Browse Source

improved detection for early result detection in game based engine

tempestpy_adaptions
dehnert 8 years ago
parent
commit
954eadc546
  1. 6
      src/storm/abstraction/AbstractionInformation.cpp
  2. 10
      src/storm/abstraction/AbstractionInformation.h
  3. 4
      src/storm/abstraction/QuantitativeResult.h
  4. 4
      src/storm/abstraction/jani/AutomatonAbstractor.cpp
  5. 16
      src/storm/abstraction/jani/EdgeAbstractor.cpp
  6. 2
      src/storm/abstraction/jani/EdgeAbstractor.h
  7. 3
      src/storm/abstraction/jani/JaniMenuGameAbstractor.cpp
  8. 6
      src/storm/abstraction/prism/CommandAbstractor.cpp
  9. 1
      src/storm/abstraction/prism/PrismMenuGameAbstractor.cpp
  10. 196
      src/storm/modelchecker/abstraction/GameBasedMdpModelChecker.cpp
  11. 2
      src/storm/modelchecker/abstraction/GameBasedMdpModelChecker.h

6
src/storm/abstraction/AbstractionInformation.cpp

@ -63,6 +63,7 @@ namespace storm {
allPredicateIdentities &= predicateIdentities.back();
sourceVariables.insert(newMetaVariable.first);
successorVariables.insert(newMetaVariable.second);
sourcePredicateVariables.insert(newMetaVariable.first);
orderedSourcePredicateVariables.push_back(newMetaVariable.first);
orderedSuccessorPredicateVariables.push_back(newMetaVariable.second);
ddVariableIndexToPredicateIndexMap[predicateIdentities.back().getIndex()] = predicateIndex;
@ -278,6 +279,11 @@ namespace storm {
return successorVariables;
}
template<storm::dd::DdType DdType>
std::set<storm::expressions::Variable> const& AbstractionInformation<DdType>::getSourcePredicateVariables() const {
return sourcePredicateVariables;
}
template<storm::dd::DdType DdType>
std::vector<storm::expressions::Variable> const& AbstractionInformation<DdType>::getOrderedSourcePredicateVariables() const {
return orderedSourcePredicateVariables;

10
src/storm/abstraction/AbstractionInformation.h

@ -341,6 +341,13 @@ namespace storm {
*/
std::set<storm::expressions::Variable> const& getSuccessorVariables() const;
/*!
* Retrieves the set of source predicate meta variables.
*
* @return All source predicate meta variables.
*/
std::set<storm::expressions::Variable> const& getSourcePredicateVariables() const;
/*!
* Retrieves a BDD representing the identities of all predicates.
*
@ -551,6 +558,9 @@ namespace storm {
/// The set of all successor variables.
std::set<storm::expressions::Variable> successorVariables;
/// The set of all source predicate variables.
std::set<storm::expressions::Variable> sourcePredicateVariables;
/// An ordered collection of the source variables.
std::vector<storm::expressions::Variable> orderedSourcePredicateVariables;

4
src/storm/abstraction/QuantitativeResult.h

@ -11,11 +11,11 @@ namespace storm {
struct QuantitativeResult {
QuantitativeResult() = default;
QuantitativeResult(ValueType initialStateValue, storm::dd::Add<Type, ValueType> const& values, storm::dd::Bdd<Type> const& player1Strategy, storm::dd::Bdd<Type> const& player2Strategy) : initialStateValue(initialStateValue), values(values), player1Strategy(player1Strategy), player2Strategy(player2Strategy) {
QuantitativeResult(std::pair<ValueType, ValueType> initialStatesRange, storm::dd::Add<Type, ValueType> const& values, storm::dd::Bdd<Type> const& player1Strategy, storm::dd::Bdd<Type> const& player2Strategy) : initialStatesRange(initialStatesRange), values(values), player1Strategy(player1Strategy), player2Strategy(player2Strategy) {
// Intentionally left empty.
}
ValueType initialStateValue;
std::pair<ValueType, ValueType> initialStatesRange;
storm::dd::Add<Type, ValueType> values;
storm::dd::Bdd<Type> player1Strategy;
storm::dd::Bdd<Type> player2Strategy;

4
src/storm/abstraction/jani/AutomatonAbstractor.cpp

@ -79,7 +79,7 @@ namespace storm {
BottomStateResult<DdType> result(this->getAbstractionInformation().getDdManager().getBddZero(), this->getAbstractionInformation().getDdManager().getBddZero());
for (auto& edge : edges) {
BottomStateResult<DdType> commandBottomStateResult = edge.getBottomStateTransitions(reachableStates, numberOfPlayer2Variables);
BottomStateResult<DdType> commandBottomStateResult = edge.getBottomStateTransitions(reachableStates, numberOfPlayer2Variables, locationVariables);
result.states |= commandBottomStateResult.states;
result.transitions |= commandBottomStateResult.transitions;
}
@ -98,7 +98,7 @@ namespace storm {
template <storm::dd::DdType DdType, typename ValueType>
storm::dd::Bdd<DdType> AutomatonAbstractor<DdType, ValueType>::getInitialLocationsBdd() const {
if (automaton.get().getNumberOfLocations()) {
if (automaton.get().getNumberOfLocations() == 1) {
return this->getAbstractionInformation().getDdManager().getBddOne();
}

