|
@ -130,6 +130,8 @@ namespace storm { |
|
|
// Try to derive the final result from the obtained bounds.
|
|
|
// Try to derive the final result from the obtained bounds.
|
|
|
result = tryToObtainResultFromBounds(*abstractModel, bounds); |
|
|
result = tryToObtainResultFromBounds(*abstractModel, bounds); |
|
|
if (!result) { |
|
|
if (!result) { |
|
|
|
|
|
printBoundsInformation(bounds); |
|
|
|
|
|
|
|
|
auto refinementStart = std::chrono::high_resolution_clock::now(); |
|
|
auto refinementStart = std::chrono::high_resolution_clock::now(); |
|
|
this->refineAbstractModel(); |
|
|
this->refineAbstractModel(); |
|
|
auto refinementEnd = std::chrono::high_resolution_clock::now(); |
|
|
auto refinementEnd = std::chrono::high_resolution_clock::now(); |
|
@ -172,7 +174,6 @@ namespace storm { |
|
|
|
|
|
|
|
|
result = std::make_pair(lastBounds.first->clone(), lastBounds.second->clone()); |
|
|
result = std::make_pair(lastBounds.first->clone(), lastBounds.second->clone()); |
|
|
filterInitialStates(abstractModel, result); |
|
|
filterInitialStates(abstractModel, result); |
|
|
printBoundsInformation(result); |
|
|
|
|
|
|
|
|
|
|
|
// Check whether the answer can be given after the quantitative solution.
|
|
|
// Check whether the answer can be given after the quantitative solution.
|
|
|
if (checkForResultAfterQuantitativeCheck(abstractModel, true, result.first->asQuantitativeCheckResult<ValueType>())) { |
|
|
if (checkForResultAfterQuantitativeCheck(abstractModel, true, result.first->asQuantitativeCheckResult<ValueType>())) { |
|
@ -182,16 +183,38 @@ namespace storm { |
|
|
} |
|
|
} |
|
|
} else { |
|
|
} else { |
|
|
// In this case, we construct the full results from the qualitative results.
|
|
|
// In this case, we construct the full results from the qualitative results.
|
|
|
auto symbolicModel = abstractModel.template as<storm::models::symbolic::Model<DdType, ValueType>>(); |
|
|
|
|
|
std::unique_ptr<CheckResult> lowerBounds = std::make_unique<SymbolicQuantitativeCheckResult<DdType, ValueType>>(symbolicModel->getReachableStates(), symbolicModel->getInitialStates(), symbolicModel->getInitialStates().ite(lastQualitativeResults->asSymbolicQualitativeResultMinMax<DdType>().getProb1Min().getStates().template toAdd<ValueType>(), symbolicModel->getManager().template getAddZero<ValueType>())); |
|
|
|
|
|
std::unique_ptr<CheckResult> upperBounds = std::make_unique<SymbolicQuantitativeCheckResult<DdType, ValueType>>(symbolicModel->getReachableStates(), symbolicModel->getInitialStates(), symbolicModel->getInitialStates().ite(lastQualitativeResults->asSymbolicQualitativeResultMinMax<DdType>().getProb1Max().getStates().template toAdd<ValueType>(), symbolicModel->getManager().template getAddZero<ValueType>())); |
|
|
|
|
|
|
|
|
|
|
|
result = std::make_pair<std::unique_ptr<CheckResult>, std::unique_ptr<CheckResult>>(std::move(lowerBounds), std::move(upperBounds)); |
|
|
|
|
|
|
|
|
result = createBoundsFromQualitativeResults(abstractModel, *lastQualitativeResults); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
return result; |
|
|
return result; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
template<typename ModelType> |
|
|
|
|
|
std::pair<std::unique_ptr<CheckResult>, std::unique_ptr<CheckResult>> AbstractAbstractionRefinementModelChecker<ModelType>::createBoundsFromQualitativeResults(storm::models::Model<ValueType> const& abstractModel, storm::abstraction::QualitativeResultMinMax const& qualitativeResults) { |
|
|
|
|
|
|
|
|
|
|
|
STORM_LOG_THROW(qualitativeResults.isSymbolic(), storm::exceptions::NotSupportedException, "Expected symbolic bounds."); |
|
|
|
|
|
|
|
|
|
|
|
