dehnert
11 years ago
5 changed files with 871 additions and 0 deletions
-
130examples/mdp/csma/csma2_2.nm
-
128examples/mdp/csma/csma2_4.nm
-
170examples/mdp/firewire/impl/firewire.nm
-
218examples/mdp/wlan/wlan0_collide.nm
-
225examples/mdp/wlan/wlan2_collide.nm
@ -0,0 +1,130 @@ |
|||
// CSMA/CD protocol - probabilistic version of kronos model (3 stations) |
|||
// gxn/dxp 04/12/01 |
|||
|
|||
mdp |
|||
|
|||
// note made changes since cannot have strict inequalities |
|||
// in digital clocks approach and suppose a station only sends one message |
|||
|
|||
// simplified parameters scaled |
|||
const int sigma=1; // time for messages to propagate along the bus |
|||
const int lambda=30; // time to send a message |
|||
|
|||
// actual parameters |
|||
const int N = 2; // number of processes |
|||
const int K = 2; // exponential backoff limit |
|||
const int slot = 2*sigma; // length of slot |
|||
// const int M = floor(pow(2, K))-1 ; // max number of slots to wait |
|||
const int M = 3 ; // max number of slots to wait |
|||
//const int lambda=782; |
|||
//const int sigma=26; |
|||
|
|||
// formula min_backoff_after_success = min(s1=4?cd1:K+1,s2=4?cd2:K+1); |
|||
// formula min_collisions = min(cd1,cd2); |
|||
// formula max_collisions = max(cd1,cd2); |
|||
|
|||
//---------------------------------------------------------------------------------------------------------------------------- |
|||
// the bus |
|||
module bus |
|||
|
|||
b : [0..2]; |
|||
// b=0 - idle |
|||
// b=1 - active |
|||
// b=2 - collision |
|||
|
|||
// clocks of bus |
|||
y1 : [0..sigma+1]; // time since first send (used find time until channel sensed busy) |
|||
y2 : [0..sigma+1]; // time since second send (used to find time until collision detected) |
|||
|
|||
// a sender sends (ok - no other message being sent) |
|||
[send1] (b=0) -> (b'=1); |
|||
[send2] (b=0) -> (b'=1); |
|||
|
|||
// a sender sends (bus busy - collision) |
|||
[send1] (b=1|b=2) & (y1<sigma) -> (b'=2); |
|||
[send2] (b=1|b=2) & (y1<sigma) -> (b'=2); |
|||
|
|||
// finish sending |
|||
[end1] (b=1) -> (b'=0) & (y1'=0); |
|||
[end2] (b=1) -> (b'=0) & (y1'=0); |
|||
|
|||
// bus busy |
|||
[busy1] (b=1|b=2) & (y1>=sigma) -> (b'=b); |
|||
[busy2] (b=1|b=2) & (y1>=sigma) -> (b'=b); |
|||
|
|||
// collision detected |
|||
[cd] (b=2) & (y2<=sigma) -> (b'=0) & (y1'=0) & (y2'=0); |
|||
|
|||
// time passage |
|||
[time] (b=0) -> (y1'=0); // value of y1/y2 does not matter in state 0 |
|||
[time] (b=1) -> (y1'=min(y1+1,sigma+1)); // no invariant in state 1 |
|||
[time] (b=2) & (y2<sigma) -> (y1'=min(y1+1,sigma+1)) & (y2'=min(y2+1,sigma+1)); // invariant in state 2 (time until collision detected) |
|||
|
|||
endmodule |
|||
|
|||
//---------------------------------------------------------------------------------------------------------------------------- |
|||
// model of first sender |
|||
module station1 |
|||
|
|||
// LOCAL STATE |
|||
s1 : [0..5]; |
|||
// s1=0 - initial state |
|||
// s1=1 - transmit |
|||
// s1=2 - collision (set backoff) |
|||
// s1=3 - wait (bus busy) |
|||
// s1=4 - successfully sent |
|||
|
|||
// LOCAL CLOCK |
|||
x1 : [0..max(lambda,slot)]; |
|||
|
|||
// BACKOFF COUNTER (number of slots to wait) |
|||
bc1 : [0..M]; |
|||
|
|||
// COLLISION COUNTER |
|||
cd1 : [0..K]; |
|||
|
|||
// start sending |
|||
[send1] (s1=0) -> (s1'=1) & (x1'=0); // start sending |
|||
[busy1] (s1=0) -> (s1'=2) & (x1'=0) & (cd1'=min(K,cd1+1)); // detects channel is busy so go into backoff |
|||
|
|||
// transmitting |
|||
[time] (s1=1) & (x1<lambda) -> (x1'=min(x1+1,lambda)); // let time pass |
|||
[end1] (s1=1) & (x1=lambda) -> (s1'=4) & (x1'=0); // finished |
|||
[cd] (s1=1) -> (s1'=2) & (x1'=0) & (cd1'=min(K,cd1+1)); // collision detected (increment backoff counter) |
|||
[cd] !(s1=1) -> (s1'=s1); // add loop for collision detection when not important |
|||
|
|||
// set backoff (no time can pass in this state) |
|||
// probability depends on which transmission this is (cd1) |
|||
[] s1=2 & cd1=1 -> 1/2 : (s1'=3) & (bc1'=0) + 1/2 : (s1'=3) & (bc1'=1) ; |
|||
[] s1=2 & cd1=2 -> 1/4 : (s1'=3) & (bc1'=0) + 1/4 : (s1'=3) & (bc1'=1) + 1/4 : (s1'=3) & (bc1'=2) + 1/4 : (s1'=3) & (bc1'=3) ; |
|||
|
|||
// wait until backoff counter reaches 0 then send again |
|||
[time] (s1=3) & (x1<slot) -> (x1'=x1+1); // let time pass (in slot) |
|||
[time] (s1=3) & (x1=slot) & (bc1>0) -> (x1'=1) & (bc1'=bc1-1); // let time pass (move slots) |
