Browse Source

started on Kwek-Mehlhorn-based exact value computation

tempestpy_adaptions
dehnert 7 years ago
parent
commit
b3f0aa511e
  1. 1
      CHANGELOG.md
  2. 4
      src/storm/settings/modules/MinMaxEquationSolverSettings.cpp
  3. 9
      src/storm/solver/AbstractEquationSolver.cpp
  4. 3
      src/storm/solver/AbstractEquationSolver.h
  5. 313
      src/storm/solver/IterativeMinMaxLinearEquationSolver.cpp
  6. 31
      src/storm/solver/IterativeMinMaxLinearEquationSolver.h
  7. 4
      src/storm/solver/MinMaxLinearEquationSolver.cpp
  8. 2
      src/storm/solver/SolverSelectionOptions.cpp
  9. 2
      src/storm/solver/SolverSelectionOptions.h
  10. 1
      src/storm/solver/StandardMinMaxLinearEquationSolver.h
  11. 3
      src/storm/storage/SparseMatrix.h
  12. 88
      src/storm/utility/constants.cpp
  13. 17
      src/storm/utility/constants.h

1
CHANGELOG.md

@ -11,6 +11,7 @@ Version 1.1.x
- parametric model checking has an own binary
- solvers can now expose requirements
- unbounded reachability and reachability rewards now correctly respect solver requirements
- sound (interval) value iteration
### Version 1.1.1
- c++ api changes: Building model takes BuilderOptions instead of extended list of Booleans, does not depend on settings anymore.

4
src/storm/settings/modules/MinMaxEquationSolverSettings.cpp

@ -21,7 +21,7 @@ namespace storm {
const std::string MinMaxEquationSolverSettings::valueIterationMultiplicationStyleOptionName = "vimult";
MinMaxEquationSolverSettings::MinMaxEquationSolverSettings() : ModuleSettings(moduleName) {
std::vector<std::string> minMaxSolvingTechniques = {"vi", "value-iteration", "pi", "policy-iteration", "linear-programming", "lp", "acyclic"};
std::vector<std::string> minMaxSolvingTechniques = {"vi", "value-iteration", "pi", "policy-iteration", "linear-programming", "lp", "acyclic", "ratsearch"};
this->addOption(storm::settings::OptionBuilder(moduleName, solvingMethodOptionName, false, "Sets which min/max linear equation solving technique is preferred.")
.addArgument(storm::settings::ArgumentBuilder::createStringArgument("name", "The name of a min/max linear equation solving technique.").addValidatorString(ArgumentValidatorFactory::createMultipleChoiceValidator(minMaxSolvingTechniques)).setDefaultValueString("vi").build()).build());
@ -50,6 +50,8 @@ namespace storm {
return storm::solver::MinMaxMethod::LinearProgramming;
} else if (minMaxEquationSolvingTechnique == "acyclic") {
return storm::solver::MinMaxMethod::Acyclic;
} else if (minMaxEquationSolvingTechnique == "ratsearch") {
return storm::solver::MinMaxMethod::RationalSearch;
}
STORM_LOG_THROW(false, storm::exceptions::IllegalArgumentValueException, "Unknown min/max equation solving technique '" << minMaxEquationSolvingTechnique << "'.");
}

9
src/storm/solver/AbstractEquationSolver.cpp

@ -40,6 +40,11 @@ namespace storm {
return *terminationCondition;
}
template<typename ValueType>
std::unique_ptr<TerminationCondition<ValueType>> const& AbstractEquationSolver<ValueType>::getTerminationConditionPointer() const {
return terminationCondition;
}
template<typename ValueType>
bool AbstractEquationSolver<ValueType>::terminateNow(std::vector<ValueType> const& values, SolverGuarantee const& guarantee) const {
if (!this->hasCustomTerminationCondition()) {
@ -198,10 +203,10 @@ namespace storm {
}
template<typename ValueType>
void AbstractEquationSolver<ValueType>::startMeasureProgress() const {
void AbstractEquationSolver<ValueType>::startMeasureProgress(uint64_t startingIteration) const {
timeOfStart = std::chrono::high_resolution_clock::now();
timeOfLastMessage = timeOfStart;
iterationOfLastMessage = 0;
iterationOfLastMessage = startingIteration;
}
template<typename ValueType>