16
src/storm/abstraction/jani/EdgeAbstractor.cpp

@ -620,7 +620,10 @@ namespace storm {
}
template <storm::dd::DdType DdType, typename ValueType>
BottomStateResult<DdType> EdgeAbstractor<DdType, ValueType>::getBottomStateTransitions(storm::dd::Bdd<DdType> const& reachableStates, uint_fast64_t numberOfPlayer2Variables) {
BottomStateResult<DdType> EdgeAbstractor<DdType, ValueType>::getBottomStateTransitions(storm::dd::Bdd<DdType> const& reachableStates, uint_fast64_t numberOfPlayer2Variables, boost::optional<std::pair<storm::expressions::Variable, storm::expressions::Variable>> const& locationVariables) {
// Compute the reachable states that have this edge enabled.
storm::dd::Bdd<DdType> reachableStatesWithEdge = (reachableStates && abstractGuard && this->getAbstractionInformation().encodeLocation(locationVariables.get().first, edge.get().getSourceLocationIndex())).existsAbstract(this->getAbstractionInformation().getSourceLocationVariables());
STORM_LOG_TRACE("Computing bottom state transitions of edge with guard " << edge.get().getGuard());
BottomStateResult<DdType> result(this->getAbstractionInformation().getDdManager().getBddZero(), this->getAbstractionInformation().getDdManager().getBddZero());
@ -632,8 +635,8 @@ namespace storm {
// Use the state abstractor to compute the set of abstract states that has this edge enabled but still
// has a transition to a bottom state.
bottomStateAbstractor.constrain(reachableStates && abstractGuard);
result.states = bottomStateAbstractor.getAbstractStates();
bottomStateAbstractor.constrain(reachableStatesWithEdge);
result.states = bottomStateAbstractor.getAbstractStates() && reachableStatesWithEdge && this->getAbstractionInformation().encodeLocation(locationVariables.get().first, edge.get().getSourceLocationIndex());
// If the result is empty one time, we can skip the bottom state computation from now on.
if (result.states.isZero()) {
@ -643,12 +646,15 @@ namespace storm {
// Now equip all these states with an actual transition to a bottom state.
result.transitions = result.states && this->getAbstractionInformation().getAllPredicateIdentities() && this->getAbstractionInformation().getBottomStateBdd(false, false);
// Mark the states as bottom states.
// Mark the states as bottom states and add source location information.
result.states &= this->getAbstractionInformation().getBottomStateBdd(true, false);
// Add the edge encoding and the next free player 2 encoding.
// Add the edge encoding.
result.transitions &= this->getAbstractionInformation().encodePlayer1Choice(edgeId, this->getAbstractionInformation().getPlayer1VariableCount()) && this->getAbstractionInformation().encodePlayer2Choice(0, 0,numberOfPlayer2Variables) && this->getAbstractionInformation().encodeAux(0, 0, this->getAbstractionInformation().getAuxVariableCount());
// Add the location identity to the transitions.
result.transitions &= this->getAbstractionInformation().getAllLocationIdentities();
return result;
}

2
src/storm/abstraction/jani/EdgeAbstractor.h

@ -93,7 +93,7 @@ namespace storm {
* @param numberOfPlayer2Variables The number of variables used to encode the choices of player 2.
* @return The bottom state transitions in the form of a BDD.
*/
BottomStateResult<DdType> getBottomStateTransitions(storm::dd::Bdd<DdType> const& reachableStates, uint_fast64_t numberOfPlayer2Variables);
BottomStateResult<DdType> getBottomStateTransitions(storm::dd::Bdd<DdType> const& reachableStates, uint_fast64_t numberOfPlayer2Variables, boost::optional<std::pair<storm::expressions::Variable, storm::expressions::Variable>> const& locationVariables);
/*!
* Retrieves an ADD that maps the encoding of the edge, source/target locations and its updates to their probabilities.

3
src/storm/abstraction/jani/JaniMenuGameAbstractor.cpp

@ -152,6 +152,7 @@ namespace storm {
// Do a reachability analysis on the raw transition relation.
storm::dd::Bdd<DdType> transitionRelation = game.bdd.existsAbstract(variablesToAbstract);
storm::dd::Bdd<DdType> initialStates = initialLocationsBdd && initialStateAbstractor.getAbstractStates();
initialStates.addMetaVariables(abstractionInformation.getSourcePredicateVariables());
storm::dd::Bdd<DdType> reachableStates = storm::utility::dd::computeReachableStates(initialStates, transitionRelation, abstractionInformation.getSourceVariables(), abstractionInformation.getSuccessorVariables());
// Find the deadlock states in the model. Note that this does not find the 'deadlocks' in bottom states,
@ -167,7 +168,7 @@ namespace storm {
// Compute bottom states and the appropriate transitions if necessary.
BottomStateResult<DdType> bottomStateResult(abstractionInformation.getDdManager().getBddZero(), abstractionInformation.getDdManager().getBddZero());
bottomStateResult = automata.front().getBottomStateTransitions(reachableStates.existsAbstract(abstractionInformation.getSourceLocationVariables()), game.numberOfPlayer2Variables);
bottomStateResult = automata.front().getBottomStateTransitions(reachableStates, game.numberOfPlayer2Variables);
bool hasBottomStates = !bottomStateResult.states.isZero();
// Construct the transition matrix by cutting away the transitions of unreachable states.

6
src/storm/abstraction/prism/CommandAbstractor.cpp

@ -630,10 +630,12 @@ namespace storm {
return result;
}
storm::dd::Bdd<DdType> reachableStatesWithCommand = reachableStates && abstractGuard;
// Use the state abstractor to compute the set of abstract states that has this command enabled but
// still has a transition to a bottom state.
bottomStateAbstractor.constrain(reachableStates && abstractGuard);
result.states = bottomStateAbstractor.getAbstractStates();
bottomStateAbstractor.constrain(reachableStatesWithCommand);
result.states = bottomStateAbstractor.getAbstractStates() && reachableStatesWithCommand;
// If the result is empty one time, we can skip the bottom state computation from now on.
if (result.states.isZero()) {

1
src/storm/abstraction/prism/PrismMenuGameAbstractor.cpp

@ -150,6 +150,7 @@ namespace storm {
// Do a reachability analysis on the raw transition relation.
storm::dd::Bdd<DdType> transitionRelation = game.bdd.existsAbstract(variablesToAbstract);
storm::dd::Bdd<DdType> initialStates = initialStateAbstractor.getAbstractStates();
initialStates.addMetaVariables(abstractionInformation.getSourcePredicateVariables());
storm::dd::Bdd<DdType> reachableStates = storm::utility::dd::computeReachableStates(initialStates, transitionRelation, abstractionInformation.getSourceVariables(), abstractionInformation.getSuccessorVariables());
// Find the deadlock states in the model. Note that this does not find the 'deadlocks' in bottom states,

