType>::computeNextProbabilities(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& nextStates, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) {
// Create the vector with which to multiply and initialize it correctly.
std::vector<ValueType> result(transitionMatrix.getRowCount());
storm::utility::vector::setVectorValues(result, nextStates, storm::utility::one<ValueType>());
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = minMaxLinearEquationSolverFactory.create(transitionMatrix);
solver->performMatrixVectorMultiplication(minimize, result);
return result;
}
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseMdpPrctlHelper<ValueType, RewardModelType>::computeUntilProbabilities(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) {
uint_fast64_t numberOfStates = transitionMatrix.getRowCount();
// We need to identify the states which have to be taken out of the matrix, i.e.
// all states that have probability 0 and 1 of satisfying the until-formula.
std::pair<storm::storage::BitVector, storm::storage::BitVector> statesWithProbability01;
if (minimize) {
statesWithProbability01 = storm::utility::graph::performProb01Min(transitionMatrix, transitionMatrix.getRowGroupIndices(), backwardTransitions, phiStates, psiStates);
} else {
statesWithProbability01 = storm::utility::graph::performProb01Max(transitionMatrix, transitionMatrix.getRowGroupIndices(), backwardTransitions, phiStates, psiStates);
}
storm::storage::BitVector statesWithProbability0 = std::move(statesWithProbability01.first);
storm::storage::BitVector statesWithProbability1 = std::move(statesWithProbability01.second);
storm::storage::BitVector maybeStates = ~(statesWithProbability0 | statesWithProbability1);
LOG4CPLUS_INFO(logger, "Found " << statesWithProbability0.getNumberOfSetBits() << " 'no' states.");
LOG4CPLUS_INFO(logger, "Found " << statesWithProbability1.getNumberOfSetBits() << " 'yes' states.");
LOG4CPLUS_INFO(logger, "Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states.");
// Create resulting vector.
std::vector<ValueType> result(numberOfStates);
// Check whether we need to compute exact probabilities for some states.
if (qualitative) {
// Set the values for all maybe-states to 0.5 to indicate that their probability values are neither 0 nor 1.
storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, ValueType(0.5));
} else {
if (!maybeStates.empty()) {
// In this case we have have to compute the probabilities.
// First, we can eliminate the rows and columns from the original transition probability matrix for states
// whose probabilities are already known.
storm::storage::SparseMatrix<ValueType> submatrix = transitionMatrix.getSubmatrix(true, maybeStates, maybeStates, false);
// Prepare the right-hand side of the equation system. For entry i this corresponds to
// the accumulated probability of going from state i to some 'yes' state.
std::vector<ValueType> b = transitionMatrix.getConstrainedRowGroupSumVector(maybeStates, statesWithProbability1);
// Create vector for results for maybe states.
std::vector<ValueType> x(maybeStates.getNumberOfSetBits());
// Solve the corresponding system of equations.
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = minMaxLinearEquationSolverFactory.create(submatrix);
solver->solveEquationSystem(minimize, x, b);
// Set values of resulting vector according to result.
storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, x);
}
}
// Set values of resulting vector that are known exactly.
storm::utility::vector::setVectorValues<ValueType>(result, statesWithProbability0, storm::utility::zero<ValueType>());
storm::utility::vector::setVectorValues<ValueType>(result, statesWithProbability1, storm::utility::one<ValueType>());
return result;
}
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseMdpPrctlHelper<ValueType, RewardModelType>::computeInstantaneousRewards(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, RewardModelType const& rewardModel, bool minimize, uint_fast64_t stepCount, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) {
// Only compute the result if the model has a state-based reward this->getModel().
STORM_LOG_THROW(rewardModel.hasStateRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
// Initialize result to state rewards of the this->getModel().
std::vector<ValueType> result(rewardModel.getStateRewardVector());
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = minMaxLinearEquationSolverFactory.create(transitionMatrix);
solver->performMatrixVectorMultiplication(minimize, result, nullptr, stepCount);
return result;
}
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseMdpPrctlHelper<ValueType, RewardModelType>::computeCumulativeRewards(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, RewardModelType const& rewardModel, bool minimize, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) {
// Only compute the result if the model has at least one reward this->getModel().
STORM_LOG_THROW(!rewardModel.empty(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
// Compute the reward vector to add in each step based on the available reward models.
std::vector<ValueType> totalRewardVector = rewardModel.getTotalRewardVector(transitionMatrix);
// Initialize result to either the state rewards of the model or the null vector.
std::vector<ValueType> result;
if (rewardModel.hasStateRewards()) {
result = rewardModel.getStateRewardVector();
} else {
result.resize(transitionMatrix.getRowCount());
}
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = minMaxLinearEquationSolverFactory.create(transitionMatrix);
solver->performMatrixVectorMultiplication(minimize, result, &totalRewardVector, stepBound);
return result;
}
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseMdpPrctlHelper<ValueType, RewardModelType>::computeReachabilityRewards(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, RewardModelType const& rewardModel, storm::storage::BitVector const& targetStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) {
// Only compute the result if the model has at least one reward this->getModel().
STORM_LOG_THROW(!rewardModel.empty(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
// Determine which states have a reward of infinity by definition.
storm::storage::BitVector infinityStates;
storm::storage::BitVector trueStates(transitionMatrix.getRowCount(), true);
if (minimize) {
infinityStates = std::move(storm::utility::graph::performProb1A(transitionMatrix, transitionMatrix.getRowGroupIndices(), backwardTransitions, trueStates, targetStates));
} else {
infinityStates = std::move(storm::utility::graph::performProb1E(transitionMatrix, transitionMatrix.getRowGroupIndices(), backwardTransitions, trueStates, targetStates));
}
infinityStates.complement();
storm::storage::BitVector maybeStates = ~targetStates & ~infinityStates;
LOG4CPLUS_INFO(logger, "Found " << infinityStates.getNumberOfSetBits() << " 'infinity' states.");
LOG4CPLUS_INFO(logger, "Found " << targetStates.getNumberOfSetBits() << " 'target' states.");
LOG4CPLUS_INFO(logger, "Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states.");
// Create resulting vector.
std::vector<ValueType> result(transitionMatrix.getRowCount());
// Check whether we need to compute exact rewards for some states.
if (qualitative) {
LOG4CPLUS_INFO(logger, "The rewards for the initial states were determined in a preprocessing step. No exact rewards were computed.");
// Set the values for all maybe-states to 1 to indicate that their reward values
// are neither 0 nor infinity.
storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, storm::utility::one<ValueType>());
} else {
// In this case we have to compute the reward values for the remaining states.
// We can eliminate the rows and columns from the original transition probability matrix for states
// whose reward values are already known.
storm::storage::SparseMatrix<ValueType> submatrix = transitionMatrix.getSubmatrix(true, maybeStates, maybeStates, false);
// Prepare the right-hand side of the equation system.
std::vector<ValueType> b = rewardModel.getTotalRewardVector(submatrix.getRowCount(), transitionMatrix, maybeStates);
// Create vector for results for maybe states.
std::vector<ValueType> x(maybeStates.getNumberOfSetBits());
// Solve the corresponding system of equations.
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = minMaxLinearEquationSolverFactory.create(submatrix);
solver->solveEquationSystem(minimize, x, b);
// Set values of resulting vector according to result.
storm::utility::vector::setVectorValues<ValueType>(result, maybeStates, x);
}
// Set values of resulting vector that are known exactly.
storm::utility::vector::setVectorValues(result, targetStates, storm::utility::zero<ValueType>());
storm::utility::vector::setVectorValues(result, infinityStates, storm::utility::infinity<ValueType>());
return result;
}
