@ -1,3 +1,5 @@
# include <functional>
# include "storm/solver/IterativeMinMaxLinearEquationSolver.h"
# include "storm/utility/ConstantsComparator.h"
@ -46,7 +48,7 @@ namespace storm {
STORM_LOG_WARN ( " The selected solution method does not guarantee exact results. " ) ;
}
}
STORM_LOG_THROW ( method = = MinMaxMethod : : ValueIteration | | method = = MinMaxMethod : : PolicyIteration | | method = = MinMaxMethod : : RationalSearch , storm : : exceptions : : InvalidEnvironmentException , " This solver does not support the selected method. " ) ;
STORM_LOG_THROW ( method = = MinMaxMethod : : ValueIteration | | method = = MinMaxMethod : : PolicyIteration | | method = = MinMaxMethod : : RationalSearch | | method = = MinMaxMethod : : QuickValueIteration , storm : : exceptions : : InvalidEnvironmentException , " This solver does not support the selected method. " ) ;
return method ;
}
@ -67,6 +69,9 @@ namespace storm {
case MinMaxMethod : : RationalSearch :
result = solveEquationsRationalSearch ( env , dir , x , b ) ;
break ;
case MinMaxMethod : : QuickValueIteration :
result = solveEquationsQuickSoundValueIteration ( env , dir , x , b ) ;
break ;
default :
STORM_LOG_THROW ( false , storm : : exceptions : : InvalidEnvironmentException , " This solver does not implement the selected solution method " ) ;
}
@ -211,11 +216,9 @@ namespace storm {
// Start by getting the requirements of the linear equation solver.
LinearEquationSolverTask linEqTask = LinearEquationSolverTask : : Unspecified ;
if ( method = = MinMaxMethod : : ValueIteration | | method = = MinMaxMethod : : RationalSearch ) {
if ( ! this - > hasInitialScheduler ( ) & & assumeNoInitialScheduler ) {
if ( ( method = = MinMaxMethod : : ValueIteration & & ! this - > hasInitialScheduler ( ) & & assumeNoInitialScheduler ) | | method = = MinMaxMethod : : RationalSearch | | method = = MinMaxMethod : : QuickValueIteration ) {
linEqTask = LinearEquationSolverTask : : Multiply ;
}
}
MinMaxLinearEquationSolverRequirements requirements ( this - > linearEquationSolverFactory - > getRequirements ( env , linEqTask ) ) ;
if ( method = = MinMaxMethod : : ValueIteration ) {
@ -250,6 +253,10 @@ namespace storm {
if ( ! this - > hasUniqueSolution ( ) ) {
requirements . requireValidInitialScheduler ( ) ;
}
} else if ( method = = MinMaxMethod : : QuickValueIteration ) {
if ( ! this - > hasUniqueSolution ( ) ) {
requirements . requireNoEndComponents ( ) ;
}
} else {
STORM_LOG_THROW ( false , storm : : exceptions : : InvalidEnvironmentException , " Unsupported technique for iterative MinMax linear equation solver. " ) ;
}
@ -596,6 +603,278 @@ namespace storm {
return status = = SolverStatus : : Converged ;
}
template < typename ValueType >
bool IterativeMinMaxLinearEquationSolver < ValueType > : : solveEquationsQuickSoundValueIteration ( Environment const & env , OptimizationDirection dir , std : : vector < ValueType > & x , std : : vector < ValueType > const & b ) const {
if ( ! this - > linEqSolverA ) {
this - > createLinearEquationSolver ( env ) ;
this - > linEqSolverA - > setCachingEnabled ( true ) ;
}
// Allow aliased multiplications.
bool useGaussSeidelMultiplication = this - > linEqSolverA - > supportsGaussSeidelMultiplication ( ) & & env . solver ( ) . minMax ( ) . getMultiplicationStyle ( ) = = storm : : solver : : MultiplicationStyle : : GaussSeidel ;
// Prepare the solution vectors.
