Browse Source

some bug fixes in abstraction-refinement

tempestpy_adaptions
dehnert 7 years ago
parent
commit
9b972eef20
  1. 5
      src/storm/abstraction/SymbolicQualitativeResultMinMax.cpp
  2. 2
      src/storm/abstraction/SymbolicQualitativeResultMinMax.h
  3. 107
      src/storm/modelchecker/abstraction/AbstractAbstractionRefinementModelChecker.cpp
  4. 2
      src/storm/modelchecker/abstraction/AbstractAbstractionRefinementModelChecker.h

5
src/storm/abstraction/SymbolicQualitativeResultMinMax.cpp

@ -5,6 +5,11 @@
namespace storm {
namespace abstraction {
template<storm::dd::DdType Type>
bool SymbolicQualitativeResultMinMax<Type>::isSymbolic() const {
return true;
}
template<storm::dd::DdType Type>
QualitativeResult<Type> const& SymbolicQualitativeResultMinMax<Type>::getProb0Min() const {
return getProb0(storm::OptimizationDirection::Minimize);

2
src/storm/abstraction/SymbolicQualitativeResultMinMax.h

@ -21,6 +21,8 @@ namespace storm {
public:
SymbolicQualitativeResultMinMax() = default;
virtual bool isSymbolic() const override;
QualitativeResult<Type> const& getProb0Min() const;
QualitativeResult<Type> const& getProb1Min() const;
QualitativeResult<Type> const& getProb0Max() const;

107
src/storm/modelchecker/abstraction/AbstractAbstractionRefinementModelChecker.cpp