196
src/storm/modelchecker/abstraction/GameBasedMdpModelChecker.cpp

@ -91,32 +91,33 @@ namespace storm {
return performGameBasedAbstractionRefinement(checkTask.substituteFormula<storm::logic::Formula>(pathFormula), preprocessedModel.getManager().boolean(true), pathFormula.getSubformula().toExpression(preprocessedModel.getManager(), labelToExpressionMapping));
}
template<storm::dd::DdType Type, typename ValueType>
std::unique_ptr<CheckResult> checkForResultAfterQualitativeCheck(CheckTask<storm::logic::Formula> const& checkTask, storm::dd::Bdd<Type> const& initialStates, storm::dd::Bdd<Type> const& statesMin, storm::dd::Bdd<Type> const& statesMax, bool prob0) {
std::unique_ptr<CheckResult> result;
if ((initialStates && statesMin && statesMax) == initialStates) {
result = std::make_unique<storm::modelchecker::ExplicitQuantitativeCheckResult<ValueType>>(storm::storage::sparse::state_type(0), prob0 ? storm::utility::zero<ValueType>() : storm::utility::one<ValueType>());
}
return result;
}
template<storm::dd::DdType Type, typename ValueType>
std::unique_ptr<CheckResult> checkForResultAfterQualitativeCheck(CheckTask<storm::logic::Formula> const& checkTask, storm::OptimizationDirection player2Direction, storm::dd::Bdd<Type> const& initialStates, storm::dd::Bdd<Type> const& prob0, storm::dd::Bdd<Type> const& prob1) {
std::unique_ptr<CheckResult> result;
boost::optional<storm::logic::Bound<ValueType>> const& bound = checkTask.getOptionalBound();
if (bound) {
if (player2Direction == storm::OptimizationDirection::Minimize && storm::logic::isLowerBound(bound.get().comparisonType)) {
if ((prob1 && initialStates) == initialStates) {
result = std::make_unique<storm::modelchecker::ExplicitQuantitativeCheckResult<ValueType>>(storm::storage::sparse::state_type(0), storm::utility::one<ValueType>());
} else if (checkTask.isQualitativeSet()) {
result = std::make_unique<storm::modelchecker::ExplicitQuantitativeCheckResult<ValueType>>(storm::storage::sparse::state_type(0), ValueType(0.5));
// Despite having a bound, we create a quanitative result so that the next layer can perform the comparison.
if (player2Direction == storm::OptimizationDirection::Minimize) {
if (storm::logic::isLowerBound(bound.get().comparisonType)) {
if ((prob1 && initialStates) == initialStates) {
result = std::make_unique<storm::modelchecker::ExplicitQuantitativeCheckResult<ValueType>>(storm::storage::sparse::state_type(0), storm::utility::one<ValueType>());
}
} else {
if (!(prob1 && initialStates).isZero()) {
result = std::make_unique<storm::modelchecker::ExplicitQuantitativeCheckResult<ValueType>>(storm::storage::sparse::state_type(0), storm::utility::one<ValueType>());
}
}
} else if (player2Direction == storm::OptimizationDirection::Maximize && !storm::logic::isLowerBound(bound.get().comparisonType)) {
if ((prob0 && initialStates) == initialStates) {
result = std::make_unique<storm::modelchecker::ExplicitQuantitativeCheckResult<ValueType>>(storm::storage::sparse::state_type(0), storm::utility::zero<ValueType>());
} else if (checkTask.isQualitativeSet()) {
result = std::make_unique<storm::modelchecker::ExplicitQuantitativeCheckResult<ValueType>>(storm::storage::sparse::state_type(0), ValueType(0.5));
} else if (player2Direction == storm::OptimizationDirection::Maximize) {
if (!storm::logic::isLowerBound(bound.get().comparisonType)) {
if ((prob0 && initialStates) == initialStates) {
result = std::make_unique<storm::modelchecker::ExplicitQuantitativeCheckResult<ValueType>>(storm::storage::sparse::state_type(0), storm::utility::zero<ValueType>());
}
} else {
if (!(prob0 && initialStates).isZero()) {
result = std::make_unique<storm::modelchecker::ExplicitQuantitativeCheckResult<ValueType>>(storm::storage::sparse::state_type(0), storm::utility::zero<ValueType>());
}
}
}
}
@ -127,11 +128,11 @@ namespace storm {
template<storm::dd::DdType Type, typename ValueType>
std::unique_ptr<CheckResult> checkForResultAfterQualitativeCheck(CheckTask<storm::logic::Formula> const& checkTask, storm::dd::Bdd<Type> const& initialStates, QualitativeResultMinMax<Type> const& qualitativeResult) {
// Check whether we can already give the answer based on the current information.
std::unique_ptr<CheckResult> result = checkForResultAfterQualitativeCheck<Type, ValueType>(checkTask, initialStates, qualitativeResult.prob0Min.getPlayer1States(), qualitativeResult.prob0Max.getPlayer1States(), true);
std::unique_ptr<CheckResult> result = checkForResultAfterQualitativeCheck<Type, ValueType>(checkTask, storm::OptimizationDirection::Minimize, initialStates, qualitativeResult.prob0Min.getPlayer1States(), qualitativeResult.prob1Min.getPlayer1States());
if (result) {
return result;
}
result = checkForResultAfterQualitativeCheck<Type, ValueType>(checkTask, initialStates, qualitativeResult.prob1Min.getPlayer1States(), qualitativeResult.prob1Max.getPlayer1States(), false);
result = checkForResultAfterQualitativeCheck<Type, ValueType>(checkTask, storm::OptimizationDirection::Maximize, initialStates, qualitativeResult.prob0Max.getPlayer1States(), qualitativeResult.prob1Max.getPlayer1States());
if (result) {
return result;
}
@ -139,7 +140,7 @@ namespace storm {
}
template<typename ValueType>
std::unique_ptr<CheckResult> checkForResultAfterQuantitativeCheck(CheckTask<storm::logic::Formula> const& checkTask, storm::OptimizationDirection const& player2Direction, ValueType const& value) {
std::unique_ptr<CheckResult> checkForResultAfterQuantitativeCheck(CheckTask<storm::logic::Formula> const& checkTask, storm::OptimizationDirection const& player2Direction, std::pair<ValueType, ValueType> const& initialValueRange) {
std::unique_ptr<CheckResult> result;
// If the minimum value exceeds an upper threshold or the maximum value is below a lower threshold, we can
@ -151,31 +152,34 @@ namespace storm {
return result;
}
ValueType const& lowerValue = initialValueRange.first;
ValueType const& upperValue = initialValueRange.second;
storm::logic::ComparisonType comparisonType = bound.get().comparisonType;
ValueType threshold = bound.get().threshold;
if (storm::logic::isLowerBound(comparisonType)) {
if (player2Direction == storm::OptimizationDirection::Minimize) {
if ((storm::logic::isStrict(comparisonType) && value > threshold)
|| (!storm::logic::isStrict(comparisonType) && value >= threshold)) {