3
src/storm/solver/AbstractEquationSolver.h

@ -143,7 +143,7 @@ namespace storm {
/*!
* Starts to measure progress.
*/
void startMeasureProgress() const;
void startMeasureProgress(uint64_t startingIteration = 0) const;
/*!
* Shows progress if this solver is asked to do so.
@ -157,6 +157,7 @@ namespace storm {
* @return The custom termination condition.
*/
TerminationCondition<ValueType> const& getTerminationCondition() const;
std::unique_ptr<TerminationCondition<ValueType>> const& getTerminationConditionPointer() const;
void createUpperBoundsVector(std::unique_ptr<std::vector<ValueType>>& upperBoundsVector, uint64_t length) const;
void createLowerBoundsVector(std::vector<ValueType>& lowerBoundsVector) const;

313
src/storm/solver/IterativeMinMaxLinearEquationSolver.cpp

@ -1,5 +1,7 @@
#include "storm/solver/IterativeMinMaxLinearEquationSolver.h"
#include "storm/utility/ConstantsComparator.h"
#include "storm/settings/SettingsManager.h"
#include "storm/settings/modules/GeneralSettings.h"
#include "storm/settings/modules/MinMaxEquationSolverSettings.h"
@ -9,6 +11,7 @@
#include "storm/exceptions/InvalidSettingsException.h"
#include "storm/exceptions/InvalidStateException.h"
#include "storm/exceptions/UnmetRequirementException.h"
#include "storm/exceptions/NotSupportedException.h"
namespace storm {
namespace solver {
@ -40,6 +43,7 @@ namespace storm {
case MinMaxMethod::ValueIteration: this->solutionMethod = SolutionMethod::ValueIteration; break;
case MinMaxMethod::PolicyIteration: this->solutionMethod = SolutionMethod::PolicyIteration; break;
case MinMaxMethod::Acyclic: this->solutionMethod = SolutionMethod::Acyclic; break;
case MinMaxMethod::RationalSearch: this->solutionMethod = SolutionMethod::RationalSearch; break;
default:
STORM_LOG_THROW(false, storm::exceptions::InvalidSettingsException, "Unsupported technique for iterative MinMax linear equation solver.");
}
@ -128,6 +132,8 @@ namespace storm {
return solveEquationsPolicyIteration(dir, x, b);
case IterativeMinMaxLinearEquationSolverSettings<ValueType>::SolutionMethod::Acyclic:
return solveEquationsAcyclic(dir, x, b);
case IterativeMinMaxLinearEquationSolverSettings<ValueType>::SolutionMethod::RationalSearch:
return solveEquationsRationalSearch(dir, x, b);
default:
STORM_LOG_THROW(false, storm::exceptions::InvalidSettingsException, "This solver does not implement the selected solution method");
}
@ -287,6 +293,46 @@ namespace storm {
return requirements;
}
template<typename ValueType>
typename IterativeMinMaxLinearEquationSolver<ValueType>::ValueIterationResult IterativeMinMaxLinearEquationSolver<ValueType>::performValueIteration(OptimizationDirection dir, std::vector<ValueType>*& currentX, std::vector<ValueType>*& newX, std::vector<ValueType> const& b, ValueType const& precision, bool relative, SolverGuarantee const& guarantee, uint64_t currentIterations) const {
// Get handle to linear equation solver.
storm::solver::LinearEquationSolver<ValueType> const& linearEquationSolver = *this->linEqSolverA;
// Allow aliased multiplications.
bool useGaussSeidelMultiplication = linearEquationSolver.supportsGaussSeidelMultiplication() && settings.getValueIterationMultiplicationStyle() == storm::solver::MultiplicationStyle::GaussSeidel;
// Proceed with the iterations as long as the method did not converge or reach the maximum number of iterations.
uint64_t iterations = currentIterations;
Status status = Status::InProgress;
while (status == Status::InProgress) {
// Compute x' = min/max(A*x + b).
if (useGaussSeidelMultiplication) {
// Copy over the current vector so we can modify it in-place.
*newX = *currentX;
linearEquationSolver.multiplyAndReduceGaussSeidel(dir, this->A->getRowGroupIndices(), *newX, &b);
} else {
linearEquationSolver.multiplyAndReduce(dir, this->A->getRowGroupIndices(), *currentX, &b, *newX);
}
// Determine whether the method converged.
if (storm::utility::vector::equalModuloPrecision<ValueType>(*currentX, *newX, precision, relative)) {
status = Status::Converged;
}
// Potentially show progress.
this->showProgressIterative(iterations);
// Update environment variables.
std::swap(currentX, newX);
++iterations;
status = updateStatusIfNotConverged(status, *currentX, iterations, guarantee);
}
return ValueIterationResult(iterations, status);
}
template<typename ValueType>
bool IterativeMinMaxLinearEquationSolver<ValueType>::solveEquationsValueIteration(OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType> const& b) const {