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseMdpPrctlHelper<ValueType, RewardModelType>::computeLongRunAverage(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) {
// If there are no goal states, we avoid the computation and directly return zero.
uint_fast64_t numberOfStates = transitionMatrix.getRowCount();
if (psiStates.empty()) {
return std::vector<ValueType>(numberOfStates, storm::utility::zero<ValueType>());
}
// Likewise, if all bits are set, we can avoid the computation and set.
if ((~psiStates).empty()) {
return std::vector<ValueType>(numberOfStates, storm::utility::one<ValueType>());
}
// Start by decomposing the MDP into its MECs.
storm::storage::MaximalEndComponentDecomposition<double> mecDecomposition(transitionMatrix, backwardTransitions);
// Get some data members for convenience.
std::vector<uint_fast64_t> const& nondeterministicChoiceIndices = transitionMatrix.getRowGroupIndices();
ValueType zero = storm::utility::zero<ValueType>();
//first calculate LRA for the Maximal End Components.
storm::storage::BitVector statesInMecs(numberOfStates);
std::vector<uint_fast64_t> stateToMecIndexMap(transitionMatrix.getColumnCount());
std::vector<ValueType> lraValuesForEndComponents(mecDecomposition.size(), zero);
for (uint_fast64_t currentMecIndex = 0; currentMecIndex < mecDecomposition.size(); ++currentMecIndex) {
storm::storage::MaximalEndComponent const& mec = mecDecomposition[currentMecIndex];
lraValuesForEndComponents[currentMecIndex] = computeLraForMaximalEndComponent(minimize, transitionMatrix, psiStates, mec);
// Gather information for later use.
for (auto const& stateChoicesPair : mec) {
statesInMecs.set(stateChoicesPair.first);
stateToMecIndexMap[stateChoicesPair.first] = currentMecIndex;
}
}
// For fast transition rewriting, we build some auxiliary data structures.
storm::storage::BitVector statesNotContainedInAnyMec = ~statesInMecs;
uint_fast64_t firstAuxiliaryStateIndex = statesNotContainedInAnyMec.getNumberOfSetBits();
uint_fast64_t lastStateNotInMecs = 0;
uint_fast64_t numberOfStatesNotInMecs = 0;
std::vector<uint_fast64_t> statesNotInMecsBeforeIndex;
statesNotInMecsBeforeIndex.reserve(numberOfStates);
for (auto state : statesNotContainedInAnyMec) {
while (lastStateNotInMecs <= state) {
statesNotInMecsBeforeIndex.push_back(numberOfStatesNotInMecs);
++lastStateNotInMecs;
}
++numberOfStatesNotInMecs;
}
// Finally, we are ready to create the SSP matrix and right-hand side of the SSP.
std::vector<ValueType> b;
typename storm::storage::SparseMatrixBuilder<ValueType> sspMatrixBuilder(0, 0, 0, false, true, numberOfStatesNotInMecs + mecDecomposition.size());
// If the source state is not contained in any MEC, we copy its choices (and perform the necessary modifications).
uint_fast64_t currentChoice = 0;
for (auto state : statesNotContainedInAnyMec) {
sspMatrixBuilder.newRowGroup(currentChoice);
for (uint_fast64_t choice = nondeterministicChoiceIndices[state]; choice < nondeterministicChoiceIndices[state + 1]; ++choice, ++currentChoice) {
std::vector<ValueType> auxiliaryStateToProbabilityMap(mecDecomposition.size());
b.push_back(storm::utility::zero<ValueType>());
for (auto element : transitionMatrix.getRow(choice)) {
if (statesNotContainedInAnyMec.get(element.getColumn())) {
// If the target state is not contained in an MEC, we can copy over the entry.
sspMatrixBuilder.addNextValue(currentChoice, statesNotInMecsBeforeIndex[element.getColumn()], element.getValue());
} else {
// If the target state is contained in MEC i, we need to add the probability to the corresponding field in the vector
// so that we are able to write the cumulative probability to the MEC into the matrix.
auxiliaryStateToProbabilityMap[stateToMecIndexMap[element.getColumn()]] += element.getValue();
}
}
// Now insert all (cumulative) probability values that target an MEC.
for (uint_fast64_t mecIndex = 0; mecIndex < auxiliaryStateToProbabilityMap.size(); ++mecIndex) {
if (auxiliaryStateToProbabilityMap[mecIndex] != 0) {
sspMatrixBuilder.addNextValue(currentChoice, firstAuxiliaryStateIndex + mecIndex, auxiliaryStateToProbabilityMap[mecIndex]);
}
}
}
}
// Now we are ready to construct the choices for the auxiliary states.
for (uint_fast64_t mecIndex = 0; mecIndex < mecDecomposition.size(); ++mecIndex) {
storm::storage::MaximalEndComponent const& mec = mecDecomposition[mecIndex];
sspMatrixBuilder.newRowGroup(currentChoice);
for (auto const& stateChoicesPair : mec) {
uint_fast64_t state = stateChoicesPair.first;
boost::container::flat_set<uint_fast64_t> const& choicesInMec = stateChoicesPair.second;
for (uint_fast64_t choice = nondeterministicChoiceIndices[state]; choice < nondeterministicChoiceIndices[state + 1]; ++choice) {
std::vector<ValueType> auxiliaryStateToProbabilityMap(mecDecomposition.size());
// If the choice is not contained in the MEC itself, we have to add a similar distribution to the auxiliary state.
if (choicesInMec.find(choice) == choicesInMec.end()) {
b.push_back(storm::utility::zero<ValueType>());
for (auto element : transitionMatrix.getRow(choice)) {
if (statesNotContainedInAnyMec.get(element.getColumn())) {
// If the target state is not contained in an MEC, we can copy over the entry.
sspMatrixBuilder.addNextValue(currentChoice, statesNotInMecsBeforeIndex[element.getColumn()], element.getValue());
} else {
// If the target state is contained in MEC i, we need to add the probability to the corresponding field in the vector
// so that we are able to write the cumulative probability to the MEC into the matrix.
auxiliaryStateToProbabilityMap[stateToMecIndexMap[element.getColumn()]] += element.getValue();
}
}
// Now insert all (cumulative) probability values that target an MEC.
for (uint_fast64_t targetMecIndex = 0; targetMecIndex < auxiliaryStateToProbabilityMap.size(); ++targetMecIndex) {
if (auxiliaryStateToProbabilityMap[targetMecIndex] != 0) {
sspMatrixBuilder.addNextValue(currentChoice, firstAuxiliaryStateIndex + targetMecIndex, auxiliaryStateToProbabilityMap[targetMecIndex]);
}
}
++currentChoice;
}
}
}
// For each auxiliary state, there is the option to achieve the reward value of the LRA associated with the MEC.
++currentChoice;
b.push_back(lraValuesForEndComponents[mecIndex]);
}
// Finalize the matrix and solve the corresponding system of equations.
storm::storage::SparseMatrix<ValueType> sspMatrix = sspMatrixBuilder.build(currentChoice);
std::vector<ValueType> sspResult(numberOfStatesNotInMecs + mecDecomposition.size());
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = minMaxLinearEquationSolverFactory.create(sspMatrix);
solver->solveEquationSystem(minimize, sspResult, b);
// Prepare result vector.
std::vector<ValueType> result(numberOfStates, zero);
// Set the values for states not contained in MECs.
storm::utility::vector::setVectorValues(result, statesNotContainedInAnyMec, sspResult);
// Set the values for all states in MECs.
for (auto state : statesInMecs) {
result[state] = sspResult[firstAuxiliaryStateIndex + stateToMecIndexMap[state]];
}
return result;
}
template<typename ValueType, typename RewardModelType>
ValueType SparseMdpPrctlHelper<ValueType, RewardModelType>::computeLraForMaximalEndComponent(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& psiStates, storm::storage::MaximalEndComponent const& mec) {
std::shared_ptr<storm::solver::LpSolver> solver = storm::utility::solver::getLpSolver("LRA for MEC");
solver->setModelSense(minimize ? storm::solver::LpSolver::ModelSense::Maximize : storm::solver::LpSolver::ModelSense::Minimize);
//// First, we need to create the variables for the problem.
std::map<uint_fast64_t, storm::expressions::Variable> stateToVariableMap;
for (auto const& stateChoicesPair : mec) {
std::string variableName = "h" + std::to_string(stateChoicesPair.first);
stateToVariableMap[stateChoicesPair.first] = solver->addUnboundedContinuousVariable(variableName);
}
storm::expressions::Variable lambda = solver->addUnboundedContinuousVariable("L", 1);
solver->update();
// Now we encode the problem as constraints.
for (auto const& stateChoicesPair : mec) {
uint_fast64_t state = stateChoicesPair.first;
// Now, based on the type of the state, create a suitable constraint.
for (auto choice : stateChoicesPair.second) {
storm::expressions::Expression constraint = -lambda;
ValueType r = 0;
for (auto element : transitionMatrix.getRow(choice)) {
constraint = constraint + stateToVariableMap.at(element.getColumn()) * solver->getConstant(element.getValue());
if (psiStates.get(element.getColumn())) {
r += element.getValue();
}
}
constraint = solver->getConstant(r) + constraint;
if (minimize) {
constraint = stateToVariableMap.at(state) <= constraint;
} else {
constraint = stateToVariableMap.at(state) >= constraint;
}
solver->addConstraint("state" + std::to_string(state) + "," + std::to_string(choice), constraint);
}
}
solver->optimize();
return solver->getContinuousValue(lambda);
}
template class SparseMdpPrctlHelper<double>;
}
}
}