@ -130,6 +130,8 @@ namespace storm {
// Try to derive the final result from the obtained bounds.
result = tryToObtainResultFromBounds(*abstractModel, bounds);
if (!result) {
printBoundsInformation(bounds);
auto refinementStart = std::chrono::high_resolution_clock::now();
this->refineAbstractModel();
auto refinementEnd = std::chrono::high_resolution_clock::now();
@ -172,7 +174,6 @@ namespace storm {
result = std::make_pair(lastBounds.first->clone(), lastBounds.second->clone());
filterInitialStates(abstractModel, result);
printBoundsInformation(result);
// Check whether the answer can be given after the quantitative solution.
if (checkForResultAfterQuantitativeCheck(abstractModel, true, result.first->asQuantitativeCheckResult<ValueType>())) {
@ -182,16 +183,38 @@ namespace storm {
}
} else {
// In this case, we construct the full results from the qualitative results.
auto symbolicModel = abstractModel.template as<storm::models::symbolic::Model<DdType, ValueType>>();
std::unique_ptr<CheckResult> lowerBounds = std::make_unique<SymbolicQuantitativeCheckResult<DdType, ValueType>>(symbolicModel->getReachableStates(), symbolicModel->getInitialStates(), symbolicModel->getInitialStates().ite(lastQualitativeResults->asSymbolicQualitativeResultMinMax<DdType>().getProb1Min().getStates().template toAdd<ValueType>(), symbolicModel->getManager().template getAddZero<ValueType>()));
std::unique_ptr<CheckResult> upperBounds = std::make_unique<SymbolicQuantitativeCheckResult<DdType, ValueType>>(symbolicModel->getReachableStates(), symbolicModel->getInitialStates(), symbolicModel->getInitialStates().ite(lastQualitativeResults->asSymbolicQualitativeResultMinMax<DdType>().getProb1Max().getStates().template toAdd<ValueType>(), symbolicModel->getManager().template getAddZero<ValueType>()));
result = std::make_pair<std::unique_ptr<CheckResult>, std::unique_ptr<CheckResult>>(std::move(lowerBounds), std::move(upperBounds));
result = createBoundsFromQualitativeResults(abstractModel, *lastQualitativeResults);
}
return result;
}
template<typename ModelType>
std::pair<std::unique_ptr<CheckResult>, std::unique_ptr<CheckResult>> AbstractAbstractionRefinementModelChecker<ModelType>::createBoundsFromQualitativeResults(storm::models::Model<ValueType> const& abstractModel, storm::abstraction::QualitativeResultMinMax const& qualitativeResults) {
STORM_LOG_THROW(qualitativeResults.isSymbolic(), storm::exceptions::NotSupportedException, "Expected symbolic bounds.");
return createBoundsFromQualitativeResults(*abstractModel.template as<storm::models::symbolic::Model<DdType, ValueType>>(), qualitativeResults.asSymbolicQualitativeResultMinMax<DdType>());
}
template<typename ModelType>
std::pair<std::unique_ptr<CheckResult>, std::unique_ptr<CheckResult>> AbstractAbstractionRefinementModelChecker<ModelType>::createBoundsFromQualitativeResults(storm::models::symbolic::Model<DdType, ValueType> const& abstractModel, storm::abstraction::SymbolicQualitativeResultMinMax<DdType> const& qualitativeResults) {
std::unique_ptr<CheckResult> lowerBounds;
std::unique_ptr<CheckResult> upperBounds;
bool isRewardFormula = checkTask->getFormula().isEventuallyFormula() && checkTask->getFormula().asEventuallyFormula().getContext() == storm::logic::FormulaContext::Reward;
if (isRewardFormula) {
lowerBounds = std::make_unique<SymbolicQuantitativeCheckResult<DdType, ValueType>>(abstractModel.getReachableStates(), abstractModel.getInitialStates(), abstractModel.getInitialStates().ite(qualitativeResults.getProb1Min().getStates().ite(abstractModel.getManager().template getAddZero<ValueType>(), abstractModel.getManager().template getConstant<ValueType>(storm::utility::infinity<ValueType>())), abstractModel.getManager().template getAddZero<ValueType>()));
upperBounds = std::make_unique<SymbolicQuantitativeCheckResult<DdType, ValueType>>(abstractModel.getReachableStates(), abstractModel.getInitialStates(), abstractModel.getInitialStates().ite(qualitativeResults.getProb1Max().getStates().ite(abstractModel.getManager().template getAddZero<ValueType>(), abstractModel.getManager().template getConstant<ValueType>(storm::utility::infinity<ValueType>())), abstractModel.getManager().template getAddZero<ValueType>()));
} else {
lowerBounds = std::make_unique<SymbolicQuantitativeCheckResult<DdType, ValueType>>(abstractModel.getReachableStates(), abstractModel.getInitialStates(), abstractModel.getInitialStates().ite(qualitativeResults.getProb1Min().getStates().template toAdd<ValueType>(), abstractModel.getManager().template getAddZero<ValueType>()));
upperBounds = std::make_unique<SymbolicQuantitativeCheckResult<DdType, ValueType>>(abstractModel.getReachableStates(), abstractModel.getInitialStates(), abstractModel.getInitialStates().ite(qualitativeResults.getProb1Max().getStates().template toAdd<ValueType>(), abstractModel.getManager().template getAddZero<ValueType>()));
}
return std::make_pair<std::unique_ptr<CheckResult>, std::unique_ptr<CheckResult>>(std::move(lowerBounds), std::move(upperBounds));
}
template<typename ModelType>
bool AbstractAbstractionRefinementModelChecker<ModelType>::checkForResultAfterQuantitativeCheck(storm::models::Model<ValueType> const& abstractModel, bool lowerBounds, QuantitativeCheckResult<ValueType> const& quantitativeResult) {