return createBoundsFromQualitativeResults(*abstractModel.template as<storm::models::symbolic::Model<DdType, ValueType>>(), qualitativeResults.asSymbolicQualitativeResultMinMax<DdType>()); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
template<typename ModelType> |
|
|
|
|
|
std::pair<std::unique_ptr<CheckResult>, std::unique_ptr<CheckResult>> AbstractAbstractionRefinementModelChecker<ModelType>::createBoundsFromQualitativeResults(storm::models::symbolic::Model<DdType, ValueType> const& abstractModel, storm::abstraction::SymbolicQualitativeResultMinMax<DdType> const& qualitativeResults) { |
|
|
|
|
|
|
|
|
|
|
|
std::unique_ptr<CheckResult> lowerBounds; |
|
|
|
|
|
std::unique_ptr<CheckResult> upperBounds; |
|
|
|
|
|
|
|
|
|
|
|
bool isRewardFormula = checkTask->getFormula().isEventuallyFormula() && checkTask->getFormula().asEventuallyFormula().getContext() == storm::logic::FormulaContext::Reward; |
|
|
|
|
|
if (isRewardFormula) { |
|
|
|
|
|
lowerBounds = std::make_unique<SymbolicQuantitativeCheckResult<DdType, ValueType>>(abstractModel.getReachableStates(), abstractModel.getInitialStates(), abstractModel.getInitialStates().ite(qualitativeResults.getProb1Min().getStates().ite(abstractModel.getManager().template getAddZero<ValueType>(), abstractModel.getManager().template getConstant<ValueType>(storm::utility::infinity<ValueType>())), abstractModel.getManager().template getAddZero<ValueType>())); |
|
|
|
|
|
upperBounds = std::make_unique<SymbolicQuantitativeCheckResult<DdType, ValueType>>(abstractModel.getReachableStates(), abstractModel.getInitialStates(), abstractModel.getInitialStates().ite(qualitativeResults.getProb1Max().getStates().ite(abstractModel.getManager().template getAddZero<ValueType>(), abstractModel.getManager().template getConstant<ValueType>(storm::utility::infinity<ValueType>())), abstractModel.getManager().template getAddZero<ValueType>())); |
|
|
|
|
|
} else { |
|
|
|
|
|
lowerBounds = std::make_unique<SymbolicQuantitativeCheckResult<DdType, ValueType>>(abstractModel.getReachableStates(), abstractModel.getInitialStates(), abstractModel.getInitialStates().ite(qualitativeResults.getProb1Min().getStates().template toAdd<ValueType>(), abstractModel.getManager().template getAddZero<ValueType>())); |
|
|
|
|
|
upperBounds = std::make_unique<SymbolicQuantitativeCheckResult<DdType, ValueType>>(abstractModel.getReachableStates(), abstractModel.getInitialStates(), abstractModel.getInitialStates().ite(qualitativeResults.getProb1Max().getStates().template toAdd<ValueType>(), abstractModel.getManager().template getAddZero<ValueType>())); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
return std::make_pair<std::unique_ptr<CheckResult>, std::unique_ptr<CheckResult>>(std::move(lowerBounds), std::move(upperBounds)); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
template<typename ModelType> |
|
|
template<typename ModelType> |
|
|
bool AbstractAbstractionRefinementModelChecker<ModelType>::checkForResultAfterQuantitativeCheck(storm::models::Model<ValueType> const& abstractModel, bool lowerBounds, QuantitativeCheckResult<ValueType> const& quantitativeResult) { |
|
|
bool AbstractAbstractionRefinementModelChecker<ModelType>::checkForResultAfterQuantitativeCheck(storm::models::Model<ValueType> const& abstractModel, bool lowerBounds, QuantitativeCheckResult<ValueType> const& quantitativeResult) { |
|
|
|
|
|
|
|
@ -310,22 +333,33 @@ namespace storm { |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
// FIXME: reuse previous result
|
|
|
|
|
|
template<typename ModelType> |
|
|
template<typename ModelType> |
|
|