result = std::make_unique<storm::modelchecker::ExplicitQuantitativeCheckResult<ValueType>>(storm::storage::sparse::state_type(0), value);
if ((storm::logic::isStrict(comparisonType) && lowerValue > threshold)
|| (!storm::logic::isStrict(comparisonType) && lowerValue >= threshold)) {
result = std::make_unique<storm::modelchecker::ExplicitQuantitativeCheckResult<ValueType>>(storm::storage::sparse::state_type(0), lowerValue);
}
} else {
if ((storm::logic::isStrict(comparisonType) && value <= threshold)
|| (!storm::logic::isStrict(comparisonType) && value < threshold)) {
result = std::make_unique<storm::modelchecker::ExplicitQuantitativeCheckResult<ValueType>>(storm::storage::sparse::state_type(0), value);
if ((storm::logic::isStrict(comparisonType) && upperValue <= threshold)
|| (!storm::logic::isStrict(comparisonType) && upperValue < threshold)) {
result = std::make_unique<storm::modelchecker::ExplicitQuantitativeCheckResult<ValueType>>(storm::storage::sparse::state_type(0), upperValue);
}
}
} else if (!storm::logic::isLowerBound(comparisonType)) {
} else {
if (player2Direction == storm::OptimizationDirection::Maximize) {
if ((storm::logic::isStrict(comparisonType) && value < threshold) ||
(!storm::logic::isStrict(comparisonType) && value <= threshold)) {
result = std::make_unique<storm::modelchecker::ExplicitQuantitativeCheckResult<ValueType>>(storm::storage::sparse::state_type(0), value);
if ((storm::logic::isStrict(comparisonType) && upperValue < threshold) ||
(!storm::logic::isStrict(comparisonType) && upperValue <= threshold)) {
result = std::make_unique<storm::modelchecker::ExplicitQuantitativeCheckResult<ValueType>>(storm::storage::sparse::state_type(0), upperValue);
}
} else {
if ((storm::logic::isStrict(comparisonType) && value >= threshold) ||
(!storm::logic::isStrict(comparisonType) && value > threshold)) {
result = std::make_unique<storm::modelchecker::ExplicitQuantitativeCheckResult<ValueType>>(storm::storage::sparse::state_type(0), value);
if ((storm::logic::isStrict(comparisonType) && lowerValue >= threshold) ||
(!storm::logic::isStrict(comparisonType) && lowerValue > threshold)) {
result = std::make_unique<storm::modelchecker::ExplicitQuantitativeCheckResult<ValueType>>(storm::storage::sparse::state_type(0), lowerValue);
}
}
}
@ -223,7 +227,7 @@ namespace storm {
std::unique_ptr<storm::solver::SymbolicGameSolver<Type, ValueType>> solver = solverFactory.create(submatrix, maybeStates, game.getIllegalPlayer1Mask(), game.getIllegalPlayer2Mask(), game.getRowVariables(), game.getColumnVariables(), game.getRowColumnMetaVariablePairs(), game.getPlayer1Variables(), game.getPlayer2Variables());
solver->setGeneratePlayersStrategies(true);
auto values = solver->solveGame(player1Direction, player2Direction, startVector, subvector, startInfo ? boost::make_optional(startInfo.get().player1Strategy) : boost::none, startInfo ? boost::make_optional(startInfo.get().player2Strategy) : boost::none);
return QuantitativeResult<Type, ValueType>(storm::utility::zero<ValueType>(), values, solver->getPlayer1Strategy(), solver->getPlayer2Strategy());
return QuantitativeResult<Type, ValueType>(std::make_pair(storm::utility::zero<ValueType>(), storm::utility::one<ValueType>()), values, solver->getPlayer1Strategy(), solver->getPlayer2Strategy());
}
template<storm::dd::DdType Type, typename ValueType>
@ -232,10 +236,6 @@ namespace storm {
bool min = player2Direction == storm::OptimizationDirection::Minimize;
QuantitativeResult<Type, ValueType> result;
// The minimal value after qualitative checking can only be zero. If it was 1, we could have given
// the result right away. Similarly, the maximal value can only be one at this point.
result.initialStateValue = min ? storm::utility::zero<ValueType>() : storm::utility::one<ValueType>();
// We fix the strategies. That is, we take the decisions of the strategies obtained in the qualitiative
// preprocessing if possible.
storm::dd::Bdd<Type> combinedPlayer1QualitativeStrategies;
@ -265,15 +265,6 @@ namespace storm {
// Extend the values of the maybe states by the qualitative values.
result.values += min ? qualitativeResult.prob1Min.getPlayer1States().template toAdd<ValueType>() : qualitativeResult.prob1Max.getPlayer1States().template toAdd<ValueType>();
// Construct an ADD holding the initial values of initial states and check it for validity.
storm::dd::Add<Type, ValueType> initialStateValueAdd = initialStatesAdd * result.values;
// For min, we can only require a non-zero count of *at most* one, because the result may actually be 0.
STORM_LOG_ASSERT((!min && initialStateValueAdd.getNonZeroCount() == 1) || (min && initialStateValueAdd.getNonZeroCount() <= 1), "Wrong number of results for initial states. Expected " << (min ? "<= 1" : "1") << ", but got " << initialStateValueAdd.getNonZeroCount() << ".");
result.initialStateValue = result.initialStateValue = initialStateValueAdd.getMax();
result.player1Strategy = combinedPlayer1QualitativeStrategies.existsAbstract(game.getPlayer1Variables()).ite(combinedPlayer1QualitativeStrategies, result.player1Strategy);
result.player2Strategy = combinedPlayer2QualitativeStrategies.existsAbstract(game.getPlayer2Variables()).ite(combinedPlayer2QualitativeStrategies, result.player2Strategy);
} else {
STORM_LOG_TRACE("No maybe states.");
@ -281,8 +272,20 @@ namespace storm {
result.values += min ? qualitativeResult.prob1Min.getPlayer1States().template toAdd<ValueType>() : qualitativeResult.prob1Max.getPlayer1States().template toAdd<ValueType>();
}
// Construct an ADD holding the initial values of initial states and extract the bound on the initial states.
storm::dd::Add<Type, ValueType> initialStateValueAdd = initialStatesAdd * result.values;
ValueType maxValueOverInitialStates = initialStateValueAdd.getMax();
initialStateValueAdd += (!game.getInitialStates()).template toAdd<ValueType>();
ValueType minValueOverInitialStates = initialStateValueAdd.getMin();
result.initialStatesRange = std::make_pair(minValueOverInitialStates, maxValueOverInitialStates);
result.player1Strategy = combinedPlayer1QualitativeStrategies.existsAbstract(game.getPlayer1Variables()).ite(combinedPlayer1QualitativeStrategies, result.player1Strategy);