if (!this->linEqSolverA) {
@ -327,44 +373,18 @@ namespace storm {
if (dir == storm::OptimizationDirection::Minimize) {
guarantee = SolverGuarantee::GreaterOrEqual;
}
} else {
// If no initial scheduler is given, we start from the lower bound.
this->createLowerBoundsVector(x);
}
// Allow aliased multiplications.
bool useGaussSeidelMultiplication = this->linEqSolverA->supportsGaussSeidelMultiplication() && settings.getValueIterationMultiplicationStyle() == storm::solver::MultiplicationStyle::GaussSeidel;
std::vector<ValueType>* newX = auxiliaryRowGroupVector.get();
std::vector<ValueType>* currentX = &x;
// Proceed with the iterations as long as the method did not converge or reach the maximum number of iterations.
uint64_t iterations = 0;
this->startMeasureProgress();
Status status = Status::InProgress;
while (status == Status::InProgress) {
// Compute x' = min/max(A*x + b).
if (useGaussSeidelMultiplication) {
// Copy over the current vector so we can modify it in-place.
*newX = *currentX;
this->linEqSolverA->multiplyAndReduceGaussSeidel(dir, this->A->getRowGroupIndices(), *newX, &b);
} else {
this->linEqSolverA->multiplyAndReduce(dir, this->A->getRowGroupIndices(), *currentX, &b, *newX);
}
// Determine whether the method converged.
if (storm::utility::vector::equalModuloPrecision<ValueType>(*currentX, *newX, this->getSettings().getPrecision(), this->getSettings().getRelativeTerminationCriterion())) {
status = Status::Converged;
}
// Potentially show progress.
this->showProgressIterative(iterations);
// Update environment variables.
std::swap(currentX, newX);
++iterations;
status = updateStatusIfNotConverged(status, *currentX, iterations, guarantee);
}
reportStatus(status, iterations);
ValueIterationResult result = performValueIteration(dir, currentX, newX, b, this->getSettings().getPrecision(), this->getSettings().getRelativeTerminationCriterion(), guarantee, 0);
reportStatus(result.status, result.iterations);
// If we performed an odd number of iterations, we need to swap the x and currentX, because the newest result
// is currently stored in currentX, but x is the output vector.
@ -377,12 +397,12 @@ namespace storm {
this->schedulerChoices = std::vector<uint_fast64_t>(this->A->getRowGroupCount());
this->linEqSolverA->multiplyAndReduce(dir, this->A->getRowGroupIndices(), x, &b, *currentX, &this->schedulerChoices.get());
}
if (!this->isCachingEnabled()) {
clearCache();
}
return status == Status::Converged || status == Status::TerminatedEarly;
return result.status == Status::Converged || result.status == Status::TerminatedEarly;
}
template<typename ValueType>
@ -409,6 +429,12 @@ namespace storm {
return result;
}
/*!
* This version of value iteration is sound, because it approaches the solution from below and above. This
* technique is due to Haddad and Monmege (Interval iteration algorithm for MDPs and IMDPs, TCS 2017) and was
* extended to rewards by Baier, Klein, Leuschner, Parker and Wunderlich (Ensuring the Reliability of Your
* Model Checker: Interval Iteration for Markov Decision Processes, CAV 2017).
*/
template<typename ValueType>
bool IterativeMinMaxLinearEquationSolver<ValueType>::solveEquationsSoundValueIteration(OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType> const& b) const {
STORM_LOG_THROW(this->hasUpperBound(), storm::exceptions::UnmetRequirementException, "Solver requires upper bound, but none was given.");
@ -580,6 +606,225 @@ namespace storm {
return status == Status::Converged;
}
template<typename ValueType>
bool IterativeMinMaxLinearEquationSolver<ValueType>::isSolution(storm::OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& matrix, std::vector<ValueType> const& values, std::vector<ValueType> const& b) {
storm::utility::ConstantsComparator<ValueType> comparator;
auto valueIt = values.begin();
auto bIt = b.begin();
for (uint64_t group = 0; group < matrix.getRowGroupCount(); ++group, ++valueIt) {
ValueType groupValue = *bIt;
uint64_t row = matrix.getRowGroupIndices()[group];
groupValue += matrix.multiplyRowWithVector(row, values);
++row;
++bIt;
for (auto endRow = matrix.getRowGroupIndices()[group + 1]; row < endRow; ++row, ++bIt) {
ValueType newValue = *bIt;
newValue += matrix.multiplyRowWithVector(row, values);
if ((dir == storm::OptimizationDirection::Minimize && newValue < groupValue) || (dir == storm::OptimizationDirection::Maximize && newValue > groupValue)) {