45
src/modelchecker/prctl/helper/SparseMdpPrctlHelper.h

@ -0,0 +1,45 @@
#ifndef STORM_MODELCHECKER_SPARSE_MDP_PRCTL_MODELCHECKER_HELPER_H_
#define STORM_MODELCHECKER_SPARSE_MDP_PRCTL_MODELCHECKER_HELPER_H_
#include <vector>
#include "src/models/sparse/StandardRewardModel.h"
#include "src/storage/SparseMatrix.h"
#include "src/storage/BitVector.h"
#include "src/storage/MaximalEndComponent.h"
#include "src/utility/solver.h"
namespace storm {
namespace modelchecker {
namespace helper {
template <typename ValueType, typename RewardModelType = storm::models::sparse::StandardRewardModel<ValueType>>
class SparseMdpPrctlHelper {
public:
static std::vector<ValueType> computeBoundedUntilProbabilities(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory);
static std::vector<ValueType> computeNextProbabilities(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& nextStates, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory);
static std::vector<ValueType> computeUntilProbabilities(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory);
static std::vector<ValueType> computeUntilProbabilities(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& MinMaxLinearEquationSolverFactory, bool qualitative);
static std::vector<ValueType> computeInstantaneousRewards(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, RewardModelType const& rewardModel, bool minimize, uint_fast64_t stepCount, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory);
static std::vector<ValueType> computeCumulativeRewards(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, RewardModelType const& rewardModel, bool minimize, uint_fast64_t stepBound, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory);
static std::vector<ValueType> computeReachabilityRewards(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, RewardModelType const& rewardModel, storm::storage::BitVector const& targetStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory);
static std::vector<ValueType> computeLongRunAverage(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory);
private:
static ValueType computeLraForMaximalEndComponent(bool minimize, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& goalStates, storm::storage::MaximalEndComponent const& mec);
};
}
}
}
#endif /* STORM_MODELCHECKER_SPARSE_MDP_PRCTL_MODELCHECKER_HELPER_H_ */