result.player2Strategy = combinedPlayer2QualitativeStrategies.existsAbstract(game.getPlayer2Variables()).ite(combinedPlayer2QualitativeStrategies, result.player2Strategy);
auto end = std::chrono::high_resolution_clock::now();
STORM_LOG_TRACE("Obtained quantitative " << (player2Direction == storm::OptimizationDirection::Minimize ? "lower" : "upper") << " bound " << result.initialStateValue << " in " << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << "ms.");
STORM_LOG_TRACE("Obtained quantitative " << (min ? "lower" : "upper") << " bound " << (min ? result.initialStatesRange.first : result.initialStatesRange.second) << " in " << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << "ms.");
return result;
}
@ -313,7 +316,7 @@ namespace storm {
storm::dd::Bdd<Type> globalConstraintStates = abstractor->getStates(constraintExpression);
storm::dd::Bdd<Type> globalTargetStates = abstractor->getStates(targetStateExpression);
globalTargetStates.template toAdd<ValueType>().exportToDot("target.dot");
// globalTargetStates.template toAdd<ValueType>().exportToDot("target.dot");
// Enter the main-loop of abstraction refinement.
boost::optional<QualitativeResultMinMax<Type>> previousQualitativeResult = boost::none;
@ -327,11 +330,11 @@ namespace storm {
storm::abstraction::MenuGame<Type, ValueType> game = abstractor->abstract();
auto abstractionEnd = std::chrono::high_resolution_clock::now();
STORM_LOG_DEBUG("Abstraction in iteration " << iterations << " has " << game.getNumberOfStates() << " (player 1) states and " << game.getNumberOfTransitions() << " transitions (computed in " << std::chrono::duration_cast<std::chrono::milliseconds>(abstractionEnd - abstractionStart).count() << "ms).");
STORM_LOG_THROW(game.getInitialStates().getNonZeroCount(), storm::exceptions::InvalidModelException, "Cannot treat models with more than one (abstract) initial state.");
// (2) Prepare transition matrix BDD and target state BDD for later use.
storm::dd::Bdd<Type> transitionMatrixBdd = game.getTransitionMatrix().toBdd();
storm::dd::Bdd<Type> initialStates = game.getInitialStates();
STORM_LOG_THROW(initialStates.getNonZeroCount() == 1 || checkTask.isBoundSet(), storm::exceptions::InvalidPropertyException, "Game-based abstraction refinement requires a bound on the formula for model with " << initialStates.getNonZeroCount() << " initial states.");
storm::dd::Bdd<Type> constraintStates = globalConstraintStates && game.getReachableStates();
storm::dd::Bdd<Type> targetStates = globalTargetStates && game.getReachableStates();
if (player1Direction == storm::OptimizationDirection::Minimize) {
@ -344,8 +347,8 @@ namespace storm {
// (3) compute all states with probability 0/1 wrt. to the two different player 2 goals (min/max).
auto qualitativeStart = std::chrono::high_resolution_clock::now();
QualitativeResultMinMax<Type> qualitativeResult;
std::unique_ptr<CheckResult> result = computeProb01States(checkTask, qualitativeResult, previousQualitativeResult, game, player1Direction, transitionMatrixBdd, initialStates, constraintStates, targetStates, refiner.addedAllGuards());
QualitativeResultMinMax<Type> qualitativeResult = computeProb01States(checkTask, previousQualitativeResult, game, player1Direction, transitionMatrixBdd, initialStates, constraintStates, targetStates);
std::unique_ptr<CheckResult> result = checkForResultAfterQualitativeCheck<Type, ValueType>(checkTask, initialStates, qualitativeResult);
if (result) {
printStatistics(*abstractor, game);
return result;
@ -365,20 +368,18 @@ namespace storm {
// In this case, we know the result for the initial states for both player 2 minimizing and maximizing.
STORM_LOG_TRACE("No initial state is a 'maybe' state.");
result = checkForResultAfterQualitativeCheck<Type, ValueType>(checkTask, initialStates, qualitativeResult);
if (result) {
printStatistics(*abstractor, game);
return result;
} else {
STORM_LOG_DEBUG("Obtained qualitative bounds [0, 1] on the actual value for the initial states. Refining abstraction based on qualitative check.");
auto qualitativeRefinementStart = std::chrono::high_resolution_clock::now();
// If we get here, the initial states were all identified as prob0/1 states, but the value (0 or 1)
// depends on whether player 2 is minimizing or maximizing. Therefore, we need to find a place to refine.
qualitativeRefinement = refiner.refine(game, transitionMatrixBdd, qualitativeResult);
auto qualitativeRefinementEnd = std::chrono::high_resolution_clock::now();
STORM_LOG_DEBUG("Qualitative refinement completed in " << std::chrono::duration_cast<std::chrono::milliseconds>(qualitativeRefinementEnd - qualitativeRefinementStart).count() << "ms.");
}
STORM_LOG_DEBUG("Obtained qualitative bounds [0, 1] on the actual value for the initial states. Refining abstraction based on qualitative check.");
// If we get here, the initial states were all identified as prob0/1 states, but the value (0 or 1)
// depends on whether player 2 is minimizing or maximizing. Therefore, we need to find a place to refine.
auto qualitativeRefinementStart = std::chrono::high_resolution_clock::now();
qualitativeRefinement = refiner.refine(game, transitionMatrixBdd, qualitativeResult);
auto qualitativeRefinementEnd = std::chrono::high_resolution_clock::now();
STORM_LOG_DEBUG("Qualitative refinement completed in " << std::chrono::duration_cast<std::chrono::milliseconds>(qualitativeRefinementEnd - qualitativeRefinementStart).count() << "ms.");
} else if (initialMaybeStates == initialStates && checkTask.isQualitativeSet()) {
// If all initial states are 'maybe' states and the property we needed to check is a qualitative one,
// we can return the result here.
return std::make_unique<ExplicitQuantitativeCheckResult<ValueType>>(storm::storage::sparse::state_type(0), ValueType(0.5));
}
// (6) if we arrived at this point and no refinement was made, we need to compute the quantitative solution.
@ -395,7 +396,7 @@ namespace storm {
// (7) Solve the min values and check whether we can give the answer already.
quantitativeResult.min = computeQuantitativeResult(player1Direction, storm::OptimizationDirection::Minimize, game, qualitativeResult, initialStatesAdd, maybeMin, reuseQuantitativeResults ? previousMinQuantitativeResult : boost::none);
previousMinQuantitativeResult = quantitativeResult.min;