groupValue = newValue;
}
}
// If the value does not match the one in the values vector, the given vector is not a solution.
if (!comparator.isEqual(groupValue, *valueIt)) {
return false;
}
}
// Checked all values at this point.
return true;
}
template<typename ValueType>
std::pair<ValueType, ValueType> findRational(ValueType const& alpha, ValueType const& beta, ValueType const& gamma, ValueType const& delta) {
ValueType alphaDivBeta = alpha / beta;
ValueType alphaDivBetaFloor = storm::utility::floor(alphaDivBeta);
ValueType gammaDivDeltaFloor = storm::utility::floor<ValueType>(gamma / delta);
if (alphaDivBetaFloor == gammaDivDeltaFloor && !storm::utility::isInteger(alphaDivBeta)) {
std::pair<ValueType, ValueType> subresult = findRational(delta, storm::utility::mod(gamma, delta), beta, storm::utility::mod(alpha, beta));
auto result = std::make_pair(alphaDivBetaFloor * subresult.first + subresult.second, subresult.first);
return result;
} else {
auto result = std::make_pair(storm::utility::ceil(alphaDivBeta), storm::utility::one<ValueType>());
return result;
}
}
template<typename ValueType>
ValueType truncateToRational(double const& value, uint64_t precision) {
STORM_LOG_ASSERT(precision < 16, "Truncating via double is not sound.");
auto powerOfTen = std::pow(10, precision);
double truncated = std::trunc(value * powerOfTen);
return storm::utility::convertNumber<ValueType>(truncated) / storm::utility::convertNumber<ValueType>(powerOfTen);
}
template<typename ValueType>
ValueType findRational(uint64_t precision, double const& value) {
ValueType truncatedFraction = truncateToRational<ValueType>(value, precision);
ValueType ten = storm::utility::convertNumber<ValueType>(10);
ValueType powerOfTen = storm::utility::pow<ValueType>(ten, precision);
ValueType multiplier = powerOfTen / storm::utility::denominator(truncatedFraction);
ValueType numerator = storm::utility::numerator(truncatedFraction) * multiplier;
std::pair<ValueType, ValueType> result = findRational<ValueType>(numerator, powerOfTen, numerator + storm::utility::one<ValueType>(), powerOfTen);
return result.first / result.second;
}
template<typename ValueType>
bool IterativeMinMaxLinearEquationSolver<ValueType>::sharpen(storm::OptimizationDirection dir, uint64_t precision, storm::storage::SparseMatrix<storm::RationalNumber> const& A, std::vector<double> const& x, std::vector<storm::RationalNumber> const& b, std::vector<storm::RationalNumber>& tmp) {
for (uint64_t p = 1; p < precision; ++p) {
for (uint64_t state = 0; state < x.size(); ++state) {
storm::RationalNumber rationalX = storm::utility::convertNumber<storm::RationalNumber, double>(x[state]);
storm::RationalNumber integer = storm::utility::floor(rationalX);
storm::RationalNumber fraction = rationalX - integer;
tmp[state] = integer + findRational<storm::RationalNumber>(p, storm::utility::convertNumber<double, storm::RationalNumber>(fraction));
}
if (IterativeMinMaxLinearEquationSolver<storm::RationalNumber>::isSolution(dir, A, tmp, b)) {
return true;
}
}
return false;
}
template<typename ValueType>
void IterativeMinMaxLinearEquationSolver<ValueType>::createLinearEquationSolver() const {
this->linEqSolverA = this->linearEquationSolverFactory->create(*this->A);
}
template<typename ValueType>
template<typename ImpreciseValueType>
std::enable_if<std::is_same<ValueType, ImpreciseValueType>::value, bool> IterativeMinMaxLinearEquationSolver<ValueType>::solveEquationsRationalSearchHelper(OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType> const& b) const {
}
template<typename ValueType>
template<typename ImpreciseValueType>
std::enable_if<!std::is_same<ValueType, ImpreciseValueType>::value, bool> IterativeMinMaxLinearEquationSolver<ValueType>::solveEquationsRationalSearchHelper(OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType> const& b) const {
}
template<typename ValueType>
bool IterativeMinMaxLinearEquationSolver<ValueType>::solveEquationsRationalSearch(OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType> const& b) const {
if (this->getSettings().getForceSoundness()) {
solveEquationsRationalSearchHelper<ValueType>(dir, x, b);
} else {
solveEquationsRationalSearchHelper<double>(dir, x, b);
}
// Create an imprecise solver with caching enabled.
IterativeMinMaxLinearEquationSolver<double> impreciseSolver(std::make_unique<storm::solver::GeneralLinearEquationSolverFactory<double>>());