|||
[send1] (s1=3) & (x1=slot) & (bc1=0) -> (s1'=1) & (x1'=0); // finished backoff (bus appears free) |
|||
[busy1] (s1=3) & (x1=slot) & (bc1=0) -> (s1'=2) & (x1'=0) & (cd1'=min(K,cd1+1)); // finished backoff (bus busy) |
|||
|
|||
// once finished nothing matters |
|||
[time] (s1>=4) -> (x1'=0); |
|||
|
|||
endmodule |
|||
|
|||
//---------------------------------------------------------------------------------------------------------------------------- |
|||
|
|||
// construct further stations through renaming |
|||
module station2=station1[s1=s2,x1=x2,cd1=cd2,bc1=bc2,send1=send2,busy1=busy2,end1=end2] endmodule |
|||
|
|||
//---------------------------------------------------------------------------------------------------------------------------- |
|||
|
|||
// reward structure for expected time |
|||
rewards "time" |
|||
[time] true : 1; |
|||
endrewards |
|||
|
|||
//---------------------------------------------------------------------------------------------------------------------------- |
|||
|
|||
// labels/formulae |
|||
label "all_delivered" = s1=4&s2=4; |
|||
label "one_delivered" = s1=4|s2=4; |
|||
label "collision_max_backoff" = (cd1=K & s1=1 & b=2)|(cd2=K & s2=1 & b=2); |
|||
|
@ -0,0 +1,128 @@ |
|||
// CSMA/CD protocol - probabilistic version of kronos model (3 stations) |
|||
// gxn/dxp 04/12/01 |
|||
|
|||
mdp |
|||
|
|||
// note made changes since cannot have strict inequalities |
|||
// in digital clocks approach and suppose a station only sends one message |
|||
|
|||
// simplified parameters scaled |
|||
const int sigma=1; // time for messages to propagate along the bus |
|||
const int lambda=30; // time to send a message |
|||
|
|||
// actual parameters |
|||
const int N = 2; // number of processes |
|||
const int K = 4; // exponential backoff limit |
|||
const int slot = 2*sigma; // length of slot |
|||
const int M = 15 ; // max number of slots to wait |
|||
//const int lambda=782; |
|||
//const int sigma=26; |
|||
|
|||
|
|||
//---------------------------------------------------------------------------------------------------------------------------- |
|||
// the bus |
|||
module bus |
|||
|
|||
b : [0..2]; |
|||
// b=0 - idle |
|||
// b=1 - active |
|||
// b=2 - collision |
|||
|
|||
// clocks of bus |
|||
y1 : [0..sigma+1]; // time since first send (used find time until channel sensed busy) |
|||
y2 : [0..sigma+1]; // time since second send (used to find time until collision detected) |
|||
|
|||
// a sender sends (ok - no other message being sent) |
|||
[send1] (b=0) -> (b'=1); |
|||
[send2] (b=0) -> (b'=1); |
|||
|
|||
// a sender sends (bus busy - collision) |
|||
[send1] (b=1|b=2) & (y1<sigma) -> (b'=2); |
|||
[send2] (b=1|b=2) & (y1<sigma) -> (b'=2); |
|||
|
|||
// finish sending |
|||
[end1] (b=1) -> (b'=0) & (y1'=0); |
|||
[end2] (b=1) -> (b'=0) & (y1'=0); |
|||
|
|||
// bus busy |
|||
[busy1] (b=1|b=2) & (y1>=sigma) -> (b'=b); |
|||
[busy2] (b=1|b=2) & (y1>=sigma) -> (b'=b); |
|||
|
|||
// collision detected |
|||
[cd] (b=2) & (y2<=sigma) -> (b'=0) & (y1'=0) & (y2'=0); |
|||
|
|||
// time passage |
|||
[time] (b=0) -> (y1'=0); // value of y1/y2 does not matter in state 0 |
|||
[time] (b=1) -> (y1'=min(y1+1,sigma+1)); // no invariant in state 1 |
|||
[time] (b=2) & (y2<sigma) -> (y1'=min(y1+1,sigma+1)) & (y2'=min(y2+1,sigma+1)); // invariant in state 2 (time until collision detected) |
|||
|
|||
endmodule |
|||
|
|||
//---------------------------------------------------------------------------------------------------------------------------- |
|||
// model of first sender |
|||
module station1 |
|||
|
|||
// LOCAL STATE |
|||
s1 : [0..5]; |
|||
// s1=0 - initial state |
|||
// s1=1 - transmit |
|||
// s1=2 - collision (set backoff) |
|||
// s1=3 - wait (bus busy) |
|||
// s1=4 - successfully sent |
|||
|
|||
// LOCAL CLOCK |
|||
x1 : [0..max(lambda,slot)]; |
|||
|
|||
// BACKOFF COUNTER (number of slots to wait) |
|||
bc1 : [0..M]; |
|||
|
|||
// COLLISION COUNTER |
|||
cd1 : [0..K]; |
|||
|
|||
// start sending |
|||
[send1] (s1=0) -> (s1'=1) & (x1'=0); // start sending |
|||
[busy1] (s1=0) -> (s1'=2) & (x1'=0) & (cd1'=min(K,cd1+1)); // detects channel is busy so go into backoff |
|||
|
|||
// transmitting |
|||
[time] (s1=1) & (x1<lambda) -> (x1'=min(x1+1,lambda)); // let time pass |
|||
[end1] (s1=1) & (x1=lambda) -> (s1'=4) & (x1'=0); // finished |