result = checkForResultAfterQuantitativeCheck<ValueType>(checkTask, storm::OptimizationDirection::Minimize, quantitativeResult.min.initialStateValue);
result = checkForResultAfterQuantitativeCheck<ValueType>(checkTask, storm::OptimizationDirection::Minimize, quantitativeResult.min.initialStatesRange);
if (result) {
printStatistics(*abstractor, game);
return result;
@ -403,17 +404,17 @@ namespace storm {
// (8) Solve the max values and check whether we can give the answer already.
quantitativeResult.max = computeQuantitativeResult(player1Direction, storm::OptimizationDirection::Maximize, game, qualitativeResult, initialStatesAdd, maybeMax, boost::make_optional(quantitativeResult.min));
result = checkForResultAfterQuantitativeCheck<ValueType>(checkTask, storm::OptimizationDirection::Maximize, quantitativeResult.max.initialStateValue);
result = checkForResultAfterQuantitativeCheck<ValueType>(checkTask, storm::OptimizationDirection::Maximize, quantitativeResult.max.initialStatesRange);
if (result) {
printStatistics(*abstractor, game);
return result;
}
auto quantitativeEnd = std::chrono::high_resolution_clock::now();
STORM_LOG_DEBUG("Obtained quantitative bounds [" << quantitativeResult.min.initialStateValue << ", " << quantitativeResult.max.initialStateValue << "] on the actual value for the initial states in " << std::chrono::duration_cast<std::chrono::milliseconds>(quantitativeEnd - quantitativeStart).count() << "ms.");
STORM_LOG_DEBUG("Obtained quantitative bounds [" << quantitativeResult.min.initialStatesRange.first << ", " << quantitativeResult.max.initialStatesRange.second << "] on the actual value for the initial states in " << std::chrono::duration_cast<std::chrono::milliseconds>(quantitativeEnd - quantitativeStart).count() << "ms.");
// (9) Check whether the lower and upper bounds are close enough to terminate with an answer.
result = checkForResultAfterQuantitativeCheck<ValueType>(checkTask, quantitativeResult.min.initialStateValue, quantitativeResult.max.initialStateValue, comparator);
result = checkForResultAfterQuantitativeCheck<ValueType>(checkTask, quantitativeResult.min.initialStatesRange.first, quantitativeResult.max.initialStatesRange.second, comparator);
if (result) {
printStatistics(*abstractor, game);
return result;
@ -471,6 +472,7 @@ namespace storm {
} else {
STORM_LOG_ASSERT(result.hasPlayer1Strategy() && ((result.getPlayer1States() && !targetStates).isZero() || !result.getPlayer1Strategy().isZero()), "Unable to proceed without strategy.");
}
STORM_LOG_ASSERT(result.hasPlayer2Strategy() && (result.getPlayer2States().isZero() || !result.getPlayer2Strategy().isZero()), "Unable to proceed without strategy.");
return true;
@ -487,23 +489,25 @@ namespace storm {
}
template<storm::dd::DdType Type, typename ModelType>
std::unique_ptr<CheckResult> GameBasedMdpModelChecker<Type, ModelType>::computeProb01States(CheckTask<storm::logic::Formula> const& checkTask, QualitativeResultMinMax<Type>& qualitativeResult, boost::optional<QualitativeResultMinMax<Type>> const& previousQualitativeResult, storm::abstraction::MenuGame<Type, ValueType> const& game, storm::OptimizationDirection player1Direction, storm::dd::Bdd<Type> const& transitionMatrixBdd, storm::dd::Bdd<Type> const& initialStates, storm::dd::Bdd<Type> const& constraintStates, storm::dd::Bdd<Type> const& targetStates, bool addedAllGuards) {
QualitativeResultMinMax<Type> GameBasedMdpModelChecker<Type, ModelType>::computeProb01States(CheckTask<storm::logic::Formula> const& checkTask, boost::optional<QualitativeResultMinMax<Type>> const& previousQualitativeResult, storm::abstraction::MenuGame<Type, ValueType> const& game, storm::OptimizationDirection player1Direction, storm::dd::Bdd<Type> const& transitionMatrixBdd, storm::dd::Bdd<Type> const& initialStates, storm::dd::Bdd<Type> const& constraintStates, storm::dd::Bdd<Type> const& targetStates) {
QualitativeResultMinMax<Type> result;
if (reuseQualitativeResults) {
// Depending on the player 1 direction, we choose a different order of operations.
if (player1Direction == storm::OptimizationDirection::Minimize) {
// (1) min/min: compute prob0 using the game functions
qualitativeResult.prob0Min = storm::utility::graph::performProb0(game, transitionMatrixBdd, constraintStates, targetStates, player1Direction, storm::OptimizationDirection::Minimize, true, true);
result.prob0Min = storm::utility::graph::performProb0(game, transitionMatrixBdd, constraintStates, targetStates, player1Direction, storm::OptimizationDirection::Minimize, true, true);
// (2) min/min: compute prob1 using the MDP functions
storm::dd::Bdd<Type> candidates = game.getReachableStates() && !qualitativeResult.prob0Min.player1States;
storm::dd::Bdd<Type> candidates = game.getReachableStates() && !result.prob0Min.player1States;
storm::dd::Bdd<Type> prob1MinMinMdp = storm::utility::graph::performProb1A(game, transitionMatrixBdd, constraintStates, previousQualitativeResult ? previousQualitativeResult.get().prob1Min.player1States : targetStates, candidates);
// (3) min/min: compute prob1 using the game functions
qualitativeResult.prob1Min = storm::utility::graph::performProb1(game, transitionMatrixBdd, constraintStates, targetStates, player1Direction, storm::OptimizationDirection::Minimize, true, true, boost::make_optional(prob1MinMinMdp));
result.prob1Min = storm::utility::graph::performProb1(game, transitionMatrixBdd, constraintStates, targetStates, player1Direction, storm::OptimizationDirection::Minimize, true, true, boost::make_optional(prob1MinMinMdp));
// (4) min/max: compute prob 0 using the game functions
qualitativeResult.prob0Max = storm::utility::graph::performProb0(game, transitionMatrixBdd, constraintStates, targetStates, player1Direction, storm::OptimizationDirection::Maximize, true, true);
result.prob0Max = storm::utility::graph::performProb0(game, transitionMatrixBdd, constraintStates, targetStates, player1Direction, storm::OptimizationDirection::Maximize, true, true);
// (5) min/max: compute prob 1 using the game functions
// We know that only previous prob1 states can now be prob 1 states again, because the upper bound
@ -512,51 +516,39 @@ namespace storm {
if (previousQualitativeResult) {
prob1Candidates = previousQualitativeResult.get().prob1Max.player1States;
}