impreciseSolver.setMatrix(this->A->template toValueType<double>());
impreciseSolver.createLinearEquationSolver();
impreciseSolver.setCachingEnabled(true);
std::vector<double> impreciseX(x.size());
{
std::vector<ValueType> tmp(x.size());
this->createLowerBoundsVector(tmp);
auto targetIt = impreciseX.begin();
for (auto sourceIt = tmp.begin(); targetIt != impreciseX.end(); ++targetIt, ++sourceIt) {
*targetIt = storm::utility::convertNumber<double, ValueType>(*sourceIt);
}
}
std::vector<double> impreciseTmpX(x.size());
std::vector<double> impreciseB(b.size());
auto targetIt = impreciseB.begin();
for (auto sourceIt = b.begin(); targetIt != impreciseB.end(); ++targetIt, ++sourceIt) {
*targetIt = storm::utility::convertNumber<double, ValueType>(*sourceIt);
}
std::vector<double>* currentX = &impreciseX;
std::vector<double>* newX = &impreciseTmpX;
Status status = Status::InProgress;
uint64_t overallIterations = 0;
ValueType precision = this->getSettings().getPrecision();
impreciseSolver.startMeasureProgress();
while (status == Status::InProgress && overallIterations < this->getSettings().getMaximalNumberOfIterations()) {
// Perform value iteration with the current precision.
IterativeMinMaxLinearEquationSolver<double>::ValueIterationResult result = impreciseSolver.performValueIteration(dir, currentX, newX, impreciseB, storm::utility::convertNumber<double, ValueType>(precision), this->getSettings().getRelativeTerminationCriterion(), SolverGuarantee::LessOrEqual, overallIterations);
// Count the iterations.
overallIterations += result.iterations;
// Try to sharpen the result.
uint64_t p = storm::utility::convertNumber<uint64_t>(storm::utility::ceil(storm::utility::log10<ValueType>(storm::utility::one<ValueType>() / precision)));
bool foundSolution = sharpen(dir, p, *this->A, *currentX, b, x);
if (foundSolution) {
status = Status::Converged;
} else {
precision = precision / 10;
}
}
reportStatus(status, overallIterations);
if (!this->isCachingEnabled()) {
clearCache();
}
return status == Status::Converged || status == Status::TerminatedEarly;
}
template<>
bool IterativeMinMaxLinearEquationSolver<double>::solveEquationsRationalSearch(OptimizationDirection dir, std::vector<double>& x, std::vector<double> const& b) const {
// Create a rational representation of the input so we can check for a proper solution later.
storm::storage::SparseMatrix<storm::RationalNumber> rationalA = this->A->toValueType<storm::RationalNumber>();
std::vector<storm::RationalNumber> rationalX(x.size());
std::vector<storm::RationalNumber> rationalB = storm::utility::vector::convertNumericVector<storm::RationalNumber>(b);
if (!this->linEqSolverA) {
this->linEqSolverA = this->linearEquationSolverFactory->create(*this->A);
this->linEqSolverA->setCachingEnabled(true);
}
if (!auxiliaryRowGroupVector) {
auxiliaryRowGroupVector = std::make_unique<std::vector<double>>(this->A->getRowGroupCount());
}
std::vector<double>* newX = auxiliaryRowGroupVector.get();
std::vector<double>* currentX = &x;
Status status = Status::InProgress;
uint64_t overallIterations = 0;
double precision = this->getSettings().getPrecision();
this->startMeasureProgress();
while (status == Status::InProgress && overallIterations < this->getSettings().getMaximalNumberOfIterations()) {
// Perform value iteration with the current precision.
ValueIterationResult result = performValueIteration(dir, currentX, newX, b, precision, this->getSettings().getRelativeTerminationCriterion(), SolverGuarantee::LessOrEqual, overallIterations);
// Count the iterations.
overallIterations += result.iterations;
// Try to sharpen the result.
uint64_t p = storm::utility::convertNumber<uint64_t>(storm::utility::ceil(storm::utility::log10<storm::RationalNumber>(storm::utility::one<storm::RationalNumber>() / storm::utility::convertNumber<storm::RationalNumber>(precision))));
bool foundSolution = sharpen(dir, p, rationalA, *currentX, rationalB, rationalX);
if (foundSolution) {
status = Status::Converged;
} else {
precision = precision / 10;
}
}
reportStatus(status, overallIterations);
if (!this->isCachingEnabled()) {
clearCache();
}
return status == Status::Converged || status == Status::TerminatedEarly;
}
template<typename ValueType>
bool IterativeMinMaxLinearEquationSolver<ValueType>::solveEquationsAcyclic(OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType> const& b) const {
uint64_t numGroups = this->A->getRowGroupCount();