195
src/modelchecker/prctl/helper/SymbolicDtmcPrctlHelper.cpp

@ -0,0 +1,195 @@
#include "src/modelchecker/prctl/helper/SymbolicDtmcPrctlHelper.h"
#include "src/storage/dd/DdType.h"
#include "src/storage/dd/CuddAdd.h"
#include "src/storage/dd/CuddBdd.h"
#include "src/storage/dd/CuddOdd.h"
#include "src/utility/graph.h"
#include "src/exceptions/InvalidPropertyException.h"
namespace storm {
namespace modelchecker {
namespace helper {
template<storm::dd::DdType DdType, typename ValueType>
storm::dd::Add<DdType> SymbolicDtmcPrctlHelper<DdType, ValueType>::computeUntilProbabilities(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, bool qualitative, storm::utility::solver::SymbolicLinearEquationSolverFactory<DdType, ValueType> const& linearEquationSolverFactory) {
// We need to identify the states which have to be taken out of the matrix, i.e. all states that have
// probability 0 and 1 of satisfying the until-formula.
std::pair<storm::dd::Bdd<DdType>, storm::dd::Bdd<DdType>> statesWithProbability01 = storm::utility::graph::performProb01(model, transitionMatrix, phiStates, psiStates);
storm::dd::Bdd<DdType> maybeStates = !statesWithProbability01.first && !statesWithProbability01.second && model.getReachableStates();
// Perform some logging.
STORM_LOG_INFO("Found " << statesWithProbability01.first.getNonZeroCount() << " 'no' states.");
STORM_LOG_INFO("Found " << statesWithProbability01.second.getNonZeroCount() << " 'yes' states.");
STORM_LOG_INFO("Found " << maybeStates.getNonZeroCount() << " 'maybe' states.");
// Check whether we need to compute exact probabilities for some states.
if (qualitative) {
// Set the values for all maybe-states to 0.5 to indicate that their probability values are neither 0 nor 1.
return statesWithProbability01.second.toAdd() + maybeStates.toAdd() * model.getManager().getConstant(0.5);
} else {
// If there are maybe states, we need to solve an equation system.
if (!maybeStates.isZero()) {
// Create the ODD for the translation between symbolic and explicit storage.
storm::dd::Odd<DdType> odd(maybeStates);
// Create the matrix and the vector for the equation system.
storm::dd::Add<DdType> maybeStatesAdd = maybeStates.toAdd();
// Start by cutting away all rows that do not belong to maybe states. Note that this leaves columns targeting
// non-maybe states in the matrix.
storm::dd::Add<DdType> submatrix = transitionMatrix * maybeStatesAdd;
// Then compute the vector that contains the one-step probabilities to a state with probability 1 for all
// maybe states.
storm::dd::Add<DdType> prob1StatesAsColumn = statesWithProbability01.second.toAdd();
prob1StatesAsColumn = prob1StatesAsColumn.swapVariables(model.getRowColumnMetaVariablePairs());
storm::dd::Add<DdType> subvector = submatrix * prob1StatesAsColumn;
subvector = subvector.sumAbstract(model.getColumnVariables());
// Finally cut away all columns targeting non-maybe states and convert the matrix into the matrix needed
// for solving the equation system (i.e. compute (I-A)).
submatrix *= maybeStatesAdd.swapVariables(model.getRowColumnMetaVariablePairs());
submatrix = (model.getRowColumnIdentity() * maybeStatesAdd) - submatrix;
// Solve the equation system.
std::unique_ptr<storm::solver::SymbolicLinearEquationSolver<DdType, ValueType>> solver = linearEquationSolverFactory.create(submatrix, maybeStates, model.getRowVariables(), model.getColumnVariables(), model.getRowColumnMetaVariablePairs());
storm::dd::Add<DdType> result = solver->solveEquationSystem(model.getManager().getConstant(0.5) * maybeStatesAdd, subvector);
return statesWithProbability01.second.toAdd() + result;
} else {
return statesWithProbability01.second.toAdd();
}
}
}
template<storm::dd::DdType DdType, typename ValueType>
storm::dd::Add<DdType> SymbolicDtmcPrctlHelper<DdType, ValueType>::computeNextProbabilities(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& nextStates) {
storm::dd::Add<DdType> result = transitionMatrix * nextStates.swapVariables(model.getRowColumnMetaVariablePairs()).toAdd();
return result.sumAbstract(model.getColumnVariables());
}
template<storm::dd::DdType DdType, typename ValueType>
storm::dd::Add<DdType> SymbolicDtmcPrctlHelper<DdType, ValueType>::computeBoundedUntilProbabilities(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, uint_fast64_t stepBound, storm::utility::solver::SymbolicLinearEquationSolverFactory<DdType, ValueType> const& linearEquationSolverFactory) {
// We need to identify the states which have to be taken out of the matrix, i.e. all states that have
// probability 0 or 1 of satisfying the until-formula.
storm::dd::Bdd<DdType> statesWithProbabilityGreater0 = storm::utility::graph::performProbGreater0(model, transitionMatrix.notZero(), phiStates, psiStates, stepBound);
storm::dd::Bdd<DdType> maybeStates = statesWithProbabilityGreater0 && !psiStates && model.getReachableStates();
// If there are maybe states, we need to perform matrix-vector multiplications.
if (!maybeStates.isZero()) {
// Create the ODD for the translation between symbolic and explicit storage.
storm::dd::Odd<DdType> odd(maybeStates);
// Create the matrix and the vector for the equation system.
storm::dd::Add<DdType> maybeStatesAdd = maybeStates.toAdd();
// Start by cutting away all rows that do not belong to maybe states. Note that this leaves columns targeting
// non-maybe states in the matrix.
storm::dd::Add<DdType> submatrix = transitionMatrix * maybeStatesAdd;
// Then compute the vector that contains the one-step probabilities to a state with probability 1 for all
// maybe states.
storm::dd::Add<DdType> prob1StatesAsColumn = psiStates.toAdd().swapVariables(model.getRowColumnMetaVariablePairs());
storm::dd::Add<DdType> subvector = (submatrix * prob1StatesAsColumn).sumAbstract(model.getColumnVariables());
// Finally cut away all columns targeting non-maybe states.
submatrix *= maybeStatesAdd.swapVariables(model.getRowColumnMetaVariablePairs());
// Perform the matrix-vector multiplication.
std::unique_ptr<storm::solver::SymbolicLinearEquationSolver<DdType, ValueType>> solver = linearEquationSolverFactory.create(submatrix, maybeStates, model.getRowVariables(), model.getColumnVariables(), model.getRowColumnMetaVariablePairs());