@ -310,22 +333,33 @@ namespace storm {
}
}
// FIXME: reuse previous result
template<typename ModelType>
std::pair<std::unique_ptr<CheckResult>, std::unique_ptr<CheckResult>> AbstractAbstractionRefinementModelChecker<ModelType>::computeQuantitativeResult(storm::models::symbolic::Dtmc<DdType, ValueType> const& abstractModel, storm::abstraction::SymbolicStateSet<DdType> const& constraintStates, storm::abstraction::SymbolicStateSet<DdType> const& targetStates, storm::abstraction::SymbolicQualitativeResultMinMax<DdType> const& qualitativeResults) {
std::pair<std::unique_ptr<CheckResult>, std::unique_ptr<CheckResult>> result;
storm::dd::Bdd<DdType> maybe;
bool isRewardFormula = checkTask->getFormula().isEventuallyFormula() && checkTask->getFormula().asEventuallyFormula().getContext() == storm::logic::FormulaContext::Reward;
if (isRewardFormula) {
storm::dd::Bdd<DdType> maybe = qualitativeResults.getProb1Min().getStates() && abstractModel.getReachableStates();
storm::dd::Add<DdType, ValueType> values = storm::modelchecker::helper::SymbolicDtmcPrctlHelper<DdType, ValueType>::computeReachabilityRewards(abstractModel, abstractModel.getTransitionMatrix(), checkTask->isRewardModelSet() ? abstractModel.getRewardModel(checkTask->getRewardModel()) : abstractModel.getRewardModel(""), maybe, targetStates.getStates(), !qualitativeResults.getProb1Min().getStates() && abstractModel.getReachableStates(), storm::solver::GeneralSymbolicLinearEquationSolverFactory<DdType, ValueType>(), abstractModel.getManager().template getAddZero<ValueType>());
maybe = qualitativeResults.getProb1Min().getStates() && abstractModel.getReachableStates();
} else {
maybe = !(qualitativeResults.getProb0Min().getStates() || qualitativeResults.getProb1Min().getStates()) && abstractModel.getReachableStates();
}
storm::dd::Add<DdType, ValueType> startValues;
if (this->getReuseQuantitativeResults() && lastBounds.first) {
startValues = maybe.ite(lastBounds.first->asSymbolicQuantitativeCheckResult<DdType, ValueType>().getValueVector(), abstractModel.getManager().template getAddZero<ValueType>());
} else {
startValues = abstractModel.getManager().template getAddZero<ValueType>();
}
if (isRewardFormula) {
storm::dd::Add<DdType, ValueType> values = storm::modelchecker::helper::SymbolicDtmcPrctlHelper<DdType, ValueType>::computeReachabilityRewards(abstractModel, abstractModel.getTransitionMatrix(), checkTask->isRewardModelSet() ? abstractModel.getRewardModel(checkTask->getRewardModel()) : abstractModel.getRewardModel(""), maybe, targetStates.getStates(), !qualitativeResults.getProb1Min().getStates() && abstractModel.getReachableStates(), storm::solver::GeneralSymbolicLinearEquationSolverFactory<DdType, ValueType>(), startValues);
result.first = std::make_unique<SymbolicQuantitativeCheckResult<DdType, ValueType>>(abstractModel.getReachableStates(), values);
result.second = result.first->clone();
} else {
storm::dd::Bdd<DdType> maybe = !(qualitativeResults.getProb0Min().getStates() || qualitativeResults.getProb1Min().getStates()) && abstractModel.getReachableStates();
storm::dd::Add<DdType, ValueType> values = storm::modelchecker::helper::SymbolicDtmcPrctlHelper<DdType, ValueType>::computeUntilProbabilities(abstractModel, abstractModel.getTransitionMatrix(), maybe, qualitativeResults.getProb1Min().getStates(), storm::solver::GeneralSymbolicLinearEquationSolverFactory<DdType, ValueType>(), abstractModel.getManager().template getAddZero<ValueType>());
storm::dd::Add<DdType, ValueType> values = storm::modelchecker::helper::SymbolicDtmcPrctlHelper<DdType, ValueType>::computeUntilProbabilities(abstractModel, abstractModel.getTransitionMatrix(), maybe, qualitativeResults.getProb1Min().getStates(), storm::solver::GeneralSymbolicLinearEquationSolverFactory<DdType, ValueType>(), startValues);
result.first = std::make_unique<SymbolicQuantitativeCheckResult<DdType, ValueType>>(abstractModel.getReachableStates(), values);
result.second = result.first->clone();
@ -334,44 +368,64 @@ namespace storm {
return result;
}
// FIXME: reuse previous result
template<typename ModelType>
std::pair<std::unique_ptr<CheckResult>, std::unique_ptr<CheckResult>> AbstractAbstractionRefinementModelChecker<ModelType>::computeQuantitativeResult(storm::models::symbolic::Mdp<DdType, ValueType> const& abstractModel, storm::abstraction::SymbolicStateSet<DdType> const& constraintStates, storm::abstraction::SymbolicStateSet<DdType> const& targetStates, storm::abstraction::SymbolicQualitativeResultMinMax<DdType> const& qualitativeResults) {
std::pair<std::unique_ptr<CheckResult>, std::unique_ptr<CheckResult>> result;
storm::dd::Bdd<DdType> maybeMin;
storm::dd::Bdd<DdType> maybeMax;
bool isRewardFormula = checkTask->getFormula().isEventuallyFormula() && checkTask->getFormula().asEventuallyFormula().getContext() == storm::logic::FormulaContext::Reward;
if (isRewardFormula) {
storm::dd::Bdd<DdType> maybeMin = qualitativeResults.getProb1Min().getStates() && abstractModel.getReachableStates();