|||
[cd] (s1=1) -> (s1'=2) & (x1'=0) & (cd1'=min(K,cd1+1)); // collision detected (increment backoff counter) |
|||
[cd] !(s1=1) -> (s1'=s1); // add loop for collision detection when not important |
|||
|
|||
// set backoff (no time can pass in this state) |
|||
// probability depends on which transmission this is (cd1) |
|||
[] s1=2 & cd1=1 -> 1/2 : (s1'=3) & (bc1'=0) + 1/2 : (s1'=3) & (bc1'=1) ; |
|||
[] s1=2 & cd1=2 -> 1/4 : (s1'=3) & (bc1'=0) + 1/4 : (s1'=3) & (bc1'=1) + 1/4 : (s1'=3) & (bc1'=2) + 1/4 : (s1'=3) & (bc1'=3) ; |
|||
[] s1=2 & cd1=3 -> 1/8 : (s1'=3) & (bc1'=0) + 1/8 : (s1'=3) & (bc1'=1) + 1/8 : (s1'=3) & (bc1'=2) + 1/8 : (s1'=3) & (bc1'=3) + 1/8 : (s1'=3) & (bc1'=4) + 1/8 : (s1'=3) & (bc1'=5) + 1/8 : (s1'=3) & (bc1'=6) + 1/8 : (s1'=3) & (bc1'=7) ; |
|||
[] s1=2 & cd1=4 -> 1/16 : (s1'=3) & (bc1'=0) + 1/16 : (s1'=3) & (bc1'=1) + 1/16 : (s1'=3) & (bc1'=2) + 1/16 : (s1'=3) & (bc1'=3) + 1/16 : (s1'=3) & (bc1'=4) + 1/16 : (s1'=3) & (bc1'=5) + 1/16 : (s1'=3) & (bc1'=6) + 1/16 : (s1'=3) & (bc1'=7) + 1/16 : (s1'=3) & (bc1'=8) + 1/16 : (s1'=3) & (bc1'=9) + 1/16 : (s1'=3) & (bc1'=10) + 1/16 : (s1'=3) & (bc1'=11) + 1/16 : (s1'=3) & (bc1'=12) + 1/16 : (s1'=3) & (bc1'=13) + 1/16 : (s1'=3) & (bc1'=14) + 1/16 : (s1'=3) & (bc1'=15) ; |
|||
|
|||
// wait until backoff counter reaches 0 then send again |
|||
[time] (s1=3) & (x1<slot) -> (x1'=x1+1); // let time pass (in slot) |
|||
[time] (s1=3) & (x1=slot) & (bc1>0) -> (x1'=1) & (bc1'=bc1-1); // let time pass (move slots) |
|||
[send1] (s1=3) & (x1=slot) & (bc1=0) -> (s1'=1) & (x1'=0); // finished backoff (bus appears free) |
|||
[busy1] (s1=3) & (x1=slot) & (bc1=0) -> (s1'=2) & (x1'=0) & (cd1'=min(K,cd1+1)); // finished backoff (bus busy) |
|||
|
|||
// once finished nothing matters |
|||
[time] (s1>=4) -> (x1'=0); |
|||
|
|||
endmodule |
|||
|
|||
//---------------------------------------------------------------------------------------------------------------------------- |
|||
|
|||
// construct further stations through renaming |
|||
module station2=station1[s1=s2,x1=x2,cd1=cd2,bc1=bc2,send1=send2,busy1=busy2,end1=end2] endmodule |
|||
|
|||
//---------------------------------------------------------------------------------------------------------------------------- |
|||
|
|||
// reward structure for expected time |
|||
rewards "time" |
|||
[time] true : 1; |
|||
endrewards |
|||
|
|||
//---------------------------------------------------------------------------------------------------------------------------- |
|||
|
|||
// labels/formulae |
|||
label "all_delivered" = s1=4&s2=4; |
|||
label "one_delivered" = s1=4|s2=4; |
|||
label "collision_max_backoff" = (cd1=K & s1=1 & b=2)|(cd2=K & s2=1 & b=2); |
|||
|
@ -0,0 +1,170 @@ |
|||
// firewire protocol with integer semantics |
|||
// dxp/gxn 14/06/01 |
|||
|
|||
// CLOCKS |
|||
// x1 (x2) clock for node1 (node2) |
|||
// y1 and y2 (z1 and z2) clocks for wire12 (wire21) |
|||
mdp |
|||
|
|||
// maximum and minimum delays |
|||
// fast |
|||
const int rc_fast_max = 85; |
|||
const int rc_fast_min = 76; |
|||
// slow |
|||
const int rc_slow_max = 167; |
|||
const int rc_slow_min = 159; |
|||
// delay caused by the wire length |
|||
const int delay; |
|||
// probability of choosing fast |
|||
const double fast; |
|||
const double slow=1-fast; |
|||
|
|||
module wire12 |
|||
|
|||
// local state |
|||
w12 : [0..9]; |
|||
// 0 - empty |
|||
// 1 - rec_req |
|||
// 2 - rec_req_ack |
|||
// 3 - rec_ack |
|||
// 4 - rec_ack_idle |
|||
// 5 - rec_idle |
|||
// 6 - rec_idle_req |
|||
// 7 - rec_ack_req |
|||
// 8 - rec_req_idle |
|||
// 9 - rec_idle_ack |
|||
|
|||
// clock for wire12 |
|||
y1 : [0..delay+1]; |
|||
y2 : [0..delay+1]; |
|||
|
|||
// empty |
|||
// do not need y1 and y2 to increase as always reset when this state is left |
|||
// similarly can reset y1 and y2 when we re-enter this state |
|||
[snd_req12] w12=0 -> (w12'=1) & (y1'=0) & (y2'=0); |
|||
[snd_ack12] w12=0 -> (w12'=3) & (y1'=0) & (y2'=0); |
|||
[snd_idle12] w12=0 -> (w12'=5) & (y1'=0) & (y2'=0); |
|||
[time] w12=0 -> (w12'=w12); |
|||
// rec_req |
|||
[snd_req12] w12=1 -> (w12'=1); |
|||
[rec_req12] w12=1 -> (w12'=0) & (y1'=0) & (y2'=0); |
|||
[snd_ack12] w12=1 -> (w12'=2) & (y2'=0); |
|||
[snd_idle12] w12=1 -> (w12'=8) & (y2'=0); |
|||
[time] w12=1 & y2<delay -> (y1'=min(y1+1,delay+1)) & (y2'=min(y2+1,delay+1)); |
|||
// rec_req_ack |