31
src/storm/solver/IterativeMinMaxLinearEquationSolver.h

@ -14,7 +14,7 @@ namespace storm {
IterativeMinMaxLinearEquationSolverSettings();
enum class SolutionMethod {
ValueIteration, PolicyIteration, Acyclic
ValueIteration, PolicyIteration, Acyclic, RationalSearch
};
void setSolutionMethod(SolutionMethod const& solutionMethod);
@ -61,19 +61,44 @@ namespace storm {
virtual MinMaxLinearEquationSolverRequirements getRequirements(EquationSystemType const& equationSystemType, boost::optional<storm::solver::OptimizationDirection> const& direction = boost::none) const override;
private:
static bool isSolution(storm::OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& matrix, std::vector<ValueType> const& values, std::vector<ValueType> const& b);
bool solveEquationsPolicyIteration(OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType> const& b) const;
bool valueImproved(OptimizationDirection dir, ValueType const& value1, ValueType const& value2) const;
bool solveEquationsValueIteration(OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType> const& b) const;
bool solveEquationsSoundValueIteration(OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType> const& b) const;
bool solveEquationsAcyclic(OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType> const& b) const;
bool solveEquationsRationalSearch(OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType> const& b) const;
static bool sharpen(storm::OptimizationDirection dir, uint64_t precision, storm::storage::SparseMatrix<storm::RationalNumber> const& A, std::vector<double> const& x, std::vector<storm::RationalNumber> const& b, std::vector<storm::RationalNumber>& tmp);
template<typename ImpreciseValueType>
std::enable_if<std::is_same<ValueType, ImpreciseValueType>::value, bool> solveEquationsRationalSearchHelper(OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType> const& b) const;
template<typename ImpreciseValueType>
std::enable_if<!std::is_same<ValueType, ImpreciseValueType>::value, bool> solveEquationsRationalSearchHelper(OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType> const& b) const;
bool valueImproved(OptimizationDirection dir, ValueType const& value1, ValueType const& value2) const;
void computeOptimalValueForRowGroup(uint_fast64_t group, OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType> const& b, uint_fast64_t* choice = nullptr) const;
enum class Status {
Converged, TerminatedEarly, MaximalIterationsExceeded, InProgress
};
struct ValueIterationResult {
ValueIterationResult(uint64_t iterations, Status status) : iterations(iterations), status(status) {
// Intentionally left empty.
}
uint64_t iterations;
Status status;
};
template <typename ValueTypePrime>
friend class IterativeMinMaxLinearEquationSolver;
ValueIterationResult performValueIteration(OptimizationDirection dir, std::vector<ValueType>*& currentX, std::vector<ValueType>*& newX, std::vector<ValueType> const& b, ValueType const& precision, bool relative, SolverGuarantee const& guarantee, uint64_t currentIterations) const;
void createLinearEquationSolver() const;
// possibly cached data
mutable std::unique_ptr<std::vector<ValueType>> auxiliaryRowGroupVector; // A.rowGroupCount() entries
mutable std::unique_ptr<std::vector<ValueType>> auxiliaryRowGroupVector2; // A.rowGroupCount() entries