result.first = storm::modelchecker::helper::SymbolicMdpPrctlHelper<DdType, ValueType>::computeReachabilityRewards(storm::OptimizationDirection::Minimize, abstractModel, abstractModel.getTransitionMatrix(), abstractModel.getTransitionMatrix().notZero(), checkTask->isRewardModelSet() ? abstractModel.getRewardModel(checkTask->getRewardModel()) : abstractModel.getRewardModel(""), maybeMin, targetStates.getStates(), !qualitativeResults.getProb1Min().getStates() && abstractModel.getReachableStates(), storm::solver::GeneralSymbolicMinMaxLinearEquationSolverFactory<DdType, ValueType>(), abstractModel.getManager().template getAddZero<ValueType>());
maybeMin = qualitativeResults.getProb1Min().getStates() && abstractModel.getReachableStates();
maybeMax = qualitativeResults.getProb1Max().getStates() && abstractModel.getReachableStates();
} else {
maybeMin = !(qualitativeResults.getProb0Min().getStates() || qualitativeResults.getProb1Min().getStates()) && abstractModel.getReachableStates();
maybeMax = !(qualitativeResults.getProb0Max().getStates() || qualitativeResults.getProb1Max().getStates()) && abstractModel.getReachableStates();
}
storm::dd::Bdd<DdType> maybeMax = qualitativeResults.getProb1Max().getStates() && abstractModel.getReachableStates();
result.second = storm::modelchecker::helper::SymbolicMdpPrctlHelper<DdType, ValueType>::computeReachabilityRewards(storm::OptimizationDirection::Maximize, abstractModel, abstractModel.getTransitionMatrix(), abstractModel.getTransitionMatrix().notZero(), checkTask->isRewardModelSet() ? abstractModel.getRewardModel(checkTask->getRewardModel()) : abstractModel.getRewardModel(""), maybeMin, targetStates.getStates(), !qualitativeResults.getProb1Max().getStates() && abstractModel.getReachableStates(), storm::solver::GeneralSymbolicMinMaxLinearEquationSolverFactory<DdType, ValueType>(), maybeMax.ite(result.first->asSymbolicQuantitativeCheckResult<DdType, ValueType>().getValueVector(), abstractModel.getManager().template getAddZero<ValueType>()));
storm::dd::Add<DdType, ValueType> minStartValues;
if (this->getReuseQuantitativeResults() && lastBounds.first) {
minStartValues = maybeMin.ite(lastBounds.first->asSymbolicQuantitativeCheckResult<DdType, ValueType>().getValueVector(), abstractModel.getManager().template getAddZero<ValueType>());
} else {
storm::dd::Bdd<DdType> maybeMin = !(qualitativeResults.getProb0Min().getStates() || qualitativeResults.getProb1Min().getStates()) && abstractModel.getReachableStates();
result.first = storm::modelchecker::helper::SymbolicMdpPrctlHelper<DdType, ValueType>::computeUntilProbabilities(storm::OptimizationDirection::Minimize, abstractModel, abstractModel.getTransitionMatrix(), maybeMin, qualitativeResults.getProb1Min().getStates(), storm::solver::GeneralSymbolicMinMaxLinearEquationSolverFactory<DdType, ValueType>(), abstractModel.getManager().template getAddZero<ValueType>());
minStartValues = abstractModel.getManager().template getAddZero<ValueType>();
}
storm::dd::Bdd<DdType> maybeMax = !(qualitativeResults.getProb0Max().getStates() || qualitativeResults.getProb1Max().getStates()) && abstractModel.getReachableStates();
if (isRewardFormula) {
result.first = storm::modelchecker::helper::SymbolicMdpPrctlHelper<DdType, ValueType>::computeReachabilityRewards(storm::OptimizationDirection::Minimize, abstractModel, abstractModel.getTransitionMatrix(), abstractModel.getTransitionMatrix().notZero(), checkTask->isRewardModelSet() ? abstractModel.getRewardModel(checkTask->getRewardModel()) : abstractModel.getRewardModel(""), maybeMin, targetStates.getStates(), !qualitativeResults.getProb1Min().getStates() && abstractModel.getReachableStates(), storm::solver::GeneralSymbolicMinMaxLinearEquationSolverFactory<DdType, ValueType>(), minStartValues);
result.second = storm::modelchecker::helper::SymbolicMdpPrctlHelper<DdType, ValueType>::computeReachabilityRewards(storm::OptimizationDirection::Maximize, abstractModel, abstractModel.getTransitionMatrix(), abstractModel.getTransitionMatrix().notZero(), checkTask->isRewardModelSet() ? abstractModel.getRewardModel(checkTask->getRewardModel()) : abstractModel.getRewardModel(""), maybeMin, targetStates.getStates(), !qualitativeResults.getProb1Max().getStates() && abstractModel.getReachableStates(), storm::solver::GeneralSymbolicMinMaxLinearEquationSolverFactory<DdType, ValueType>(), maybeMax.ite(result.first->asSymbolicQuantitativeCheckResult<DdType, ValueType>().getValueVector(), abstractModel.getManager().template getAddZero<ValueType>()));
} else {
result.first = storm::modelchecker::helper::SymbolicMdpPrctlHelper<DdType, ValueType>::computeUntilProbabilities(storm::OptimizationDirection::Minimize, abstractModel, abstractModel.getTransitionMatrix(), maybeMin, qualitativeResults.getProb1Min().getStates(), storm::solver::GeneralSymbolicMinMaxLinearEquationSolverFactory<DdType, ValueType>(), minStartValues);
result.second = storm::modelchecker::helper::SymbolicMdpPrctlHelper<DdType, ValueType>::computeUntilProbabilities(storm::OptimizationDirection::Maximize, abstractModel, abstractModel.getTransitionMatrix(), maybeMax, qualitativeResults.getProb1Max().getStates(), storm::solver::GeneralSymbolicMinMaxLinearEquationSolverFactory<DdType, ValueType>(), maybeMax.ite(result.first->asSymbolicQuantitativeCheckResult<DdType, ValueType>().getValueVector(), abstractModel.getManager().template getAddZero<ValueType>()));