storm::dd::Add<DdType> result = solver->performMatrixVectorMultiplication(model.getManager().getAddZero(), &subvector, stepBound);
return psiStates.toAdd() + result;
} else {
return psiStates.toAdd();
}
}
template<storm::dd::DdType DdType, typename ValueType>
storm::dd::Add<DdType> SymbolicDtmcPrctlHelper<DdType, ValueType>::computeCumulativeRewards(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::SymbolicLinearEquationSolverFactory<DdType, ValueType> const& linearEquationSolverFactory) {
// Only compute the result if the model has at least one reward this->getModel().
STORM_LOG_THROW(model.hasStateRewards() || model.hasTransitionRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
// Compute the reward vector to add in each step based on the available reward models.
storm::dd::Add<DdType> totalRewardVector = model.hasStateRewards() ? model.getStateRewardVector() : model.getManager().getAddZero();
if (model.hasTransitionRewards()) {
totalRewardVector += (transitionMatrix * model.getTransitionRewardMatrix()).sumAbstract(model.getColumnVariables());
}
// Perform the matrix-vector multiplication.
std::unique_ptr<storm::solver::SymbolicLinearEquationSolver<DdType, ValueType>> solver = linearEquationSolverFactory.create(transitionMatrix, model.getReachableStates(), model.getRowVariables(), model.getColumnVariables(), model.getRowColumnMetaVariablePairs());
return solver->performMatrixVectorMultiplication(model.getManager().getAddZero(), &totalRewardVector, stepBound);
}
template<storm::dd::DdType DdType, typename ValueType>
storm::dd::Add<DdType> SymbolicDtmcPrctlHelper<DdType, ValueType>::computeInstantaneousRewards(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::SymbolicLinearEquationSolverFactory<DdType, ValueType> const& linearEquationSolverFactory) {
// Only compute the result if the model has at least one reward this->getModel().
STORM_LOG_THROW(model.hasStateRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
// Perform the matrix-vector multiplication.
std::unique_ptr<storm::solver::SymbolicLinearEquationSolver<DdType, ValueType>> solver = linearEquationSolverFactory.create(transitionMatrix, model.getReachableStates(), model.getRowVariables(), model.getColumnVariables(), model.getRowColumnMetaVariablePairs());
return solver->performMatrixVectorMultiplication(model.getStateRewardVector(), nullptr, stepBound);
}
template<storm::dd::DdType DdType, typename ValueType>
storm::dd::Add<DdType> SymbolicDtmcPrctlHelper<DdType, ValueType>::computeReachabilityRewards(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, boost::optional<storm::dd::Add<DdType>> const& stateRewardVector, boost::optional<storm::dd::Add<DdType>> const& transitionRewardMatrix, storm::dd::Bdd<DdType> const& targetStates, bool qualitative, storm::utility::solver::SymbolicLinearEquationSolverFactory<DdType, ValueType> const& linearEquationSolverFactory) {
// Only compute the result if there is at least one reward model.
STORM_LOG_THROW(stateRewardVector || transitionRewardMatrix, storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
// Determine which states have a reward of infinity by definition.
storm::dd::Bdd<DdType> infinityStates = storm::utility::graph::performProb1(model, transitionMatrix.notZero(), model.getReachableStates(), targetStates);
infinityStates = !infinityStates && model.getReachableStates();
storm::dd::Bdd<DdType> maybeStates = (!targetStates && !infinityStates) && model.getReachableStates();
STORM_LOG_INFO("Found " << infinityStates.getNonZeroCount() << " 'infinity' states.");
STORM_LOG_INFO("Found " << targetStates.getNonZeroCount() << " 'target' states.");
STORM_LOG_INFO("Found " << maybeStates.getNonZeroCount() << " 'maybe' states.");
// Check whether we need to compute exact rewards for some states.
if (qualitative) {
// Set the values for all maybe-states to 1 to indicate that their reward values
// are neither 0 nor infinity.
return infinityStates.toAdd() * model.getManager().getConstant(storm::utility::infinity<ValueType>()) + maybeStates.toAdd() * model.getManager().getConstant(storm::utility::one<ValueType>());
} else {
// If there are maybe states, we need to solve an equation system.
if (!maybeStates.isZero()) {
// Create the ODD for the translation between symbolic and explicit storage.
storm::dd::Odd<DdType> odd(maybeStates);
// Create the matrix and the vector for the equation system.
storm::dd::Add<DdType> maybeStatesAdd = maybeStates.toAdd();
// Start by cutting away all rows that do not belong to maybe states. Note that this leaves columns targeting
// non-maybe states in the matrix.
storm::dd::Add<DdType> submatrix = transitionMatrix * maybeStatesAdd;
// Then compute the state reward vector to use in the computation.
storm::dd::Add<DdType> subvector = stateRewardVector ? maybeStatesAdd * stateRewardVector.get() : model.getManager().getAddZero();
if (transitionRewardMatrix) {
subvector += (submatrix * transitionRewardMatrix.get()).sumAbstract(model.getColumnVariables());
}
// Finally cut away all columns targeting non-maybe states and convert the matrix into the matrix needed
// for solving the equation system (i.e. compute (I-A)).
submatrix *= maybeStatesAdd.swapVariables(model.getRowColumnMetaVariablePairs());
submatrix = (model.getRowColumnIdentity() * maybeStatesAdd) - submatrix;
// Solve the equation system.
std::unique_ptr<storm::solver::SymbolicLinearEquationSolver<DdType, ValueType>> solver = linearEquationSolverFactory.create(submatrix, maybeStates, model.getRowVariables(), model.getColumnVariables(), model.getRowColumnMetaVariablePairs());
storm::dd::Add<DdType> result = solver->solveEquationSystem(model.getManager().getConstant(0.5) * maybeStatesAdd, subvector);
return infinityStates.toAdd() * model.getManager().getConstant(storm::utility::infinity<ValueType>()) + result;
} else {
return infinityStates.toAdd() * model.getManager().getConstant(storm::utility::infinity<ValueType>());
}
}
}
template class SymbolicDtmcPrctlHelper<storm::dd::DdType::CUDD, double>;
}
}
}