std::pair<std::unique_ptr<CheckResult>, std::unique_ptr<CheckResult>> AbstractAbstractionRefinementModelChecker<ModelType>::computeQuantitativeResult(storm::models::symbolic::Dtmc<DdType, ValueType> const& abstractModel, storm::abstraction::SymbolicStateSet<DdType> const& constraintStates, storm::abstraction::SymbolicStateSet<DdType> const& targetStates, storm::abstraction::SymbolicQualitativeResultMinMax<DdType> const& qualitativeResults) { |
|
|
std::pair<std::unique_ptr<CheckResult>, std::unique_ptr<CheckResult>> AbstractAbstractionRefinementModelChecker<ModelType>::computeQuantitativeResult(storm::models::symbolic::Dtmc<DdType, ValueType> const& abstractModel, storm::abstraction::SymbolicStateSet<DdType> const& constraintStates, storm::abstraction::SymbolicStateSet<DdType> const& targetStates, storm::abstraction::SymbolicQualitativeResultMinMax<DdType> const& qualitativeResults) { |
|
|
|
|
|
|
|
|
std::pair<std::unique_ptr<CheckResult>, std::unique_ptr<CheckResult>> result; |
|
|
std::pair<std::unique_ptr<CheckResult>, std::unique_ptr<CheckResult>> result; |
|
|
|
|
|
storm::dd::Bdd<DdType> maybe; |
|
|
|
|
|
|
|
|
bool isRewardFormula = checkTask->getFormula().isEventuallyFormula() && checkTask->getFormula().asEventuallyFormula().getContext() == storm::logic::FormulaContext::Reward; |
|
|
bool isRewardFormula = checkTask->getFormula().isEventuallyFormula() && checkTask->getFormula().asEventuallyFormula().getContext() == storm::logic::FormulaContext::Reward; |
|
|
if (isRewardFormula) { |
|
|
if (isRewardFormula) { |
|
|
storm::dd::Bdd<DdType> maybe = qualitativeResults.getProb1Min().getStates() && abstractModel.getReachableStates(); |
|
|
|
|
|
storm::dd::Add<DdType, ValueType> values = storm::modelchecker::helper::SymbolicDtmcPrctlHelper<DdType, ValueType>::computeReachabilityRewards(abstractModel, abstractModel.getTransitionMatrix(), checkTask->isRewardModelSet() ? abstractModel.getRewardModel(checkTask->getRewardModel()) : abstractModel.getRewardModel(""), maybe, targetStates.getStates(), !qualitativeResults.getProb1Min().getStates() && abstractModel.getReachableStates(), storm::solver::GeneralSymbolicLinearEquationSolverFactory<DdType, ValueType>(), abstractModel.getManager().template getAddZero<ValueType>()); |
|
|
|
|
|
|
|
|
maybe = qualitativeResults.getProb1Min().getStates() && abstractModel.getReachableStates(); |
|
|
|
|
|
} else { |
|
|
|
|
|
maybe = !(qualitativeResults.getProb0Min().getStates() || qualitativeResults.getProb1Min().getStates()) && abstractModel.getReachableStates(); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
storm::dd::Add<DdType, ValueType> startValues; |
|
|
|
|
|
if (this->getReuseQuantitativeResults() && lastBounds.first) { |
|
|
|
|
|
startValues = maybe.ite(lastBounds.first->asSymbolicQuantitativeCheckResult<DdType, ValueType>().getValueVector(), abstractModel.getManager().template getAddZero<ValueType>()); |
|
|
|
|
|
} else { |
|
|
|
|
|
startValues = abstractModel.getManager().template getAddZero<ValueType>(); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
if (isRewardFormula) { |
|
|
|
|
|
storm::dd::Add<DdType, ValueType> values = storm::modelchecker::helper::SymbolicDtmcPrctlHelper<DdType, ValueType>::computeReachabilityRewards(abstractModel, abstractModel.getTransitionMatrix(), checkTask->isRewardModelSet() ? abstractModel.getRewardModel(checkTask->getRewardModel()) : abstractModel.getRewardModel(""), maybe, targetStates.getStates(), !qualitativeResults.getProb1Min().getStates() && abstractModel.getReachableStates(), storm::solver::GeneralSymbolicLinearEquationSolverFactory<DdType, ValueType>(), startValues); |
|
|
|
|
|
|
|
|
result.first = std::make_unique<SymbolicQuantitativeCheckResult<DdType, ValueType>>(abstractModel.getReachableStates(), values); |
|
|