assert ( x . size ( ) = = this - > A - > getRowGroupCount ( ) ) ;
std : : vector < ValueType > * stepBoundedX , * stepBoundedStayProbs , * tmp ;
if ( useGaussSeidelMultiplication ) {
stepBoundedX = & x ;
stepBoundedX - > assign ( this - > A - > getRowGroupCount ( ) , storm : : utility : : zero < ValueType > ( ) ) ;
if ( ! this - > auxiliaryRowGroupVector ) {
this - > auxiliaryRowGroupVector = std : : make_unique < std : : vector < ValueType > > ( this - > A - > getRowGroupCount ( ) , storm : : utility : : one < ValueType > ( ) ) ;
} else {
this - > auxiliaryRowGroupVector - > assign ( this - > A - > getRowGroupCount ( ) , storm : : utility : : one < ValueType > ( ) ) ;
}
stepBoundedStayProbs = this - > auxiliaryRowGroupVector . get ( ) ;
tmp = nullptr ;
} else {
if ( ! this - > auxiliaryRowGroupVector ) {
this - > auxiliaryRowGroupVector = std : : make_unique < std : : vector < ValueType > > ( this - > A - > getRowGroupCount ( ) , storm : : utility : : zero < ValueType > ( ) ) ;
} else {
this - > auxiliaryRowGroupVector - > assign ( this - > A - > getRowGroupCount ( ) , storm : : utility : : zero < ValueType > ( ) ) ;
}
stepBoundedX = this - > auxiliaryRowGroupVector . get ( ) ;
if ( ! this - > auxiliaryRowGroupVector2 ) {
this - > auxiliaryRowGroupVector2 = std : : make_unique < std : : vector < ValueType > > ( this - > A - > getRowGroupCount ( ) , storm : : utility : : one < ValueType > ( ) ) ;
} else {
this - > auxiliaryRowGroupVector2 - > assign ( this - > A - > getRowGroupCount ( ) , storm : : utility : : one < ValueType > ( ) ) ;
}
stepBoundedStayProbs = this - > auxiliaryRowGroupVector2 . get ( ) ;
tmp = & x ;
}
// Get the precision
bool relative = env . solver ( ) . minMax ( ) . getRelativeTerminationCriterion ( ) ;
ValueType precision = storm : : utility : : convertNumber < ValueType > ( env . solver ( ) . minMax ( ) . getPrecision ( ) ) ;
if ( ! relative ) {
precision * = storm : : utility : : convertNumber < ValueType > ( 2.0 ) ;
}
this - > startMeasureProgress ( ) ;
// Prepare some data used in the iterations.
// We store the current lower (upper) bound for the minimal (maximal) value occurring at some index (if already found)
// Moreover, we store a decisionValue: When minimizing (maximizing) this is the largest (smallest) possible lower (upper) bound
// for which the performed scheduler decisions are valid.
// All these values might not be available yet.
ValueType currentLowerBound , currentUpperBound , decisionValue ;
bool hasCurrentLowerBound ( false ) , hasCurrentUpperBound ( false ) , hasDecisionValue ( false ) ;
if ( this - > hasLowerBound ( AbstractEquationSolver < ValueType > : : BoundType : : Global ) ) {
currentLowerBound = this - > getLowerBound ( ) ;
hasCurrentLowerBound = true ;
} else if ( this - > hasLowerBound ( AbstractEquationSolver < ValueType > : : BoundType : : Local ) ) {
currentLowerBound = * std : : min_element ( this - > getLowerBounds ( ) . begin ( ) , this - > getLowerBounds ( ) . end ( ) ) ;
hasCurrentLowerBound = true ;
}
if ( this - > hasUpperBound ( AbstractEquationSolver < ValueType > : : BoundType : : Global ) ) {
currentUpperBound = this - > getUpperBound ( ) ;
hasCurrentUpperBound = true ;
} else if ( this - > hasUpperBound ( AbstractEquationSolver < ValueType > : : BoundType : : Local ) ) {
currentUpperBound = * std : : max_element ( this - > getUpperBounds ( ) . begin ( ) , this - > getUpperBounds ( ) . end ( ) ) ;
hasCurrentUpperBound = true ;
}
// reduce the number of case distinctions w.r.t. minimizing/maximizing optimization direction
std : : function < bool ( ValueType const & , ValueType const & ) > better , betterEqual ;
if ( minimize ( dir ) ) {
better = std : : less < ValueType > ( ) ;
betterEqual = std : : less_equal < ValueType > ( ) ;
} else {
better = std : : greater < ValueType > ( ) ;
betterEqual = std : : greater_equal < ValueType > ( ) ;
}
// If minimizing, the primary bound is the lower bound; if maximizing, the primary bound is the upper bound.