35
src/modelchecker/prctl/helper/SymbolicDtmcPrctlHelper.h

@ -0,0 +1,35 @@
#ifndef STORM_MODELCHECKER_SPARSE_DTMC_PRCTL_MODELCHECKER_HELPER_H_
#define STORM_MODELCHECKER_SPARSE_DTMC_PRCTL_MODELCHECKER_HELPER_H_
#include "src/models/symbolic/Model.h"
#include "src/storage/dd/Add.h"
#include "src/storage/dd/Bdd.h"
#include "src/utility/solver.h"
namespace storm {
namespace modelchecker {
namespace helper {
template<storm::dd::DdType DdType, typename ValueType>
class SymbolicDtmcPrctlHelper {
public:
static storm::dd::Add<DdType> computeBoundedUntilProbabilities(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, uint_fast64_t stepBound, storm::utility::solver::SymbolicLinearEquationSolverFactory<DdType, ValueType> const& linearEquationSolverFactory);
static storm::dd::Add<DdType> computeNextProbabilities(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& nextStates);
static storm::dd::Add<DdType> computeUntilProbabilities(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, storm::dd::Bdd<DdType> const& phiStates, storm::dd::Bdd<DdType> const& psiStates, bool qualitative, storm::utility::solver::SymbolicLinearEquationSolverFactory<DdType, ValueType> const& linearEquationSolverFactory);
static storm::dd::Add<DdType> computeCumulativeRewards(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::SymbolicLinearEquationSolverFactory<DdType, ValueType> const& linearEquationSolverFactory);
static storm::dd::Add<DdType> computeInstantaneousRewards(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, uint_fast64_t stepBound, storm::utility::solver::SymbolicLinearEquationSolverFactory<DdType, ValueType> const& linearEquationSolverFactory);
static storm::dd::Add<DdType> computeReachabilityRewards(storm::models::symbolic::Model<DdType> const& model, storm::dd::Add<DdType> const& transitionMatrix, boost::optional<storm::dd::Add<DdType>> const& stateRewardVector, boost::optional<storm::dd::Add<DdType>> const& transitionRewardMatrix, storm::dd::Bdd<DdType> const& targetStates, bool qualitative, storm::utility::solver::SymbolicLinearEquationSolverFactory<DdType, ValueType> const& linearEquationSolverFactory);
};
}
}
}
#endif /* STORM_MODELCHECKER_SPARSE_DTMC_PRCTL_MODELCHECKER_HELPER_H_ */