result.first = std::make_unique<SymbolicQuantitativeCheckResult<DdType, ValueType>>(abstractModel.getReachableStates(), values); |
|
|
result.second = result.first->clone(); |
|
|
result.second = result.first->clone(); |
|
|
} else { |
|
|
} else { |
|
|
storm::dd::Bdd<DdType> maybe = !(qualitativeResults.getProb0Min().getStates() || qualitativeResults.getProb1Min().getStates()) && abstractModel.getReachableStates(); |
|
|
|
|
|
storm::dd::Add<DdType, ValueType> values = storm::modelchecker::helper::SymbolicDtmcPrctlHelper<DdType, ValueType>::computeUntilProbabilities(abstractModel, abstractModel.getTransitionMatrix(), maybe, qualitativeResults.getProb1Min().getStates(), storm::solver::GeneralSymbolicLinearEquationSolverFactory<DdType, ValueType>(), abstractModel.getManager().template getAddZero<ValueType>()); |
|
|
|
|
|
|
|
|
storm::dd::Add<DdType, ValueType> values = storm::modelchecker::helper::SymbolicDtmcPrctlHelper<DdType, ValueType>::computeUntilProbabilities(abstractModel, abstractModel.getTransitionMatrix(), maybe, qualitativeResults.getProb1Min().getStates(), storm::solver::GeneralSymbolicLinearEquationSolverFactory<DdType, ValueType>(), startValues); |
|
|
|
|
|
|
|
|
result.first = std::make_unique<SymbolicQuantitativeCheckResult<DdType, ValueType>>(abstractModel.getReachableStates(), values); |
|
|
result.first = std::make_unique<SymbolicQuantitativeCheckResult<DdType, ValueType>>(abstractModel.getReachableStates(), values); |
|
|
result.second = result.first->clone(); |
|
|
result.second = result.first->clone(); |
|
@ -334,44 +368,64 @@ namespace storm { |
|
|
return result; |
|
|
return result; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
// FIXME: reuse previous result
|
|
|
|
|
|
template<typename ModelType> |
|
|
template<typename ModelType> |
|
|
std::pair<std::unique_ptr<CheckResult>, std::unique_ptr<CheckResult>> AbstractAbstractionRefinementModelChecker<ModelType>::computeQuantitativeResult(storm::models::symbolic::Mdp<DdType, ValueType> const& abstractModel, storm::abstraction::SymbolicStateSet<DdType> const& constraintStates, storm::abstraction::SymbolicStateSet<DdType> const& targetStates, storm::abstraction::SymbolicQualitativeResultMinMax<DdType> const& qualitativeResults) { |
|
|
std::pair<std::unique_ptr<CheckResult>, std::unique_ptr<CheckResult>> AbstractAbstractionRefinementModelChecker<ModelType>::computeQuantitativeResult(storm::models::symbolic::Mdp<DdType, ValueType> const& abstractModel, storm::abstraction::SymbolicStateSet<DdType> const& constraintStates, storm::abstraction::SymbolicStateSet<DdType> const& targetStates, storm::abstraction::SymbolicQualitativeResultMinMax<DdType> const& qualitativeResults) { |
|
|
|
|
|
|
|
|
std::pair<std::unique_ptr<CheckResult>, std::unique_ptr<CheckResult>> result; |
|
|
std::pair<std::unique_ptr<CheckResult>, std::unique_ptr<CheckResult>> result; |
|
|
|
|
|
storm::dd::Bdd<DdType> maybeMin; |
|
|
|
|
|
storm::dd::Bdd<DdType> maybeMax; |
|
|
|
|
|
|
|
|
bool isRewardFormula = checkTask->getFormula().isEventuallyFormula() && checkTask->getFormula().asEventuallyFormula().getContext() == storm::logic::FormulaContext::Reward; |
|
|
bool isRewardFormula = checkTask->getFormula().isEventuallyFormula() && checkTask->getFormula().asEventuallyFormula().getContext() == storm::logic::FormulaContext::Reward; |
|
|
if (isRewardFormula) { |
|
|
if (isRewardFormula) { |
|
|
storm::dd::Bdd<DdType> maybeMin = qualitativeResults.getProb1Min().getStates() && abstractModel.getReachableStates(); |
|
|
|
|
|