|||
[snd_ack12] w12=2 -> (w12'=2); |
|||
[rec_req12] w12=2 -> (w12'=3); |
|||
[time] w12=2 & y1<delay -> (y1'=min(y1+1,delay+1)) & (y2'=min(y2+1,delay+1)); |
|||
// rec_ack |
|||
[snd_ack12] w12=3 -> (w12'=3); |
|||
[rec_ack12] w12=3 -> (w12'=0) & (y1'=0) & (y2'=0); |
|||
[snd_idle12] w12=3 -> (w12'=4) & (y2'=0); |
|||
[snd_req12] w12=3 -> (w12'=7) & (y2'=0); |
|||
[time] w12=3 & y2<delay -> (y1'=min(y1+1,delay+1)) & (y2'=min(y2+1,delay+1)); |
|||
// rec_ack_idle |
|||
[snd_idle12] w12=4 -> (w12'=4); |
|||
[rec_ack12] w12=4 -> (w12'=5); |
|||
[time] w12=4 & y1<delay -> (y1'=min(y1+1,delay+1)) & (y2'=min(y2+1,delay+1)); |
|||
// rec_idle |
|||
[snd_idle12] w12=5 -> (w12'=5); |
|||
[rec_idle12] w12=5 -> (w12'=0) & (y1'=0) & (y2'=0); |
|||
[snd_req12] w12=5 -> (w12'=6) & (y2'=0); |
|||
[snd_ack12] w12=5 -> (w12'=9) & (y2'=0); |
|||
[time] w12=5 & y2<delay -> (y1'=min(y1+1,delay+1)) & (y2'=min(y2+1,delay+1)); |
|||
// rec_idle_req |
|||
[snd_req12] w12=6 -> (w12'=6); |
|||
[rec_idle12] w12=6 -> (w12'=1); |
|||
[time] w12=6 & y1<delay -> (y1'=min(y1+1,delay+1)) & (y2'=min(y2+1,delay+1)); |
|||
// rec_ack_req |
|||
[snd_req12] w12=7 -> (w12'=7); |
|||
[rec_ack12] w12=7 -> (w12'=1); |
|||
[time] w12=7 & y1<delay -> (y1'=min(y1+1,delay+1)) & (y2'=min(y2+1,delay+1)); |
|||
// rec_req_idle |
|||
[snd_idle12] w12=8 -> (w12'=8); |
|||
[rec_req12] w12=8 -> (w12'=5); |
|||
[time] w12=8 & y1<delay -> (y1'=min(y1+1,delay+1)) & (y2'=min(y2+1,delay+1)); |
|||
// rec_idle_ack |
|||
[snd_ack12] w12=9 -> (w12'=9); |
|||
[rec_idle12] w12=9 -> (w12'=3); |
|||
[time] w12=9 & y1<delay -> (y1'=min(y1+1,delay+1)) & (y2'=min(y2+1,delay+1)); |
|||
|
|||
endmodule |
|||
|
|||
module node1 |
|||
|
|||
// clock for node1 |
|||
x1 : [0..168]; |
|||
|
|||
// local state |
|||
s1 : [0..8]; |
|||
// 0 - root contention |
|||
// 1 - rec_idle |
|||
// 2 - rec_req_fast |
|||
// 3 - rec_req_slow |
|||
// 4 - rec_idle_fast |
|||
// 5 - rec_idle_slow |
|||
// 6 - snd_req |
|||
// 7- almost_root |
|||
// 8 - almost_child |
|||
|
|||
// added resets to x1 when not considered again until after rest |
|||
// removed root and child (using almost root and almost child) |
|||
|
|||
// root contention immediate state) |
|||
[snd_idle12] s1=0 -> fast : (s1'=2) & (x1'=0) + slow : (s1'=3) & (x1'=0); |
|||
[rec_idle21] s1=0 -> (s1'=1); |
|||
// rec_idle immediate state) |
|||
[snd_idle12] s1=1 -> fast : (s1'=4) & (x1'=0) + slow : (s1'=5) & (x1'=0); |
|||
[rec_req21] s1=1 -> (s1'=0); |
|||
// rec_req_fast |
|||
[rec_idle21] s1=2 -> (s1'=4); |
|||
[snd_ack12] s1=2 & x1>=rc_fast_min -> (s1'=7) & (x1'=0); |
|||
[time] s1=2 & x1<rc_fast_max -> (x1'=min(x1+1,168)); |
|||
// rec_req_slow |
|||
[rec_idle21] s1=3 -> (s1'=5); |
|||
[snd_ack12] s1=3 & x1>=rc_slow_min -> (s1'=7) & (x1'=0); |
|||
[time] s1=3 & x1<rc_slow_max -> (x1'=min(x1+1,168)); |
|||
// rec_idle_fast |
|||
[rec_req21] s1=4 -> (s1'=2); |
|||
[snd_req12] s1=4 & x1>=rc_fast_min -> (s1'=6) & (x1'=0); |
|||
[time] s1=4 & x1<rc_fast_max -> (x1'=min(x1+1,168)); |
|||
// rec_idle_slow |
|||
[rec_req21] s1=5 -> (s1'=3); |
|||
[snd_req12] s1=5 & x1>=rc_slow_min -> (s1'=6) & (x1'=0); |
|||
[time] s1=5 & x1<rc_slow_max -> (x1'=min(x1+1,168)); |
|||
// snd_req |
|||
// do not use x1 until reset (in state 0 or in state 1) so do not need to increase x1 |
|||
// also can set x1 to 0 upon entering this state |
|||
[rec_req21] s1=6 -> (s1'=0); |
|||
[rec_ack21] s1=6 -> (s1'=8); |
|||
[time] s1=6 -> (s1'=s1); |
|||
// almost root (immediate) |
|||
// loop in final states to remove deadlock |
|||
[] s1=7 & s2=8 -> (s1'=s1); |
|||
[] s1=8 & s2=7 -> (s1'=s1); |
|||
[time] s1=7 -> (s1'=s1); |
|||
[time] s1=8 -> (s1'=s1); |
|||
|
|||
endmodule |
|||
|
|||
// construct remaining automata through renaming |
|||
module wire21=wire12[w12=w21, y1=z1, y2=z2, |
|||
snd_req12=snd_req21, snd_idle12=snd_idle21, snd_ack12=snd_ack21, |
|||
rec_req12=rec_req21, rec_idle12=rec_idle21, rec_ack12=rec_ack21] |
|||
endmodule |
|||
module node2=node1[s1=s2, s2=s1, x1=x2, |
|||
rec_req21=rec_req12, rec_idle21=rec_idle12, rec_ack21=rec_ack12, |
|||
snd_req12=snd_req21, snd_idle12=snd_idle21, snd_ack12=snd_ack21] |
|||
endmodule |
|||
|
|||
// reward structures |
|||
// time |
|||
rewards "time" |
|||
[time] true : 1; |
|||
endrewards |
|||
// time nodes sending |
|||
rewards "time_sending" |
|||
[time] (w12>0 | w21>0) : 1; |
|||
endrewards |
|||
|