4
src/storm/solver/MinMaxLinearEquationSolver.cpp

@ -228,7 +228,7 @@ namespace storm {
std::unique_ptr<MinMaxLinearEquationSolver<ValueType>> GeneralMinMaxLinearEquationSolverFactory<ValueType>::create() const {
std::unique_ptr<MinMaxLinearEquationSolver<ValueType>> result;
auto method = this->getMinMaxMethod();
if (method == MinMaxMethod::ValueIteration || method == MinMaxMethod::PolicyIteration || method == MinMaxMethod::Acyclic) {
if (method == MinMaxMethod::ValueIteration || method == MinMaxMethod::PolicyIteration || method == MinMaxMethod::Acyclic || method == MinMaxMethod::RationalSearch) {
IterativeMinMaxLinearEquationSolverSettings<ValueType> iterativeSolverSettings;
iterativeSolverSettings.setSolutionMethod(method);
result = std::make_unique<IterativeMinMaxLinearEquationSolver<ValueType>>(std::make_unique<GeneralLinearEquationSolverFactory<ValueType>>(), iterativeSolverSettings);
@ -248,7 +248,7 @@ namespace storm {
std::unique_ptr<MinMaxLinearEquationSolver<storm::RationalNumber>> GeneralMinMaxLinearEquationSolverFactory<storm::RationalNumber>::create() const {
std::unique_ptr<MinMaxLinearEquationSolver<storm::RationalNumber>> result;
auto method = this->getMinMaxMethod();
if (method == MinMaxMethod::ValueIteration || method == MinMaxMethod::PolicyIteration || method == MinMaxMethod::Acyclic) {
if (method == MinMaxMethod::ValueIteration || method == MinMaxMethod::PolicyIteration || method == MinMaxMethod::Acyclic || method == MinMaxMethod::RationalSearch) {
IterativeMinMaxLinearEquationSolverSettings<storm::RationalNumber> iterativeSolverSettings;
iterativeSolverSettings.setSolutionMethod(method);
result = std::make_unique<IterativeMinMaxLinearEquationSolver<storm::RationalNumber>>(std::make_unique<GeneralLinearEquationSolverFactory<storm::RationalNumber>>(), iterativeSolverSettings);

2
src/storm/solver/SolverSelectionOptions.cpp

@ -14,6 +14,8 @@ namespace storm {
return "topological";
case MinMaxMethod::Acyclic:
return "acyclic";
case MinMaxMethod::RationalSearch:
return "ratsearch";
}
return "invalid";
}

2
src/storm/solver/SolverSelectionOptions.h

@ -6,7 +6,7 @@
namespace storm {
namespace solver {
ExtendEnumsWithSelectionField(MinMaxMethod, PolicyIteration, ValueIteration, LinearProgramming, Topological, Acyclic)
ExtendEnumsWithSelectionField(MinMaxMethod, PolicyIteration, ValueIteration, LinearProgramming, Topological, Acyclic, RationalSearch)
ExtendEnumsWithSelectionField(GameMethod, PolicyIteration, ValueIteration)
ExtendEnumsWithSelectionField(LraMethod, LinearProgramming, ValueIteration)

1
src/storm/solver/StandardMinMaxLinearEquationSolver.h

@ -39,7 +39,6 @@ namespace storm {
// A reference to the original sparse matrix given to this solver. If the solver takes posession of the matrix
// the reference refers to localA.
storm::storage::SparseMatrix<ValueType> const* A;
};
template<typename ValueType>

3
src/storm/storage/SparseMatrix.h

@ -14,6 +14,7 @@
#include "storm/utility/OsDetection.h"
#include "storm/utility/macros.h"
#include "storm/utility/constants.h"
#include "storm/adapters/RationalFunctionAdapter.h"
// Forward declaration for adapter classes.
@ -1070,7 +1071,7 @@ namespace storm {
newColumnsAndValues.resize(columnsAndValues.size());
std::transform(columnsAndValues.begin(), columnsAndValues.end(), newColumnsAndValues.begin(),
[] (MatrixEntry<SparseMatrix::index_type, ValueType> const& a) {
return MatrixEntry<SparseMatrix::index_type, NewValueType>(a.getColumn(), static_cast<NewValueType>(a.getValue()));
return MatrixEntry<SparseMatrix::index_type, NewValueType>(a.getColumn(), storm::utility::convertNumber<NewValueType, ValueType>(a.getValue()));
});
return SparseMatrix<NewValueType>(columnCount, std::move(newRowIndications), std::move(newColumnsAndValues), std::move(newRowGroupIndices));