result.first = storm::modelchecker::helper::SymbolicMdpPrctlHelper<DdType, ValueType>::computeReachabilityRewards(storm::OptimizationDirection::Minimize, abstractModel, abstractModel.getTransitionMatrix(), abstractModel.getTransitionMatrix().notZero(), checkTask->isRewardModelSet() ? abstractModel.getRewardModel(checkTask->getRewardModel()) : abstractModel.getRewardModel(""), maybeMin, targetStates.getStates(), !qualitativeResults.getProb1Min().getStates() && abstractModel.getReachableStates(), storm::solver::GeneralSymbolicMinMaxLinearEquationSolverFactory<DdType, ValueType>(), abstractModel.getManager().template getAddZero<ValueType>()); |
|
|
|
|
|
|
|
|
maybeMin = qualitativeResults.getProb1Min().getStates() && abstractModel.getReachableStates(); |
|
|
|
|
|
maybeMax = qualitativeResults.getProb1Max().getStates() && abstractModel.getReachableStates(); |
|
|
|
|
|
} else { |
|
|
|
|
|
maybeMin = !(qualitativeResults.getProb0Min().getStates() || qualitativeResults.getProb1Min().getStates()) && abstractModel.getReachableStates(); |
|
|
|
|
|
maybeMax = !(qualitativeResults.getProb0Max().getStates() || qualitativeResults.getProb1Max().getStates()) && abstractModel.getReachableStates(); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
storm::dd::Bdd<DdType> maybeMax = qualitativeResults.getProb1Max().getStates() && abstractModel.getReachableStates(); |
|
|
|
|
|
result.second = storm::modelchecker::helper::SymbolicMdpPrctlHelper<DdType, ValueType>::computeReachabilityRewards(storm::OptimizationDirection::Maximize, abstractModel, abstractModel.getTransitionMatrix(), abstractModel.getTransitionMatrix().notZero(), checkTask->isRewardModelSet() ? abstractModel.getRewardModel(checkTask->getRewardModel()) : abstractModel.getRewardModel(""), maybeMin, targetStates.getStates(), !qualitativeResults.getProb1Max().getStates() && abstractModel.getReachableStates(), storm::solver::GeneralSymbolicMinMaxLinearEquationSolverFactory<DdType, ValueType>(), maybeMax.ite(result.first->asSymbolicQuantitativeCheckResult<DdType, ValueType>().getValueVector(), abstractModel.getManager().template getAddZero<ValueType>())); |
|
|
|
|
|
|
|
|
storm::dd::Add<DdType, ValueType> minStartValues; |
|
|
|
|
|
if (this->getReuseQuantitativeResults() && lastBounds.first) { |
|
|
|
|
|
minStartValues = maybeMin.ite(lastBounds.first->asSymbolicQuantitativeCheckResult<DdType, ValueType>().getValueVector(), abstractModel.getManager().template getAddZero<ValueType>()); |
|
|
} else { |
|
|
} else { |
|
|
storm::dd::Bdd<DdType> maybeMin = !(qualitativeResults.getProb0Min().getStates() || qualitativeResults.getProb1Min().getStates()) && abstractModel.getReachableStates(); |
|
|
|
|
|
result.first = storm::modelchecker::helper::SymbolicMdpPrctlHelper<DdType, ValueType>::computeUntilProbabilities(storm::OptimizationDirection::Minimize, abstractModel, abstractModel.getTransitionMatrix(), maybeMin, qualitativeResults.getProb1Min().getStates(), storm::solver::GeneralSymbolicMinMaxLinearEquationSolverFactory<DdType, ValueType>(), abstractModel.getManager().template getAddZero<ValueType>()); |
|
|
|
|
|
|
|
|
minStartValues = abstractModel.getManager().template getAddZero<ValueType>(); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
storm::dd::Bdd<DdType> maybeMax = !(qualitativeResults.getProb0Max().getStates() || qualitativeResults.getProb1Max().getStates()) && abstractModel.getReachableStates(); |
|
|
|
|
|
|
|
|
if (isRewardFormula) { |
|
|
|
|
|
result.first = storm::modelchecker::helper::SymbolicMdpPrctlHelper<DdType, ValueType>::computeReachabilityRewards(storm::OptimizationDirection::Minimize, abstractModel, abstractModel.getTransitionMatrix(), abstractModel.getTransitionMatrix().notZero(), checkTask->isRewardModelSet() ? abstractModel.getRewardModel(checkTask->getRewardModel()) : abstractModel.getRewardModel(""), maybeMin, targetStates.getStates(), !qualitativeResults.getProb1Min().getStates() && abstractModel.getReachableStates(), storm::solver::GeneralSymbolicMinMaxLinearEquationSolverFactory<DdType, ValueType>(), minStartValues); |