qualitativeResult.prob1Max = storm::utility::graph::performProb1(game, transitionMatrixBdd, constraintStates, targetStates, player1Direction, storm::OptimizationDirection::Maximize, true, true, prob1Candidates);
result.prob1Max = storm::utility::graph::performProb1(game, transitionMatrixBdd, constraintStates, targetStates, player1Direction, storm::OptimizationDirection::Maximize, true, true, prob1Candidates);
} else {
// (1) max/max: compute prob0 using the game functions
qualitativeResult.prob0Max = storm::utility::graph::performProb0(game, transitionMatrixBdd, constraintStates, targetStates, player1Direction, storm::OptimizationDirection::Maximize, true, true);
result.prob0Max = storm::utility::graph::performProb0(game, transitionMatrixBdd, constraintStates, targetStates, player1Direction, storm::OptimizationDirection::Maximize, true, true);
// (2) max/max: compute prob1 using the MDP functions, reuse prob1 states of last iteration to constrain the candidate states.
storm::dd::Bdd<Type> candidates = game.getReachableStates() && !qualitativeResult.prob0Max.player1States;
storm::dd::Bdd<Type> candidates = game.getReachableStates() && !result.prob0Max.player1States;
if (previousQualitativeResult) {
candidates &= previousQualitativeResult.get().prob1Max.player1States;
}
storm::dd::Bdd<Type> prob1MaxMaxMdp = storm::utility::graph::performProb1E(game, transitionMatrixBdd, constraintStates, targetStates, candidates);
// (3) max/max: compute prob1 using the game functions, reuse prob1 states from the MDP precomputation
qualitativeResult.prob1Max = storm::utility::graph::performProb1(game, transitionMatrixBdd, constraintStates, targetStates, player1Direction, storm::OptimizationDirection::Maximize, true, true, boost::make_optional(prob1MaxMaxMdp));
result.prob1Max = storm::utility::graph::performProb1(game, transitionMatrixBdd, constraintStates, targetStates, player1Direction, storm::OptimizationDirection::Maximize, true, true, boost::make_optional(prob1MaxMaxMdp));
// (4) max/min: compute prob0 using the game functions
qualitativeResult.prob0Min = storm::utility::graph::performProb0(game, transitionMatrixBdd, constraintStates, targetStates, player1Direction, storm::OptimizationDirection::Minimize, true, true);
result.prob0Min = storm::utility::graph::performProb0(game, transitionMatrixBdd, constraintStates, targetStates, player1Direction, storm::OptimizationDirection::Minimize, true, true);
// (5) max/min: compute prob1 using the game functions, use prob1 from max/max as the candidate set
qualitativeResult.prob1Min = storm::utility::graph::performProb1(game, transitionMatrixBdd, constraintStates, targetStates, player1Direction, storm::OptimizationDirection::Minimize, true, true, boost::make_optional(prob1MaxMaxMdp));
result.prob1Min = storm::utility::graph::performProb1(game, transitionMatrixBdd, constraintStates, targetStates, player1Direction, storm::OptimizationDirection::Minimize, true, true, boost::make_optional(prob1MaxMaxMdp));
}
} else {
qualitativeResult.prob0Min = storm::utility::graph::performProb0(game, transitionMatrixBdd, constraintStates, targetStates, player1Direction, storm::OptimizationDirection::Minimize, true, true);
qualitativeResult.prob1Min = storm::utility::graph::performProb1(game, transitionMatrixBdd, constraintStates, targetStates, player1Direction, storm::OptimizationDirection::Minimize, true, true);
qualitativeResult.prob0Max = storm::utility::graph::performProb0(game, transitionMatrixBdd, constraintStates, targetStates, player1Direction, storm::OptimizationDirection::Maximize, true, true);
qualitativeResult.prob1Max = storm::utility::graph::performProb1(game, transitionMatrixBdd, constraintStates, targetStates, player1Direction, storm::OptimizationDirection::Maximize, true, true);
result.prob0Min = storm::utility::graph::performProb0(game, transitionMatrixBdd, constraintStates, targetStates, player1Direction, storm::OptimizationDirection::Minimize, true, true);
result.prob1Min = storm::utility::graph::performProb1(game, transitionMatrixBdd, constraintStates, targetStates, player1Direction, storm::OptimizationDirection::Minimize, true, true);
result.prob0Max = storm::utility::graph::performProb0(game, transitionMatrixBdd, constraintStates, targetStates, player1Direction, storm::OptimizationDirection::Maximize, true, true);
result.prob1Max = storm::utility::graph::performProb1(game, transitionMatrixBdd, constraintStates, targetStates, player1Direction, storm::OptimizationDirection::Maximize, true, true);
}
STORM_LOG_TRACE("Qualitative precomputation completed.");
STORM_LOG_TRACE("[" << player1Direction << ", " << storm::OptimizationDirection::Minimize << "]: " << qualitativeResult.prob0Min.player1States.getNonZeroCount() << " 'no', " << qualitativeResult.prob1Min.player1States.getNonZeroCount() << " 'yes'.");
STORM_LOG_TRACE("[" << player1Direction << ", " << storm::OptimizationDirection::Maximize << "]: " << qualitativeResult.prob0Max.player1States.getNonZeroCount() << " 'no', " << qualitativeResult.prob1Max.player1States.getNonZeroCount() << " 'yes'.");
STORM_LOG_ASSERT(checkQualitativeStrategies(qualitativeResult, targetStates), "Qualitative strategies appear to be broken.");
// Check for result after qualitative computations.
std::unique_ptr<CheckResult> result = checkForResultAfterQualitativeCheck<Type, ValueType>(checkTask, storm::OptimizationDirection::Minimize, initialStates, qualitativeResult.prob0Min.getPlayer1States(), qualitativeResult.prob1Min.getPlayer1States());
if (result) {
return result;
} else {
result = checkForResultAfterQualitativeCheck<Type, ValueType>(checkTask, storm::OptimizationDirection::Maximize, initialStates, qualitativeResult.prob0Max.getPlayer1States(), qualitativeResult.prob1Max.getPlayer1States());
if (result) {
return result;
}
}
STORM_LOG_TRACE("[" << player1Direction << ", " << storm::OptimizationDirection::Minimize << "]: " << result.prob0Min.player1States.getNonZeroCount() << " 'no', " << result.prob1Min.player1States.getNonZeroCount() << " 'yes'.");
STORM_LOG_TRACE("[" << player1Direction << ", " << storm::OptimizationDirection::Maximize << "]: " << result.prob0Max.player1States.getNonZeroCount() << " 'no', " << result.prob1Max.player1States.getNonZeroCount() << " 'yes'.");
STORM_LOG_ASSERT(checkQualitativeStrategies(result, targetStates), "Qualitative strategies appear to be broken.");
return result;
}