0
src/modelchecker/prctl/helper/SymbolicMdpPrctlHelper.cpp

0
src/modelchecker/prctl/helper/SymbolicMdpPrctlHelper.h

3
src/modelchecker/propositional/SparsePropositionalModelChecker.h

@ -11,6 +11,9 @@ namespace storm {
template<typename SparseModelType>
class SparsePropositionalModelChecker : public AbstractModelChecker {
public:
typedef typename SparseModelType::ValueType ValueType;
typedef typename SparseModelType::RewardModelType RewardModelType;
explicit SparsePropositionalModelChecker(SparseModelType const& model);
// The implemented methods of the AbstractModelChecker interface.

3
src/models/sparse/Ctmc.h

@ -1,9 +1,6 @@
#ifndef STORM_MODELS_SPARSE_CTMC_H_
#define STORM_MODELS_SPARSE_CTMC_H_
#include <memory>
#include <vector>
#include "src/models/sparse/DeterministicModel.h"
#include "src/utility/OsDetection.h"

2
src/settings/ArgumentBuilder.h

@ -190,7 +190,7 @@ return *this; \
ArgumentBuilder(ArgumentType type, std::string const& name, std::string const& description) : hasBeenBuilt(false), type(type), name(name), description(description), isOptional(false), hasDefaultValue(false), defaultValue_String(), defaultValue_Integer(), defaultValue_UnsignedInteger(), defaultValue_Double(), defaultValue_Boolean(), userValidationFunctions_String(), userValidationFunctions_Integer(), userValidationFunctions_UnsignedInteger(), userValidationFunctions_Double(), userValidationFunctions_Boolean() {
// Intentionally left empty.
}
// A flag that stores whether an argument has been built using this builder.
bool hasBeenBuilt;

29
src/storage/MaximalEndComponentDecomposition.cpp

@ -14,12 +14,17 @@ namespace storm {
template<typename ValueType>
MaximalEndComponentDecomposition<ValueType>::MaximalEndComponentDecomposition(storm::models::sparse::NondeterministicModel<ValueType> const& model) {
performMaximalEndComponentDecomposition(model, storm::storage::BitVector(model.getNumberOfStates(), true));
performMaximalEndComponentDecomposition(model.getTransitionMatrix(), model.getBackwardTransitions(), storm::storage::BitVector(model.getNumberOfStates(), true));
}
template<typename ValueType>
MaximalEndComponentDecomposition<ValueType>::MaximalEndComponentDecomposition(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions) {
performMaximalEndComponentDecomposition(transitionMatrix, backwardTransitions, storm::storage::BitVector(transitionMatrix.getRowGroupCount(), true));
}
template<typename ValueType>
MaximalEndComponentDecomposition<ValueType>::MaximalEndComponentDecomposition(storm::models::sparse::NondeterministicModel<ValueType> const& model, storm::storage::BitVector const& subsystem) {
performMaximalEndComponentDecomposition(model, subsystem);
performMaximalEndComponentDecomposition(model.getTransitionMatrix(), model.getBackwardTransitions(), subsystem);
}
template<typename ValueType>
@ -45,30 +50,28 @@ namespace storm {
}
template <typename ValueType>
void MaximalEndComponentDecomposition<ValueType>::performMaximalEndComponentDecomposition(storm::models::sparse::NondeterministicModel<ValueType> const& model, storm::storage::BitVector const& subsystem) {
// Get some references for convenient access.
storm::storage::SparseMatrix<ValueType> backwardTransitions = model.getBackwardTransitions();
std::vector<uint_fast64_t> const& nondeterministicChoiceIndices = model.getNondeterministicChoiceIndices();
storm::storage::SparseMatrix<ValueType> const& transitionMatrix = model.getTransitionMatrix();
void MaximalEndComponentDecomposition<ValueType>::performMaximalEndComponentDecomposition(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> backwardTransitions, storm::storage::BitVector const& subsystem) {
// Get some data for convenient access.
uint_fast64_t numberOfStates = transitionMatrix.getRowGroupCount();
std::vector<uint_fast64_t> const& nondeterministicChoiceIndices = transitionMatrix.getRowGroupIndices();
// Initialize the maximal end component list to be the full state space.
std::list<StateBlock> endComponentStateSets;
endComponentStateSets.emplace_back(subsystem.begin(), subsystem.end());
storm::storage::BitVector statesToCheck(model.getNumberOfStates());
storm::storage::BitVector statesToCheck(numberOfStates);
// The iterator used here should really be a const_iterator.
// However, gcc 4.8 (and assorted libraries) does not provide an erase(const_iterator) method for std::list
// but only an erase(iterator). This is in compliance with the c++11 draft N3337, which specifies the change
// from iterator to const_iterator only for "set, multiset, map [and] multimap".
// FIXME: As soon as gcc provides an erase(const_iterator) method, change this iterator back to a const_iterator.
for (std::list<StateBlock>::iterator mecIterator = endComponentStateSets.begin(); mecIterator != endComponentStateSets.end();) {
for (std::list<StateBlock>::const_iterator mecIterator = endComponentStateSets.begin(); mecIterator != endComponentStateSets.end();) {
StateBlock const& mec = *mecIterator;
// Keep track of whether the MEC changed during this iteration.
bool mecChanged = false;
// Get an SCC decomposition of the current MEC candidate.
StronglyConnectedComponentDecomposition<ValueType> sccs(model, mec, true);
StronglyConnectedComponentDecomposition<ValueType> sccs(transitionMatrix, mec, true);
// We need to do another iteration in case we have either more than once SCC or the SCC is smaller than
// the MEC canditate itself.
@ -79,7 +82,7 @@ namespace storm {
statesToCheck.set(scc.begin(), scc.end());
while (!statesToCheck.empty()) {
storm::storage::BitVector statesToRemove(model.getNumberOfStates());
storm::storage::BitVector statesToRemove(numberOfStates);
for (auto state : statesToCheck) {
bool keepStateInMEC = false;
@ -132,7 +135,7 @@ namespace storm {
}
}
std::list<StateBlock>::iterator eraseIterator(mecIterator);
std::list<StateBlock>::const_iterator eraseIterator(mecIterator);
++mecIterator;
endComponentStateSets.erase(eraseIterator);
} else {