ValueType & primaryBound = minimize ( dir ) ? currentLowerBound : currentUpperBound ;
bool & hasPrimaryBound = minimize ( dir ) ? hasCurrentLowerBound : hasCurrentUpperBound ;
// Proceed with the iterations as long as the method did not converge or reach the maximum number of iterations.
SolverStatus status = SolverStatus : : InProgress ;
uint64_t iterations = 0 ;
std : : vector < ValueType > xTmp , yTmp ;
uint64_t minIndex ( 0 ) , maxIndex ( 0 ) ;
uint64_t firstStayProb1Index = 0 ;
uint64_t firstIndexViolatingConvergence = this - > hasRelevantValues ( ) ? this - > getRelevantValues ( ) . getNextSetIndex ( 0 ) : 0 ;
while ( status = = SolverStatus : : InProgress & & iterations < env . solver ( ) . minMax ( ) . getMaximalNumberOfIterations ( ) ) {
//Perform the iteration step
auto xIt = stepBoundedX - > rbegin ( ) ;
auto yIt = stepBoundedStayProbs - > rbegin ( ) ;
auto groupStartIt = this - > A - > getRowGroupIndices ( ) . rbegin ( ) ;
+ + groupStartIt ;
auto groupEndIt = this - > A - > getRowGroupIndices ( ) . rbegin ( ) ;
while ( groupStartIt ! = this - > A - > getRowGroupIndices ( ) . rend ( ) ) {
// Handle Row Groups of size 1 quickly
if ( * groupStartIt + 1 = = * groupEndIt ) {
* xIt = this - > linEqSolverA - > multiplyRow ( * groupStartIt , * stepBoundedX ) + b [ * groupStartIt ] ;
* yIt = this - > linEqSolverA - > multiplyRow ( * groupStartIt , * stepBoundedStayProbs ) ;
} else {
// First pass through the group: get the multiplication results
xTmp . clear ( ) ;
yTmp . clear ( ) ;
for ( uint64_t row = * groupStartIt ; row < * groupEndIt ; + + row ) {
xTmp . push_back ( this - > linEqSolverA - > multiplyRow ( row , * stepBoundedX ) + b [ row ] ) ;
yTmp . push_back ( this - > linEqSolverA - > multiplyRow ( row , * stepBoundedStayProbs ) ) ;
}
// Second pass: get the best choice
uint64_t bestChoice = 0 ;
if ( hasPrimaryBound ) {
// Second pass: get the best choice
ValueType bestValue = xTmp . front ( ) + yTmp . front ( ) * primaryBound ;
for ( uint64_t choice = 1 ; choice < xTmp . size ( ) ; + + choice ) {
ValueType value = xTmp [ choice ] + yTmp [ choice ] * primaryBound ;
if ( betterEqual ( value , bestValue ) & & ( value ! = bestValue | | yTmp [ choice ] < yTmp [ bestChoice ] ) ) {
bestValue = std : : move ( value ) ;
bestChoice = choice ;
}
}
} else {
// If no bound is known, we implicitly assume a sufficiently large (or low) bound
ValueType bestValue = yTmp . front ( ) ;
for ( uint64_t choice = 1 ; choice < xTmp . size ( ) ; + + choice ) {
ValueType const & value = yTmp [ choice ] ;
if ( betterEqual ( value , bestValue ) & & ( value ! = bestValue | | better ( xTmp [ choice ] , xTmp [ bestChoice ] ) ) ) {
bestValue = std : : move ( value ) ;
bestChoice = choice ;
}
}
}
* xIt = xTmp [ bestChoice ] ;
* yIt = yTmp [ bestChoice ] ;
// Third pass: Update the decision value
for ( uint64_t choice = 0 ; choice < xTmp . size ( ) ; + + choice ) {
if ( choice ! = bestChoice ) {
ValueType deltaY = * yIt - yTmp [ choice ] ;
if ( deltaY > storm : : utility : : zero < ValueType > ( ) ) {
ValueType newDecisionValue = ( xTmp [ choice ] - * xIt ) / deltaY ;
if ( ! hasDecisionValue | | better ( newDecisionValue , decisionValue ) ) {
// std::cout << "Updating decision value to " << newDecisionValue << ", where deltaX = " << xTmp[choice] << " - " << *xIt << " = " << (xTmp[choice] - *xIt) << " and deltaY= " << *yIt << " - " << yTmp[choice] << " = " << deltaY << "." << std::endl;
decisionValue = std : : move ( newDecisionValue ) ;
hasDecisionValue = true ;
}
}
}
}
}
+ + groupStartIt ;
+ + groupEndIt ;
+ + xIt ;
+ + yIt ;
}
// Update bounds and check for convergence
// Phase 1: the probability to 'stay within the matrix' has to be < 1 at every state
for ( ; firstStayProb1Index ! = stepBoundedStayProbs - > size ( ) ; + + firstStayProb1Index ) {