}
return result;
}
// FIXME: reuse previous result
template<typename ModelType>
std::pair<std::unique_ptr<CheckResult>, std::unique_ptr<CheckResult>> AbstractAbstractionRefinementModelChecker<ModelType>::computeQuantitativeResult(storm::models::symbolic::StochasticTwoPlayerGame<DdType, ValueType> const& abstractModel, storm::abstraction::SymbolicStateSet<DdType> const& constraintStates, storm::abstraction::SymbolicStateSet<DdType> const& targetStates, storm::abstraction::SymbolicQualitativeResultMinMax<DdType> const& qualitativeResults) {
std::pair<std::unique_ptr<CheckResult>, std::unique_ptr<CheckResult>> result;
storm::dd::Bdd<DdType> maybeMin;
storm::dd::Bdd<DdType> maybeMax;
bool isRewardFormula = checkTask->getFormula().isEventuallyFormula() && checkTask->getFormula().asEventuallyFormula().getContext() == storm::logic::FormulaContext::Reward;
if (!isRewardFormula) {
maybeMin = !(qualitativeResults.getProb0Min().getStates() || qualitativeResults.getProb1Min().getStates()) && abstractModel.getReachableStates();
maybeMax = !(qualitativeResults.getProb0Max().getStates() || qualitativeResults.getProb1Max().getStates()) && abstractModel.getReachableStates();
}
storm::dd::Add<DdType, ValueType> minStartValues;
if (this->getReuseQuantitativeResults() && lastBounds.first) {
minStartValues = maybeMin.ite(lastBounds.first->asSymbolicQuantitativeCheckResult<DdType, ValueType>().getValueVector(), abstractModel.getManager().template getAddZero<ValueType>());
} else {
minStartValues = abstractModel.getManager().template getAddZero<ValueType>();
}
if (isRewardFormula) {
STORM_LOG_THROW(false, storm::exceptions::NotSupportedException, "Reward properties are not supported for abstract stochastic games.");
} else {
storm::dd::Bdd<DdType> maybeMin = !(qualitativeResults.getProb0Min().getStates() || qualitativeResults.getProb1Min().getStates()) && abstractModel.getReachableStates();
result.first = computeReachabilityProbabilitiesHelper(abstractModel, this->getAbstractionPlayer() == 1 ? storm::OptimizationDirection::Minimize : checkTask->getOptimizationDirection(), this->getAbstractionPlayer() == 2 ? storm::OptimizationDirection::Minimize : checkTask->getOptimizationDirection(), maybeMin, qualitativeResults.getProb1Min().getStates(), abstractModel.getManager().template getAddZero<ValueType>());
storm::dd::Bdd<DdType> maybeMax = !(qualitativeResults.getProb0Max().getStates() || qualitativeResults.getProb1Max().getStates()) && abstractModel.getReachableStates();
result.first = computeReachabilityProbabilitiesHelper(abstractModel, this->getAbstractionPlayer() == 1 ? storm::OptimizationDirection::Minimize : checkTask->getOptimizationDirection(), this->getAbstractionPlayer() == 2 ? storm::OptimizationDirection::Minimize : checkTask->getOptimizationDirection(), maybeMin, qualitativeResults.getProb1Min().getStates(), minStartValues);
result.second = computeReachabilityProbabilitiesHelper(abstractModel, this->getAbstractionPlayer() == 1 ? storm::OptimizationDirection::Maximize : checkTask->getOptimizationDirection(), this->getAbstractionPlayer() == 2 ? storm::OptimizationDirection::Maximize : checkTask->getOptimizationDirection(), maybeMin, qualitativeResults.getProb1Max().getStates(), maybeMax.ite(result.first->asSymbolicQuantitativeCheckResult<DdType, ValueType>().getValueVector(), abstractModel.getManager().template getAddZero<ValueType>()));
}
@ -460,7 +514,8 @@ namespace storm {
if (isRewardFormula) {
auto states = storm::utility::graph::performProb1E(abstractModel, transitionMatrixBdd, constraintStates.getStates(), targetStates.getStates(), lastQualitativeResults ? lastQualitativeResults->asSymbolicQualitativeResultMinMax<DdType>().getProb1Min().getStates() : storm::utility::graph::performProbGreater0E(abstractModel, transitionMatrixBdd, constraintStates.getStates(), targetStates.getStates()));
result->prob1Min = storm::abstraction::QualitativeMdpResult<DdType>(states);
states = storm::utility::graph::performProb1A(abstractModel, transitionMatrixBdd, targetStates.getStates(), states);
states = storm::utility::graph::performProb1A(abstractModel, transitionMatrixBdd, targetStates.getStates(), storm::utility::graph::performProbGreater0A(abstractModel, transitionMatrixBdd, constraintStates.getStates(), targetStates.getStates()));
result->prob1Max = storm::abstraction::QualitativeMdpResult<DdType>(states);
} else {
auto states = storm::utility::graph::performProb0A(abstractModel, transitionMatrixBdd, constraintStates.getStates(), targetStates.getStates());
@ -579,7 +634,7 @@ namespace storm {
// (2) max/max: compute prob1 using the MDP functions, reuse prob1 states of last iteration to constrain the candidate states.
storm::dd::Bdd<DdType> candidates = abstractModel.getReachableStates() && !result->getProb0Max().getStates();
if (this->getReuseQualitativeResults()) {
if (this->getReuseQualitativeResults() && lastQualitativeResults) {
candidates &= lastQualitativeResults->asSymbolicQualitativeResultMinMax<DdType>().getProb1Max().getStates();
}
storm::dd::Bdd<DdType> prob1MaxMaxMdp = storm::utility::graph::performProb1E(abstractModel, transitionMatrixBdd, constraintStates.getStates(), targetStates.getStates(), candidates);