13
src/storage/MaximalEndComponentDecomposition.h

@ -26,6 +26,14 @@ namespace storm {
*/
MaximalEndComponentDecomposition(storm::models::sparse::NondeterministicModel<ValueType> const& model);
/*
* Creates an MEC decomposition of the given model (represented by a row-grouped matrix).
*
* @param transitionMatrix The transition relation of model to decompose into MECs.
* @param backwardTransition The reversed transition relation.
*/
MaximalEndComponentDecomposition(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions);
/*!
* Creates an MEC decomposition of the given subsystem in the given model.
*
@ -67,10 +75,11 @@ namespace storm {
* Performs the actual decomposition of the given subsystem in the given model into MECs. As a side-effect
* this stores the MECs found in the current decomposition.
*
* @param model The model whose subsystem to decompose into MECs.
* @param transitionMatrix The transition matrix representing the system whose subsystem to decompose into MECs.
* @param backwardTransitions The reversed transition relation.
* @param subsystem The subsystem to decompose.
*/
void performMaximalEndComponentDecomposition(storm::models::sparse::NondeterministicModel<ValueType> const& model, storm::storage::BitVector const& subsystem);
void performMaximalEndComponentDecomposition(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> backwardTransitions, storm::storage::BitVector const& subsystem);
};
}
}

12
src/storage/StronglyConnectedComponentDecomposition.cpp

@ -25,6 +25,18 @@ namespace storm {
performSccDecomposition(model.getTransitionMatrix(), subsystem, dropNaiveSccs, onlyBottomSccs);
}
template <typename ValueType, typename RewardModelType>
StronglyConnectedComponentDecomposition<ValueType, RewardModelType>::StronglyConnectedComponentDecomposition(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, StateBlock const& block, bool dropNaiveSccs, bool onlyBottomSccs) {
storm::storage::BitVector subsystem(transitionMatrix.getRowGroupCount(), block.begin(), block.end());
performSccDecomposition(transitionMatrix, subsystem, dropNaiveSccs, onlyBottomSccs);
}
template <typename ValueType, typename RewardModelType>
StronglyConnectedComponentDecomposition<ValueType, RewardModelType>::StronglyConnectedComponentDecomposition(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, bool dropNaiveSccs, bool onlyBottomSccs) {
performSccDecomposition(transitionMatrix, storm::storage::BitVector(transitionMatrix.getRowGroupCount(), true), dropNaiveSccs, onlyBottomSccs);
}
template <typename ValueType, typename RewardModelType>
StronglyConnectedComponentDecomposition<ValueType, RewardModelType>::StronglyConnectedComponentDecomposition(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& subsystem, bool dropNaiveSccs, bool onlyBottomSccs) {
performSccDecomposition(transitionMatrix, subsystem, dropNaiveSccs, onlyBottomSccs);

24
src/storage/StronglyConnectedComponentDecomposition.h

@ -62,6 +62,30 @@ namespace storm {
*/
StronglyConnectedComponentDecomposition(storm::models::sparse::Model<ValueType, RewardModelType> const& model, storm::storage::BitVector const& subsystem, bool dropNaiveSccs = false, bool onlyBottomSccs = false);
/*
* Creates an SCC decomposition of the given subsystem in the given system (whose transition relation is
* given by a sparse matrix).
*
* @param transitionMatrix The transition matrix of the system to decompose.
* @param block The block to decompose into SCCs.
* @param dropNaiveSccs A flag that indicates whether trivial SCCs (i.e. SCCs consisting of just one state
* without a self-loop) are to be kept in the decomposition.
* @param onlyBottomSccs If set to true, only bottom SCCs, i.e. SCCs in which all states have no way of
* leaving the SCC), are kept.
*/
StronglyConnectedComponentDecomposition(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, StateBlock const& block, bool dropNaiveSccs = false, bool onlyBottomSccs = false);
/*
* Creates an SCC decomposition of the given system (whose transition relation is given by a sparse matrix).
*
* @param transitionMatrix The transition matrix of the system to decompose.
* @param dropNaiveSccs A flag that indicates whether trivial SCCs (i.e. SCCs consisting of just one state
* without a self-loop) are to be kept in the decomposition.
* @param onlyBottomSccs If set to true, only bottom SCCs, i.e. SCCs in which all states have no way of
* leaving the SCC), are kept.
*/
StronglyConnectedComponentDecomposition(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, bool dropNaiveSccs = false, bool onlyBottomSccs = false);
/*
* Creates an SCC decomposition of the given subsystem in the given system (whose transition relation is
* given by a sparse matrix).

|||||||
100:0
Loading…
Cancel
Save