static_assert ( NumberTraits < ValueType > : : IsExact | | std : : is_same < ValueType , double > : : value , " Considered ValueType not handled. " ) ;
if ( NumberTraits < ValueType > : : IsExact ) {
if ( storm : : utility : : isOne ( stepBoundedStayProbs - > at ( firstStayProb1Index ) ) ) {
break ;
}
} else {
if ( storm : : utility : : isAlmostOne ( storm : : utility : : convertNumber < double > ( stepBoundedStayProbs - > at ( firstStayProb1Index ) ) ) ) {
break ;
}
}
}
if ( firstStayProb1Index = = stepBoundedStayProbs - > size ( ) ) {
STORM_LOG_ASSERT ( ! std : : any_of ( stepBoundedStayProbs - > begin ( ) , stepBoundedStayProbs - > end ( ) , [ ] ( ValueType value ) { return storm : : utility : : isOne ( value ) ; } ) , " Did not expect staying-probability 1 at this point. " ) ;
// Phase 2: the difference between lower and upper bound has to be < precision at every (relevant) value
// First check with (possibly too tight) bounds from a previous iteration. Only compute the actual bounds if this first check passes.
currentLowerBound = stepBoundedX - > at ( minIndex ) / ( storm : : utility : : one < ValueType > ( ) - stepBoundedStayProbs - > at ( minIndex ) ) ;
currentUpperBound = stepBoundedX - > at ( maxIndex ) / ( storm : : utility : : one < ValueType > ( ) - stepBoundedStayProbs - > at ( maxIndex ) ) ;
// Potentially correct the primary bound so that scheduler choices remain valid
if ( hasDecisionValue & & better ( decisionValue , primaryBound ) ) {
primaryBound = decisionValue ;
}
ValueType const & stayProb = stepBoundedStayProbs - > at ( firstIndexViolatingConvergence ) ;
// The error made in this iteration
ValueType absoluteError = stayProb * ( currentUpperBound - currentLowerBound ) ;
// The maximal allowed error (possibly respecting relative precision)
// Note: We implement the relative convergence criterion in a way that avoids division by zero in the case where stepBoundedX[i] is zero.
ValueType maxAllowedError = relative ? ( precision * stepBoundedX - > at ( firstIndexViolatingConvergence ) ) : precision ;
if ( absoluteError < = maxAllowedError ) {
// Compute the actual bounds now
auto valIt = stepBoundedX - > begin ( ) ;
auto valIte = stepBoundedX - > end ( ) ;
auto probIt = stepBoundedStayProbs - > begin ( ) ;
for ( uint64_t index = 0 ; valIt ! = valIte ; + + valIt , + + probIt , + + index ) {
ValueType currentBound = * valIt / ( storm : : utility : : one < ValueType > ( ) - * probIt ) ;
if ( currentBound < currentLowerBound ) {
minIndex = index ;
currentLowerBound = std : : move ( currentBound ) ;
} else if ( currentBound > currentUpperBound ) {
maxIndex = index ;
currentUpperBound = std : : move ( currentBound ) ;
}
}
// Potentially correct the primary bound so that scheduler choices remain valid
if ( hasDecisionValue & & better ( decisionValue , primaryBound ) ) {
primaryBound = decisionValue ;
}
hasCurrentUpperBound = true ;
hasCurrentLowerBound = true ;
absoluteError = stayProb * ( currentUpperBound - currentLowerBound ) ;
if ( absoluteError < = maxAllowedError ) {
// The current index satisfies the desired bound. We now move to the next index that violates it
while ( true ) {
+ + firstIndexViolatingConvergence ;
if ( this - > hasRelevantValues ( ) ) {
firstIndexViolatingConvergence = this - > getRelevantValues ( ) . getNextSetIndex ( firstIndexViolatingConvergence ) ;
}
if ( firstIndexViolatingConvergence = = stepBoundedStayProbs - > size ( ) ) {
status = SolverStatus : : Converged ;
break ;
} else {
absoluteError = stepBoundedStayProbs - > at ( firstIndexViolatingConvergence ) * ( currentUpperBound - currentLowerBound ) ;
maxAllowedError = relative ? ( precision * stepBoundedX - > at ( firstIndexViolatingConvergence ) ) : precision ;
if ( absoluteError > maxAllowedError ) {
// not converged yet
break ;
}
}
}
}
}
}
// Update environment variables.