|||
label "elected" = ((s1=8) & (s2=7)) | ((s1=7) & (s2=8)); |
@ -0,0 +1,218 @@ |
|||
// WLAN PROTOCOL (two stations) |
|||
// discrete time model |
|||
// gxn/jzs 20/02/02 |
|||
|
|||
mdp |
|||
|
|||
// COLLISIONS |
|||
const int COL; // maximum number of collisions |
|||
|
|||
// TIMING CONSTRAINTS |
|||
// we have used the FHSS parameters |
|||
// then scaled by the value of ASLOTTIME |
|||
const int ASLOTTIME = 1; |
|||
const int DIFS = 3; // due to scaling can be either 2 or 3 which is modelled by a non-deterministic choice |
|||
const int VULN = 1; // due to scaling can be either 0 or 1 which is modelled by a non-deterministic choice |
|||
const int TRANS_TIME_MAX; // scaling up |
|||
const int TRANS_TIME_MIN = 4; // scaling down |
|||
const int ACK_TO = 6; |
|||
const int ACK = 4; // due to scaling can be either 3 or 4 which is modelled by a non-deterministic choice |
|||
const int SIFS = 1; // due to scaling can be either 0 or 1 which is modelled by a non-deterministic choice |
|||
// maximum constant used in timing constraints + 1 |
|||
const int TIME_MAX = max(ACK_TO,TRANS_TIME_MAX)+1; |
|||
|
|||
// CONTENTION WINDOW |
|||
// CWMIN =15 & CWMAX =16 |
|||
// this means that MAX_BACKOFF IS 2 |
|||
const int MAX_BACKOFF = 0; |
|||
|
|||
//-----------------------------------------------------------------// |
|||
// THE MEDIUM/CHANNEL |
|||
|
|||
// FORMULAE FOR THE CHANNEL |
|||
// channel is busy |
|||
// formula busy = c1>0 | c2>0; |
|||
// channel is free |
|||
// formula free = c1=0 & c2=0; |
|||
|
|||
module medium |
|||
|
|||
// number of collisions |
|||
col : [0..COL]; |
|||
|
|||
// medium status |
|||
c1 : [0..2]; |
|||
c2 : [0..2]; |
|||
// ci corresponds to messages associated with station i |
|||
// 0 nothing being sent |
|||
// 1 being sent correctly |
|||
// 2 being sent garbled |
|||
|
|||
// begin sending message and nothing else currently being sent |
|||
[send1] c1=0 & c2=0 -> (c1'=1); |
|||
[send2] c2=0 & c1=0 -> (c2'=1); |
|||
|
|||
// begin sending message and something is already being sent |
|||
// in this case both messages become garbled |
|||
[send1] c1=0 & c2>0 -> (c1'=2) & (c2'=2) & (col'=min(col+1,COL)); |
|||
[send2] c2=0 & c1>0 -> (c1'=2) & (c2'=2) & (col'=min(col+1,COL)); |
|||
|
|||
// finish sending message |
|||
[finish1] c1>0 -> (c1'=0); |
|||
[finish2] c2>0 -> (c2'=0); |
|||
|
|||
endmodule |
|||
|
|||
//-----------------------------------------------------------------// |
|||
// STATION 1 |
|||
module station1 |
|||
// clock for station 1 |
|||
x1 : [0..TIME_MAX]; |
|||
|
|||
// local state |
|||
s1 : [1..12]; |
|||
// 1 sense |
|||
// 2 wait until free before setting backoff |
|||
// 3 wait for DIFS then set slot |
|||
// 4 set backoff |
|||
// 5 backoff |
|||
// 6 wait until free in backoff |
|||
// 7 wait for DIFS then resume backoff |
|||
// 8 vulnerable |
|||
// 9 transmit |
|||
// 11 wait for SIFS and then ACK |
|||
// 10 wait for ACT_TO |
|||
// 12 done |
|||
// BACKOFF |
|||
// separate into slots |
|||
slot1 : [0..1]; |
|||
backoff1 : [0..15]; |
|||
|
|||
// BACKOFF COUNTER |
|||
bc1 : [0..1]; |
|||
// SENSE |
|||
// let time pass |
|||
[time] s1=1 & x1<DIFS & (c1=0 & c2=0) -> (x1'=min(x1+1,TIME_MAX)); |
|||
// ready to transmit |
|||
[] s1=1 & (x1=DIFS | x1=DIFS-1) -> (s1'=8) & (x1'=0); |
|||
// found channel busy so wait until free |
|||
[] s1=1 & (c1>0 | c2>0) -> (s1'=2) & (x1'=0); |
|||
// WAIT UNTIL FREE BEFORE SETTING BACKOFF |
|||
// let time pass (no need for the clock x1 to change) |
|||
[time] s1=2 & (c1>0 | c2>0) -> (s1'=2); |
|||
// find that channel is free so check its free for DIFS before setting backoff |
|||
[] s1=2 & (c1=0 & c2=0) -> (s1'=3); |
|||
// WAIT FOR DIFS THEN SET BACKOFF |
|||
// let time pass |
|||
[time] s1=3 & x1<DIFS & (c1=0 & c2=0) -> (x1'=min(x1+1,TIME_MAX)); |
|||
// found channel busy so wait until free |
|||
[] s1=3 & (c1>0 | c2>0) -> (s1'=2) & (x1'=0); |
|||
// start backoff first uniformly choose slot |
|||
// backoff counter 0 |
|||
[] s1=3 & (x1=DIFS | x1=DIFS-1) & bc1=0 -> (s1'=4) & (x1'=0) & (slot1'=0) & (bc1'=min(bc1+1,MAX_BACKOFF)); |
|||
// SET BACKOFF (no time can pass) |
|||
// chosen slot now set backoff |
|||
[] s1=4 -> 1/16 : (s1'=5) & (backoff1'=0 ) |
|||
+ 1/16 : (s1'=5) & (backoff1'=1 ) |
|||
+ 1/16 : (s1'=5) & (backoff1'=2 ) |
|||
+ 1/16 : (s1'=5) & (backoff1'=3 ) |
|||
+ 1/16 : (s1'=5) & (backoff1'=4 ) |