|
|
|
|
|
result.second = storm::modelchecker::helper::SymbolicMdpPrctlHelper<DdType, ValueType>::computeReachabilityRewards(storm::OptimizationDirection::Maximize, abstractModel, abstractModel.getTransitionMatrix(), abstractModel.getTransitionMatrix().notZero(), checkTask->isRewardModelSet() ? abstractModel.getRewardModel(checkTask->getRewardModel()) : abstractModel.getRewardModel(""), maybeMin, targetStates.getStates(), !qualitativeResults.getProb1Max().getStates() && abstractModel.getReachableStates(), storm::solver::GeneralSymbolicMinMaxLinearEquationSolverFactory<DdType, ValueType>(), maybeMax.ite(result.first->asSymbolicQuantitativeCheckResult<DdType, ValueType>().getValueVector(), abstractModel.getManager().template getAddZero<ValueType>())); |
|
|
|
|
|
} else { |
|
|
|
|
|
result.first = storm::modelchecker::helper::SymbolicMdpPrctlHelper<DdType, ValueType>::computeUntilProbabilities(storm::OptimizationDirection::Minimize, abstractModel, abstractModel.getTransitionMatrix(), maybeMin, qualitativeResults.getProb1Min().getStates(), storm::solver::GeneralSymbolicMinMaxLinearEquationSolverFactory<DdType, ValueType>(), minStartValues); |
|
|
result.second = storm::modelchecker::helper::SymbolicMdpPrctlHelper<DdType, ValueType>::computeUntilProbabilities(storm::OptimizationDirection::Maximize, abstractModel, abstractModel.getTransitionMatrix(), maybeMax, qualitativeResults.getProb1Max().getStates(), storm::solver::GeneralSymbolicMinMaxLinearEquationSolverFactory<DdType, ValueType>(), maybeMax.ite(result.first->asSymbolicQuantitativeCheckResult<DdType, ValueType>().getValueVector(), abstractModel.getManager().template getAddZero<ValueType>())); |
|
|
result.second = storm::modelchecker::helper::SymbolicMdpPrctlHelper<DdType, ValueType>::computeUntilProbabilities(storm::OptimizationDirection::Maximize, abstractModel, abstractModel.getTransitionMatrix(), maybeMax, qualitativeResults.getProb1Max().getStates(), storm::solver::GeneralSymbolicMinMaxLinearEquationSolverFactory<DdType, ValueType>(), maybeMax.ite(result.first->asSymbolicQuantitativeCheckResult<DdType, ValueType>().getValueVector(), abstractModel.getManager().template getAddZero<ValueType>())); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
return result; |
|
|
return result; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
// FIXME: reuse previous result
|
|
|
|
|
|
template<typename ModelType> |
|
|
template<typename ModelType> |
|
|
std::pair<std::unique_ptr<CheckResult>, std::unique_ptr<CheckResult>> AbstractAbstractionRefinementModelChecker<ModelType>::computeQuantitativeResult(storm::models::symbolic::StochasticTwoPlayerGame<DdType, ValueType> const& abstractModel, storm::abstraction::SymbolicStateSet<DdType> const& constraintStates, storm::abstraction::SymbolicStateSet<DdType> const& targetStates, storm::abstraction::SymbolicQualitativeResultMinMax<DdType> const& qualitativeResults) { |
|
|
std::pair<std::unique_ptr<CheckResult>, std::unique_ptr<CheckResult>> AbstractAbstractionRefinementModelChecker<ModelType>::computeQuantitativeResult(storm::models::symbolic::StochasticTwoPlayerGame<DdType, ValueType> const& abstractModel, storm::abstraction::SymbolicStateSet<DdType> const& constraintStates, storm::abstraction::SymbolicStateSet<DdType> const& targetStates, storm::abstraction::SymbolicQualitativeResultMinMax<DdType> const& qualitativeResults) { |
|
|
|
|
|
|
|
|
std::pair<std::unique_ptr<CheckResult>, std::unique_ptr<CheckResult>> result; |
|
|