+ + iterations ;
// TODO: Implement custom termination criterion. We would need to add our errors to the stepBoundedX values (only if in second phase)
status = updateStatusIfNotConverged ( status , * stepBoundedX , iterations , env . solver ( ) . minMax ( ) . getMaximalNumberOfIterations ( ) , SolverGuarantee : : None ) ;
// Potentially show progress.
this - > showProgressIterative ( iterations ) ;
}
reportStatus ( status , iterations ) ;
STORM_LOG_WARN_COND ( hasCurrentLowerBound & & hasCurrentUpperBound , " No lower or upper result bound could be computed within the given number of Iterations. " ) ;
// Finally set up the solution vector
ValueType meanBound = ( currentUpperBound + currentLowerBound ) / storm : : utility : : convertNumber < ValueType > ( 2.0 ) ;
storm : : utility : : vector : : applyPointwise ( * stepBoundedX , * stepBoundedStayProbs , x , [ & meanBound ] ( ValueType const & v , ValueType const & p ) { return v + p * meanBound ; } ) ;
// If requested, we store the scheduler for retrieval.
if ( this - > isTrackSchedulerSet ( ) ) {
this - > schedulerChoices = std : : vector < uint_fast64_t > ( this - > A - > getRowGroupCount ( ) ) ;
this - > linEqSolverA - > multiplyAndReduce ( dir , this - > A - > getRowGroupIndices ( ) , x , & b , * this - > auxiliaryRowGroupVector , & this - > schedulerChoices . get ( ) ) ;
}
STORM_LOG_INFO ( " Quick Value Iteration terminated with lower value bound "
< < ( hasCurrentLowerBound ? currentLowerBound : storm : : utility : : zero < ValueType > ( ) ) < < ( hasCurrentLowerBound ? " " : " (none) " )
< < " and upper value bound "
< < ( hasCurrentUpperBound ? currentUpperBound : storm : : utility : : zero < ValueType > ( ) ) < < ( hasCurrentUpperBound ? " " : " (none) " )
< < " . Decision value is "
< < ( hasDecisionValue ? decisionValue : storm : : utility : : zero < ValueType > ( ) ) < < ( hasDecisionValue ? " " : " (none) " )
< < " . " ) ;
if ( ! this - > isCachingEnabled ( ) ) {
clearCache ( ) ;
}
return status = = SolverStatus : : Converged ;
}
template < typename ValueType >
bool IterativeMinMaxLinearEquationSolver < ValueType > : : isSolution ( storm : : OptimizationDirection dir , storm : : storage : : SparseMatrix < ValueType > const & matrix , std : : vector < ValueType > const & values , std : : vector < ValueType > const & b ) {
storm : : utility : : ConstantsComparator < ValueType > comparator ;
@ -954,7 +1233,7 @@ namespace storm {
STORM_LOG_ASSERT ( this - > linearEquationSolverFactory , " Linear equation solver factory not initialized. " ) ;
auto method = env . solver ( ) . minMax ( ) . getMethod ( ) ;
STORM_LOG_THROW ( method = = MinMaxMethod : : ValueIteration | | method = = MinMaxMethod : : PolicyIteration | | method = = MinMaxMethod : : RationalSearch , storm : : exceptions : : InvalidEnvironmentException , " This solver does not support the selected method. " ) ;
STORM_LOG_THROW ( method = = MinMaxMethod : : ValueIteration | | method = = MinMaxMethod : : PolicyIteration | | method = = MinMaxMethod : : RationalSearch | | method = = MinMaxMethod : : QuickValueIteration , storm : : exceptions : : InvalidEnvironmentException , " This solver does not support the selected method. " ) ;
std : : unique_ptr < MinMaxLinearEquationSolver < ValueType > > result = std : : make_unique < IterativeMinMaxLinearEquationSolver < ValueType > > ( this - > linearEquationSolverFactory - > clone ( ) ) ;
result - > setRequirementsChecked ( this - > isRequirementsCheckedSet ( ) ) ;