|||
+ 1/16 : (s1'=5) & (backoff1'=5 ) |
|||
+ 1/16 : (s1'=5) & (backoff1'=6 ) |
|||
+ 1/16 : (s1'=5) & (backoff1'=7 ) |
|||
+ 1/16 : (s1'=5) & (backoff1'=8 ) |
|||
+ 1/16 : (s1'=5) & (backoff1'=9 ) |
|||
+ 1/16 : (s1'=5) & (backoff1'=10) |
|||
+ 1/16 : (s1'=5) & (backoff1'=11) |
|||
+ 1/16 : (s1'=5) & (backoff1'=12) |
|||
+ 1/16 : (s1'=5) & (backoff1'=13) |
|||
+ 1/16 : (s1'=5) & (backoff1'=14) |
|||
+ 1/16 : (s1'=5) & (backoff1'=15); |
|||
// BACKOFF |
|||
// let time pass |
|||
[time] s1=5 & x1<ASLOTTIME & (c1=0 & c2=0) -> (x1'=min(x1+1,TIME_MAX)); |
|||
// decrement backoff |
|||
[] s1=5 & x1=ASLOTTIME & backoff1>0 -> (s1'=5) & (x1'=0) & (backoff1'=backoff1-1); |
|||
[] s1=5 & x1=ASLOTTIME & backoff1=0 & slot1>0 -> (s1'=5) & (x1'=0) & (backoff1'=15) & (slot1'=slot1-1); |
|||
// finish backoff |
|||
[] s1=5 & x1=ASLOTTIME & backoff1=0 & slot1=0 -> (s1'=8) & (x1'=0); |
|||
// found channel busy |
|||
[] s1=5 & (c1>0 | c2>0) -> (s1'=6) & (x1'=0); |
|||
// WAIT UNTIL FREE IN BACKOFF |
|||
// let time pass (no need for the clock x1 to change) |
|||
[time] s1=6 & (c1>0 | c2>0) -> (s1'=6); |
|||
// find that channel is free |
|||
[] s1=6 & (c1=0 & c2=0) -> (s1'=7); |
|||
|
|||
// WAIT FOR DIFS THEN RESUME BACKOFF |
|||
// let time pass |
|||
[time] s1=7 & x1<DIFS & (c1=0 & c2=0) -> (x1'=min(x1+1,TIME_MAX)); |
|||
// resume backoff (start again from previous backoff) |
|||
[] s1=7 & (x1=DIFS | x1=DIFS-1) -> (s1'=5) & (x1'=0); |
|||
// found channel busy |
|||
[] s1=7 & (c1>0 | c2>0) -> (s1'=6) & (x1'=0); |
|||
|
|||
// VULNERABLE |
|||
// let time pass |
|||
[time] s1=8 & x1<VULN -> (x1'=min(x1+1,TIME_MAX)); |
|||
// move to transmit |
|||
[send1] s1=8 & (x1=VULN | x1=VULN-1) -> (s1'=9) & (x1'=0); |
|||
// TRANSMIT |
|||
// let time pass |
|||
[time] s1=9 & x1<TRANS_TIME_MAX -> (x1'=min(x1+1,TIME_MAX)); |
|||
// finish transmission successful |
|||
[finish1] s1=9 & x1>=TRANS_TIME_MIN & c1=1 -> (s1'=10) & (x1'=0); |
|||
// finish transmission garbled |
|||
[finish1] s1=9 & x1>=TRANS_TIME_MIN & c1=2 -> (s1'=11) & (x1'=0); |
|||
// WAIT FOR SIFS THEN WAIT FOR ACK |
|||
|
|||
// WAIT FOR SIFS i.e. c1=0 |
|||
// check channel and busy: go into backoff |
|||
[] s1=10 & c1=0 & x1=0 & (c1>0 | c2>0) -> (s1'=2); |
|||
// check channel and free: let time pass |
|||
[time] s1=10 & c1=0 & x1=0 & (c1=0 & c2=0) -> (x1'=min(x1+1,TIME_MAX)); |
|||
// let time pass |
|||
// following guard is always false as SIFS=1 |
|||
// [time] s1=10 & c1=0 & x1>0 & x1<SIFS -> (x1'=min(x1+1,TIME_MAX)); |
|||
// ack is sent after SIFS (since SIFS-1=0 add condition that channel is free) |
|||
[send1] s1=10 & c1=0 & (x1=SIFS | (x1=SIFS-1 & (c1=0 & c2=0))) -> (s1'=10) & (x1'=0); |
|||
|
|||
// WAIT FOR ACK i.e. c1=1 |
|||
// let time pass |
|||
[time] s1=10 & c1=1 & x1<ACK -> (x1'=min(x1+1,TIME_MAX)); |
|||
// get acknowledgement so packet sent correctly and move to done |
|||
[finish1] s1=10 & c1=1 & (x1=ACK | x1=ACK-1) -> (s1'=12) & (x1'=0) & (bc1'=0); |
|||
|
|||
// WAIT FOR ACK_TO |
|||
// check channel and busy: go into backoff |
|||
[] s1=11 & x1=0 & (c1>0 | c2>0) -> (s1'=2); |
|||
// check channel and free: let time pass |
|||
[time] s1=11 & x1=0 & (c1=0 & c2=0) -> (x1'=min(x1+1,TIME_MAX)); |
|||
// let time pass |
|||
[time] s1=11 & x1>0 & x1<ACK_TO -> (x1'=min(x1+1,TIME_MAX)); |
|||
// no acknowledgement (go to backoff waiting DIFS first) |
|||
[] s1=11 & x1=ACK_TO -> (s1'=3) & (x1'=0); |
|||
|
|||
// DONE |
|||
[time] s1=12 -> (s1'=12); |
|||
|
|||
endmodule |
|||
|
|||
// ---------------------------------------------------------------------------- // |
|||
// STATION 2 (rename STATION 1) |
|||
module |
|||
station2=station1[x1=x2, |
|||
s1=s2, |
|||
s2=s1, |
|||
c1=c2, |
|||
c2=c1, |
|||
slot1=slot2, |
|||
backoff1=backoff2, |
|||
bc1=bc2, |
|||
send1=send2, |
|||
finish1=finish2] |
|||
endmodule |
|||
// ---------------------------------------------------------------------------- // |
|||
|
|||
label "oneCollision" = col=1; |
|||
label "twoCollisions" = col=2; |
@ -0,0 +1,225 @@ |
|||
// WLAN PROTOCOL (two stations) |
|||
// discrete time model |
|||
// gxn/jzs 20/02/02 |
|||
|
|||
mdp |
|||
|
|||
// COLLISIONS |
|||
const int COL; // maximum number of collisions |
|||
|
|||
// TIMING CONSTRAINTS |
|||
// we have used the FHSS parameters |
|||
// then scaled by the value of ASLOTTIME |
|||
const int ASLOTTIME = 1; |
|||