std::pair<std::unique_ptr<CheckResult>, std::unique_ptr<CheckResult>> result; |
|
|
|
|
|
storm::dd::Bdd<DdType> maybeMin; |
|
|
|
|
|
storm::dd::Bdd<DdType> maybeMax; |
|
|
|
|
|
|
|
|
bool isRewardFormula = checkTask->getFormula().isEventuallyFormula() && checkTask->getFormula().asEventuallyFormula().getContext() == storm::logic::FormulaContext::Reward; |
|
|
bool isRewardFormula = checkTask->getFormula().isEventuallyFormula() && checkTask->getFormula().asEventuallyFormula().getContext() == storm::logic::FormulaContext::Reward; |
|
|
|
|
|
if (!isRewardFormula) { |
|
|
|
|
|
maybeMin = !(qualitativeResults.getProb0Min().getStates() || qualitativeResults.getProb1Min().getStates()) && abstractModel.getReachableStates(); |
|
|
|
|
|
maybeMax = !(qualitativeResults.getProb0Max().getStates() || qualitativeResults.getProb1Max().getStates()) && abstractModel.getReachableStates(); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
storm::dd::Add<DdType, ValueType> minStartValues; |
|
|
|
|
|
if (this->getReuseQuantitativeResults() && lastBounds.first) { |
|
|
|
|
|
minStartValues = maybeMin.ite(lastBounds.first->asSymbolicQuantitativeCheckResult<DdType, ValueType>().getValueVector(), abstractModel.getManager().template getAddZero<ValueType>()); |
|
|
|
|
|
} else { |
|
|
|
|
|
minStartValues = abstractModel.getManager().template getAddZero<ValueType>(); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
if (isRewardFormula) { |
|
|
if (isRewardFormula) { |
|
|
STORM_LOG_THROW(false, storm::exceptions::NotSupportedException, "Reward properties are not supported for abstract stochastic games."); |
|
|
STORM_LOG_THROW(false, storm::exceptions::NotSupportedException, "Reward properties are not supported for abstract stochastic games."); |
|
|
} else { |
|
|
} else { |
|
|
storm::dd::Bdd<DdType> maybeMin = !(qualitativeResults.getProb0Min().getStates() || qualitativeResults.getProb1Min().getStates()) && abstractModel.getReachableStates(); |
|
|
|
|
|
result.first = computeReachabilityProbabilitiesHelper(abstractModel, this->getAbstractionPlayer() == 1 ? storm::OptimizationDirection::Minimize : checkTask->getOptimizationDirection(), this->getAbstractionPlayer() == 2 ? storm::OptimizationDirection::Minimize : checkTask->getOptimizationDirection(), maybeMin, qualitativeResults.getProb1Min().getStates(), abstractModel.getManager().template getAddZero<ValueType>()); |
|
|
|
|
|
|
|
|
|
|
|
storm::dd::Bdd<DdType> maybeMax = !(qualitativeResults.getProb0Max().getStates() || qualitativeResults.getProb1Max().getStates()) && abstractModel.getReachableStates(); |
|
|
|
|
|
|
|
|
result.first = computeReachabilityProbabilitiesHelper(abstractModel, this->getAbstractionPlayer() == 1 ? storm::OptimizationDirection::Minimize : checkTask->getOptimizationDirection(), this->getAbstractionPlayer() == 2 ? storm::OptimizationDirection::Minimize : checkTask->getOptimizationDirection(), maybeMin, qualitativeResults.getProb1Min().getStates(), minStartValues); |
|
|
result.second = computeReachabilityProbabilitiesHelper(abstractModel, this->getAbstractionPlayer() == 1 ? storm::OptimizationDirection::Maximize : checkTask->getOptimizationDirection(), this->getAbstractionPlayer() == 2 ? storm::OptimizationDirection::Maximize : checkTask->getOptimizationDirection(), maybeMin, qualitativeResults.getProb1Max().getStates(), maybeMax.ite(result.first->asSymbolicQuantitativeCheckResult<DdType, ValueType>().getValueVector(), abstractModel.getManager().template getAddZero<ValueType>())); |
|
|