2
src/storm/modelchecker/abstraction/GameBasedMdpModelChecker.h

@ -71,7 +71,7 @@ namespace storm {
* Performs a qualitative check on the the given game to compute the (player 1) states that have probability
* 0 or 1, respectively, to reach a target state and only visiting constraint states before.
*/
std::unique_ptr<CheckResult> computeProb01States(CheckTask<storm::logic::Formula> const& checkTask, QualitativeResultMinMax<Type>& qualitativeResult, boost::optional<QualitativeResultMinMax<Type>> const& previousQualitativeResult, storm::abstraction::MenuGame<Type, ValueType> const& game, storm::OptimizationDirection player1Direction, storm::dd::Bdd<Type> const& transitionMatrixBdd, storm::dd::Bdd<Type> const& initialStates, storm::dd::Bdd<Type> const& constraintStates, storm::dd::Bdd<Type> const& targetStates, bool addedAllGuards);
QualitativeResultMinMax<Type> computeProb01States(CheckTask<storm::logic::Formula> const& checkTask, boost::optional<QualitativeResultMinMax<Type>> const& previousQualitativeResult, storm::abstraction::MenuGame<Type, ValueType> const& game, storm::OptimizationDirection player1Direction, storm::dd::Bdd<Type> const& transitionMatrixBdd, storm::dd::Bdd<Type> const& initialStates, storm::dd::Bdd<Type> const& constraintStates, storm::dd::Bdd<Type> const& targetStates);
void printStatistics(storm::abstraction::MenuGameAbstractor<Type, ValueType> const& abstractor, storm::abstraction::MenuGame<Type, ValueType> const& game) const;

Loading…
Cancel
Save