const int DIFS = 3; // due to scaling can be either 2 or 3 which is modelled by a non-deterministic choice |
|||
const int VULN = 1; // due to scaling can be either 0 or 1 which is modelled by a non-deterministic choice |
|||
const int TRANS_TIME_MAX; // scaling up |
|||
const int TRANS_TIME_MIN = 4; // scaling down |
|||
const int ACK_TO = 6; |
|||
const int ACK = 4; // due to scaling can be either 3 or 4 which is modelled by a non-deterministic choice |
|||
const int SIFS = 1; // due to scaling can be either 0 or 1 which is modelled by a non-deterministic choice |
|||
// maximum constant used in timing constraints + 1 |
|||
const int TIME_MAX = max(ACK_TO,TRANS_TIME_MAX)+1; |
|||
|
|||
// CONTENTION WINDOW |
|||
// CWMIN =15 & CWMAX =63 |
|||
// this means that MAX_BACKOFF IS 2 |
|||
const int MAX_BACKOFF = 2; |
|||
|
|||
//-----------------------------------------------------------------// |
|||
// THE MEDIUM/CHANNEL |
|||
|
|||
// FORMULAE FOR THE CHANNEL |
|||
// channel is (c1>0 | c2>0) |
|||
// formula busy = c1>0 | c2>0; |
|||
// channel is (c1=0 & c2=0) |
|||
// formula free = c1=0 & c2=0; |
|||
|
|||
module medium |
|||
|
|||
// number of collisions |
|||
col : [0..COL]; |
|||
|
|||
// medium status |
|||
c1 : [0..2]; |
|||
c2 : [0..2]; |
|||
// ci corresponds to messages associated with station i |
|||
// 0 nothing being sent |
|||
// 1 being sent correctly |
|||
// 2 being sent garbled |
|||
|
|||
// begin sending message and nothing else currently being sent |
|||
[send1] c1=0 & c2=0 -> (c1'=1); |
|||
[send2] c2=0 & c1=0 -> (c2'=1); |
|||
|
|||
// begin sending message and something is already being sent |
|||
// in this case both messages become garbled |
|||
[send1] c1=0 & c2>0 -> (c1'=2) & (c2'=2) & (col'=min(col+1,COL)); |
|||
[send2] c2=0 & c1>0 -> (c1'=2) & (c2'=2) & (col'=min(col+1,COL)); |
|||
|
|||
// finish sending message |
|||
[finish1] c1>0 -> (c1'=0); |
|||
[finish2] c2>0 -> (c2'=0); |
|||
|
|||
endmodule |
|||
|
|||
//-----------------------------------------------------------------// |
|||
// STATION 1 |
|||
module station1 |
|||
// clock for station 1 |
|||
x1 : [0..TIME_MAX]; |
|||
|
|||
// local state |
|||
s1 : [1..12]; |
|||
// 1 sense |
|||
// 2 wait until (c1=0 & c2=0) before setting backoff |
|||
// 3 wait for DIFS then set slot |
|||
// 4 set backoff |
|||
// 5 backoff |
|||
// 6 wait until (c1=0 & c2=0) in backoff |
|||
// 7 wait for DIFS then resume backoff |
|||
// 8 vulnerable |
|||
// 9 transmit |
|||
// 11 wait for SIFS and then ACK |
|||
// 10 wait for ACT_TO |
|||
// 12 done |
|||
// BACKOFF |
|||
// separate into slots |
|||
slot1 : [0..3]; |
|||
backoff1 : [0..15]; |
|||
|
|||
// BACKOFF COUNTER |
|||
bc1 : [0..MAX_BACKOFF]; |
|||
// SENSE |
|||
// let time pass |
|||
[time] s1=1 & x1<DIFS & (c1=0 & c2=0) -> (x1'=min(x1+1,TIME_MAX)); |
|||
// ready to transmit |
|||
[] s1=1 & (x1=DIFS | x1=DIFS-1) -> (s1'=8) & (x1'=0); |
|||
// found channel (c1>0 | c2>0) so wait until (c1=0 & c2=0) |
|||
[] s1=1 & (c1>0 | c2>0) -> (s1'=2) & (x1'=0); |
|||
// WAIT UNTIL (c1=0 & c2=0) BEFORE SETTING BACKOFF |
|||
// let time pass (no need for the clock x1 to change) |
|||
[time] s1=2 & (c1>0 | c2>0) -> (s1'=2); |
|||
// find that channel is (c1=0 & c2=0) so check its (c1=0 & c2=0) for DIFS before setting backoff |
|||
[] s1=2 & (c1=0 & c2=0) -> (s1'=3); |
|||
// WAIT FOR DIFS THEN SET BACKOFF |
|||
// let time pass |
|||
[time] s1=3 & x1<DIFS & (c1=0 & c2=0) -> (x1'=min(x1+1,TIME_MAX)); |
|||
// found channel (c1>0 | c2>0) so wait until (c1=0 & c2=0) |
|||
[] s1=3 & (c1>0 | c2>0) -> (s1'=2) & (x1'=0); |
|||
// start backoff first uniformly choose slot |
|||
// backoff counter 0 |
|||
[] s1=3 & (x1=DIFS | x1=DIFS-1) & bc1=0 -> (s1'=4) & (x1'=0) & (slot1'=0) & (bc1'=min(bc1+1,MAX_BACKOFF)); |
|||
// backoff counter 1 |
|||
[] s1=3 & (x1=DIFS | x1=DIFS-1) & bc1=1 -> 1/2 : (s1'=4) & (x1'=0) & (slot1'=0) & (bc1'=min(bc1+1,MAX_BACKOFF)) |
|||
+ 1/2 : (s1'=4) & (x1'=0) & (slot1'=1) & (bc1'=min(bc1+1,MAX_BACKOFF)); |
|||
// backoff counter 2 |
|||
[] s1=3 & (x1=DIFS | x1=DIFS-1) & bc1=2 -> 1/4 : (s1'=4) & (x1'=0) & (slot1'=0) & (bc1'=min(bc1+1,MAX_BACKOFF)) |
|||
+ 1/4 : (s1'=4) & (x1'=0) & (slot1'=1) & (bc1'=min(bc1+1,MAX_BACKOFF)) |
|||
+ 1/4 : (s1'=4) & (x1'=0) & (slot1'=2) & (bc1'=min(bc1+1,MAX_BACKOFF)) |
|||
+ 1/4 : (s1'=4) & (x1'=0) & (slot1'=3) & (bc1'=min(bc1+1,MAX_BACKOFF)); |
|||
// SET BACKOFF (no time can pass) |