result.second = computeReachabilityProbabilitiesHelper(abstractModel, this->getAbstractionPlayer() == 1 ? storm::OptimizationDirection::Maximize : checkTask->getOptimizationDirection(), this->getAbstractionPlayer() == 2 ? storm::OptimizationDirection::Maximize : checkTask->getOptimizationDirection(), maybeMin, qualitativeResults.getProb1Max().getStates(), maybeMax.ite(result.first->asSymbolicQuantitativeCheckResult<DdType, ValueType>().getValueVector(), abstractModel.getManager().template getAddZero<ValueType>())); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
@ -460,7 +514,8 @@ namespace storm { |
|
|
if (isRewardFormula) { |
|
|
if (isRewardFormula) { |
|
|
auto states = storm::utility::graph::performProb1E(abstractModel, transitionMatrixBdd, constraintStates.getStates(), targetStates.getStates(), lastQualitativeResults ? lastQualitativeResults->asSymbolicQualitativeResultMinMax<DdType>().getProb1Min().getStates() : storm::utility::graph::performProbGreater0E(abstractModel, transitionMatrixBdd, constraintStates.getStates(), targetStates.getStates())); |
|
|
auto states = storm::utility::graph::performProb1E(abstractModel, transitionMatrixBdd, constraintStates.getStates(), targetStates.getStates(), lastQualitativeResults ? lastQualitativeResults->asSymbolicQualitativeResultMinMax<DdType>().getProb1Min().getStates() : storm::utility::graph::performProbGreater0E(abstractModel, transitionMatrixBdd, constraintStates.getStates(), targetStates.getStates())); |
|
|
result->prob1Min = storm::abstraction::QualitativeMdpResult<DdType>(states); |
|
|
result->prob1Min = storm::abstraction::QualitativeMdpResult<DdType>(states); |
|
|
states = storm::utility::graph::performProb1A(abstractModel, transitionMatrixBdd, targetStates.getStates(), states); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
states = storm::utility::graph::performProb1A(abstractModel, transitionMatrixBdd, targetStates.getStates(), storm::utility::graph::performProbGreater0A(abstractModel, transitionMatrixBdd, constraintStates.getStates(), targetStates.getStates())); |
|
|
result->prob1Max = storm::abstraction::QualitativeMdpResult<DdType>(states); |
|
|
result->prob1Max = storm::abstraction::QualitativeMdpResult<DdType>(states); |
|
|
} else { |
|
|
} else { |
|
|
auto states = storm::utility::graph::performProb0A(abstractModel, transitionMatrixBdd, constraintStates.getStates(), targetStates.getStates()); |
|
|
auto states = storm::utility::graph::performProb0A(abstractModel, transitionMatrixBdd, constraintStates.getStates(), targetStates.getStates()); |
|
@ -579,7 +634,7 @@ namespace storm { |
|
|
|
|
|
|
|
|
// (2) max/max: compute prob1 using the MDP functions, reuse prob1 states of last iteration to constrain the candidate states.
|
|
|
// (2) max/max: compute prob1 using the MDP functions, reuse prob1 states of last iteration to constrain the candidate states.
|
|
|
storm::dd::Bdd<DdType> candidates = abstractModel.getReachableStates() && !result->getProb0Max().getStates(); |
|
|
storm::dd::Bdd<DdType> candidates = abstractModel.getReachableStates() && !result->getProb0Max().getStates(); |
|
|
if (this->getReuseQualitativeResults()) { |
|
|
|
|
|
|
|
|
if (this->getReuseQualitativeResults() && lastQualitativeResults) { |
|
|
candidates &= lastQualitativeResults->asSymbolicQualitativeResultMinMax<DdType>().getProb1Max().getStates(); |
|
|
candidates &= lastQualitativeResults->asSymbolicQualitativeResultMinMax<DdType>().getProb1Max().getStates(); |
|
|
} |
|
|
} |
|
|
storm::dd::Bdd<DdType> prob1MaxMaxMdp = storm::utility::graph::performProb1E(abstractModel, transitionMatrixBdd, constraintStates.getStates(), targetStates.getStates(), candidates); |
|
|
storm::dd::Bdd<DdType> prob1MaxMaxMdp = storm::utility::graph::performProb1E(abstractModel, transitionMatrixBdd, constraintStates.getStates(), targetStates.getStates(), candidates); |
|
|