2
src/storm/modelchecker/abstraction/AbstractAbstractionRefinementModelChecker.h

@ -138,6 +138,8 @@ namespace storm {
void printBoundsInformation(SymbolicQuantitativeCheckResult<DdType, ValueType> const& lowerBounds, SymbolicQuantitativeCheckResult<DdType, ValueType> const& upperBounds);
bool checkForResultAfterQuantitativeCheck(storm::models::Model<ValueType> const& abstractModel, bool lowerBounds, QuantitativeCheckResult<ValueType> const& result);
std::unique_ptr<CheckResult> computeReachabilityProbabilitiesHelper(storm::models::symbolic::StochasticTwoPlayerGame<DdType, ValueType> const& abstractModel, storm::OptimizationDirection const& player1Direction, storm::OptimizationDirection const& player2Direction, storm::dd::Bdd<DdType> const& maybeStates, storm::dd::Bdd<DdType> const& prob1States, storm::dd::Add<DdType, ValueType> const& startValues);
std::pair<std::unique_ptr<CheckResult>, std::unique_ptr<CheckResult>> createBoundsFromQualitativeResults(storm::models::Model<ValueType> const& abstractModel, storm::abstraction::QualitativeResultMinMax const& qualitativeResults);
std::pair<std::unique_ptr<CheckResult>, std::unique_ptr<CheckResult>> createBoundsFromQualitativeResults(storm::models::symbolic::Model<DdType, ValueType> const& abstractModel, storm::abstraction::SymbolicQualitativeResultMinMax<DdType> const& qualitativeResults);
/// Tries to obtain the results from the bounds. If either of the two bounds is null, the result is assumed
/// to be the non-null bound. If neither is null and the bounds are sufficiently close, the average of the

Loading…
Cancel
Save