|||
// chosen slot now set backoff |
|||
[] s1=4 -> 1/16 : (s1'=5) & (backoff1'=0 ) |
|||
+ 1/16 : (s1'=5) & (backoff1'=1 ) |
|||
+ 1/16 : (s1'=5) & (backoff1'=2 ) |
|||
+ 1/16 : (s1'=5) & (backoff1'=3 ) |
|||
+ 1/16 : (s1'=5) & (backoff1'=4 ) |
|||
+ 1/16 : (s1'=5) & (backoff1'=5 ) |
|||
+ 1/16 : (s1'=5) & (backoff1'=6 ) |
|||
+ 1/16 : (s1'=5) & (backoff1'=7 ) |
|||
+ 1/16 : (s1'=5) & (backoff1'=8 ) |
|||
+ 1/16 : (s1'=5) & (backoff1'=9 ) |
|||
+ 1/16 : (s1'=5) & (backoff1'=10) |
|||
+ 1/16 : (s1'=5) & (backoff1'=11) |
|||
+ 1/16 : (s1'=5) & (backoff1'=12) |
|||
+ 1/16 : (s1'=5) & (backoff1'=13) |
|||
+ 1/16 : (s1'=5) & (backoff1'=14) |
|||
+ 1/16 : (s1'=5) & (backoff1'=15); |
|||
// BACKOFF |
|||
// let time pass |
|||
[time] s1=5 & x1<ASLOTTIME & (c1=0 & c2=0) -> (x1'=min(x1+1,TIME_MAX)); |
|||
// decrement backoff |
|||
[] s1=5 & x1=ASLOTTIME & backoff1>0 -> (s1'=5) & (x1'=0) & (backoff1'=backoff1-1); |
|||
[] s1=5 & x1=ASLOTTIME & backoff1=0 & slot1>0 -> (s1'=5) & (x1'=0) & (backoff1'=15) & (slot1'=slot1-1); |
|||
// finish backoff |
|||
[] s1=5 & x1=ASLOTTIME & backoff1=0 & slot1=0 -> (s1'=8) & (x1'=0); |
|||
// found channel (c1>0 | c2>0) |
|||
[] s1=5 & (c1>0 | c2>0) -> (s1'=6) & (x1'=0); |
|||
// WAIT UNTIL (c1=0 & c2=0) IN BACKOFF |
|||
// let time pass (no need for the clock x1 to change) |
|||
[time] s1=6 & (c1>0 | c2>0) -> (s1'=6); |
|||
// find that channel is (c1=0 & c2=0) |
|||
[] s1=6 & (c1=0 & c2=0) -> (s1'=7); |
|||
|
|||
// WAIT FOR DIFS THEN RESUME BACKOFF |
|||
// let time pass |
|||
[time] s1=7 & x1<DIFS & (c1=0 & c2=0) -> (x1'=min(x1+1,TIME_MAX)); |
|||
// resume backoff (start again from previous backoff) |
|||
[] s1=7 & (x1=DIFS | x1=DIFS-1) -> (s1'=5) & (x1'=0); |
|||
// found channel (c1>0 | c2>0) |
|||
[] s1=7 & (c1>0 | c2>0) -> (s1'=6) & (x1'=0); |
|||
|
|||
// VULNERABLE |
|||
// let time pass |
|||
[time] s1=8 & x1<VULN -> (x1'=min(x1+1,TIME_MAX)); |
|||
// move to transmit |
|||
[send1] s1=8 & (x1=VULN | x1=VULN-1) -> (s1'=9) & (x1'=0); |
|||
// TRANSMIT |
|||
// let time pass |
|||
[time] s1=9 & x1<TRANS_TIME_MAX -> (x1'=min(x1+1,TIME_MAX)); |
|||
// finish transmission successful |
|||
[finish1] s1=9 & x1>=TRANS_TIME_MIN & c1=1 -> (s1'=10) & (x1'=0); |
|||
// finish transmission garbled |
|||
[finish1] s1=9 & x1>=TRANS_TIME_MIN & c1=2 -> (s1'=11) & (x1'=0); |
|||
// WAIT FOR SIFS THEN WAIT FOR ACK |
|||
|
|||
// WAIT FOR SIFS i.e. c1=0 |
|||
// check channel and (c1>0 | c2>0): go into backoff |
|||
[] s1=10 & c1=0 & x1=0 & (c1>0 | c2>0) -> (s1'=2); |
|||
// check channel and (c1=0 & c2=0): let time pass |
|||
[time] s1=10 & c1=0 & x1=0 & (c1=0 & c2=0) -> (x1'=min(x1+1,TIME_MAX)); |
|||
// let time pass |
|||
// following guard is always false as SIFS=1 |
|||
// [time] s1=10 & c1=0 & x1>0 & x1<SIFS -> (x1'=min(x1+1,TIME_MAX)); |
|||
// ack is sent after SIFS (since SIFS-1=0 add condition that channel is (c1=0 & c2=0)) |
|||
[send1] s1=10 & c1=0 & (x1=SIFS | (x1=SIFS-1 & (c1=0 & c2=0))) -> (s1'=10) & (x1'=0); |
|||
|
|||
// WAIT FOR ACK i.e. c1=1 |
|||
// let time pass |
|||
[time] s1=10 & c1=1 & x1<ACK -> (x1'=min(x1+1,TIME_MAX)); |
|||
// get acknowledgement so packet sent correctly and move to done |
|||
[finish1] s1=10 & c1=1 & (x1=ACK | x1=ACK-1) -> (s1'=12) & (x1'=0) & (bc1'=0); |
|||
|
|||
// WAIT FOR ACK_TO |
|||
// check channel and (c1>0 | c2>0): go into backoff |
|||
[] s1=11 & x1=0 & (c1>0 | c2>0) -> (s1'=2); |
|||
// check channel and (c1=0 & c2=0): let time pass |
|||
[time] s1=11 & x1=0 & (c1=0 & c2=0) -> (x1'=min(x1+1,TIME_MAX)); |
|||
// let time pass |
|||
[time] s1=11 & x1>0 & x1<ACK_TO -> (x1'=min(x1+1,TIME_MAX)); |
|||
// no acknowledgement (go to backoff waiting DIFS first) |
|||
[] s1=11 & x1=ACK_TO -> (s1'=3) & (x1'=0); |
|||
|
|||
// DONE |
|||
[time] s1=12 -> (s1'=12); |
|||
endmodule |
|||
|
|||
// ---------------------------------------------------------------------------- // |
|||
// STATION 2 (rename STATION 1) |
|||
module |
|||
station2=station1[x1=x2, |
|||
s1=s2, |
|||
s2=s1, |
|||
c1=c2, |
|||
c2=c1, |
|||
slot1=slot2, |
|||
backoff1=backoff2, |
|||
bc1=bc2, |
|||
send1=send2, |
|||
finish1=finish2] |
|||
endmodule |
|||
// ---------------------------------------------------------------------------- // |
|||
|
|||
label "oneCollision" = col=1; |
|||
label "twoCollisions" = col=2; |
Write
Preview
Loading…
Cancel
Save
Reference in new issue