88
src/storm/utility/constants.cpp

@ -1,6 +1,7 @@
#include "storm/utility/constants.h"
#include <type_traits>
#include <cmath>
#include "storm/storage/sparse/StateType.h"
#include "storm/storage/SparseMatrix.h"
@ -10,7 +11,9 @@
#include "storm/exceptions/InvalidArgumentException.h"
#include "storm/adapters/RationalFunctionAdapter.h"
#include "storm/utility/macros.h"
#include "storm/exceptions/NotSupportedException.h"
namespace storm {
namespace utility {
@ -218,6 +221,31 @@ namespace storm {
ValueType ceil(ValueType const& number) {
return std::ceil(number);
}
template<typename ValueType>
ValueType log(ValueType const& number) {
return std::log(number);
}
template<typename ValueType>
ValueType log10(ValueType const& number) {
return std::log10(number);
}
template<typename ValueType>
ValueType mod(ValueType const& first, ValueType const& second) {
return std::fmod(first, second);
}
template<typename ValueType>
ValueType numerator(ValueType const& number) {
STORM_LOG_THROW(false, storm::exceptions::NotSupportedException, "Not supported.");
}
template<typename ValueType>
ValueType denominator(ValueType const& number) {
STORM_LOG_THROW(false, storm::exceptions::NotSupportedException, "Not supported.");
}
template<typename ValueType>
std::string to_string(ValueType const& value) {
@ -330,10 +358,36 @@ namespace storm {
return carl::ceil(number);
}
template<>
ClnRationalNumber log(ClnRationalNumber const& number) {
return carl::log(number);
}
template<>
ClnRationalNumber log10(ClnRationalNumber const& number) {
return carl::log10(number);
}
template<>
ClnRationalNumber mod(ClnRationalNumber const& first, ClnRationalNumber const& second) {
STORM_LOG_ASSERT(isInteger(first) && isInteger(second), "Expecting integers in modulo computation.");
return carl::mod(carl::getNum(first), carl::getNum(second));
}
template<>
ClnRationalNumber pow(ClnRationalNumber const& value, uint_fast64_t exponent) {
return carl::pow(value, exponent);
}
template<>
ClnRationalNumber numerator(ClnRationalNumber const& number) {
return carl::getNum(number);
}
template<>
ClnRationalNumber denominator(ClnRationalNumber const& number) {
return carl::getDenom(number);
}
#endif
#if defined(STORM_HAVE_CARL) && defined(STORM_HAVE_GMP)
@ -460,10 +514,36 @@ namespace storm {
return carl::ceil(number);
}
template<>
GmpRationalNumber log(GmpRationalNumber const& number) {
return carl::log(number);
}
template<>
GmpRationalNumber log10(GmpRationalNumber const& number) {
return carl::log10(number);
}
template<>
GmpRationalNumber mod(GmpRationalNumber const& first, GmpRationalNumber const& second) {
STORM_LOG_ASSERT(isInteger(first) && isInteger(second), "Expecting integers in modulo computation.");
return carl::mod(carl::getNum(first), carl::getNum(second));
}
template<>
GmpRationalNumber pow(GmpRationalNumber const& value, uint_fast64_t exponent) {
return carl::pow(value, exponent);
}
template<>
GmpRationalNumber numerator(GmpRationalNumber const& number) {
return carl::getNum(number);
}
template<>
GmpRationalNumber denominator(GmpRationalNumber const& number) {
return carl::getDenom(number);
}
#endif
#if defined(STORM_HAVE_CARL) && defined(STORM_HAVE_GMP) && defined(STORM_HAVE_CLN)
@ -689,6 +769,11 @@ namespace storm {
template double abs(double const& number);
template double floor(double const& number);
template double ceil(double const& number);
template double log(double const& number);
template double log10(double const& number);
template double denominator(double const& number);
template double numerator(double const& number);
template double mod(double const& first, double const& second);
template std::string to_string(double const& value);
// float
@ -717,6 +802,7 @@ namespace storm {
template float abs(float const& number);
template float floor(float const& number);
template float ceil(float const& number);
template float log(float const& number);
template std::string to_string(float const& value);
// int
@ -787,6 +873,7 @@ namespace storm {
template storm::ClnRationalNumber abs(storm::ClnRationalNumber const& number);
template storm::ClnRationalNumber floor(storm::ClnRationalNumber const& number);
template storm::ClnRationalNumber ceil(storm::ClnRationalNumber const& number);
template storm::ClnRationalNumber log(storm::ClnRationalNumber const& number);
template std::string to_string(storm::ClnRationalNumber const& value);
#endif
@ -822,6 +909,7 @@ namespace storm {
template storm::GmpRationalNumber abs(storm::GmpRationalNumber const& number);
template storm::GmpRationalNumber floor(storm::GmpRationalNumber const& number);
template storm::GmpRationalNumber ceil(storm::GmpRationalNumber const& number);
template storm::GmpRationalNumber log(storm::GmpRationalNumber const& number);
template std::string to_string(storm::GmpRationalNumber const& value);
#endif

17
src/storm/utility/constants.h

@ -101,7 +101,22 @@ namespace storm {
template<typename ValueType>
ValueType ceil(ValueType const& number);
template<typename ValueType>
ValueType log(ValueType const& number);
template<typename ValueType>
ValueType log10(ValueType const& number);
template<typename ValueType>
ValueType mod(ValueType const& first, ValueType const& second);
template<typename ValueType>
ValueType numerator(ValueType const& number);
template<typename ValueType>
ValueType denominator(ValueType const& number);
template<typename ValueType>
std::string to_string(ValueType const& value);
}

Loading…
Cancel
Save