|
|
@ -263,77 +263,93 @@ namespace storm { |
|
|
|
return pomdp.getObservation(belief.begin()->first); |
|
|
|
} |
|
|
|
|
|
|
|
struct FreudenthalData { |
|
|
|
FreudenthalData(StateType const& pomdpState, StateType const& dimension, BeliefValueType const& x) : pomdpState(pomdpState), dimension(dimension), value(storm::utility::floor(x)), diff(x-value) { }; |
|
|
|
StateType pomdpState; |
|
|
|
StateType dimension; // i |
|
|
|
BeliefValueType value; // v[i] in the Lovejoy paper |
|
|
|
BeliefValueType diff; // d[i] in the Lovejoy paper |
|
|
|
}; |
|
|
|
struct FreudenthalDataComparator { |
|
|
|
bool operator()(FreudenthalData const& first, FreudenthalData const& second) const { |
|
|
|
if (first.diff != second.diff) { |
|
|
|
return first.diff > second.diff; |
|
|
|
} else { |
|
|
|
return first.dimension < second.dimension; |
|
|
|
} |
|
|
|
} |
|
|
|
}; |
|
|
|
|
|
|
|
Triangulation triangulateBelief(BeliefType belief, uint64_t resolution) { |
|
|
|
//TODO this can also be simplified using the sparse vector interpretation |
|
|
|
//TODO Enable chaching for this method? |
|
|
|
STORM_LOG_ASSERT(assertBelief(belief), "Input belief for triangulation is not valid."); |
|
|
|
|
|
|
|
auto nrStates = pomdp.getNumberOfStates(); |
|
|
|
auto convResolution = storm::utility::convertNumber<BeliefValueType>(resolution); |
|
|
|
|
|
|
|
// This is the Freudenthal Triangulation as described in Lovejoy (a whole lotta math) |
|
|
|
// Variable names are based on the paper |
|
|
|
// TODO avoid reallocations for these vectors |
|
|
|
std::vector<BeliefValueType> x(nrStates); |
|
|
|
std::vector<BeliefValueType> v(nrStates); |
|
|
|
std::vector<BeliefValueType> d(nrStates); |
|
|
|
auto convResolution = storm::utility::convertNumber<BeliefValueType>(resolution); |
|
|
|
|
|
|
|
for (size_t i = 0; i < nrStates; ++i) { |
|
|
|
for (auto const &probEntry : belief) { |
|
|
|
if (probEntry.first >= i) { |
|
|
|
x[i] += convResolution * probEntry.second; |
|
|
|
} |
|
|
|
} |
|
|
|
v[i] = storm::utility::floor(x[i]); |
|
|
|
d[i] = x[i] - v[i]; |
|
|
|
// However, we speed this up a little by exploiting that belief states usually have sparse support. |
|
|
|
// TODO: for the sorting, it probably suffices to have a map from diffs to dimensions. The other Freudenthaldata could then also be stored in vectors, which would be a bit more like the original algorithm |
|
|
|
|
|
|
|
// Initialize some data |
|
|
|
std::vector<typename std::set<FreudenthalData, FreudenthalDataComparator>::iterator> dataIterators; |
|
|
|
dataIterators.reserve(belief.size()); |
|
|
|
// Initialize first row of 'qs' matrix |
|
|
|
std::vector<BeliefValueType> qsRow; |
|
|
|
qsRow.reserve(dataIterators.size()); |
|
|
|
std::set<FreudenthalData, FreudenthalDataComparator> freudenthalData; |
|
|
|
BeliefValueType x = convResolution; |
|
|
|
for (auto const& entry : belief) { |
|
|
|
auto insertionIt = freudenthalData.emplace(entry.first, dataIterators.size(), x).first; |
|
|
|
dataIterators.push_back(insertionIt); |
|
|
|
qsRow.push_back(dataIterators.back()->value); |
|
|
|
x -= entry.second * convResolution; |
|
|
|
} |
|
|
|
|
|
|
|
auto p = storm::utility::vector::getSortedIndices(d); |
|
|
|
|
|
|
|
std::vector<std::vector<BeliefValueType>> qs(nrStates, std::vector<BeliefValueType>(nrStates)); |
|
|
|
for (size_t i = 0; i < nrStates; ++i) { |
|
|
|
if (i == 0) { |
|
|
|
for (size_t j = 0; j < nrStates; ++j) { |
|
|
|
qs[i][j] = v[j]; |
|
|
|
} |
|
|
|
} else { |
|
|
|
for (size_t j = 0; j < nrStates; ++j) { |
|
|
|
if (j == p[i - 1]) { |
|
|
|
qs[i][j] = qs[i - 1][j] + storm::utility::one<BeliefValueType>(); |
|
|
|
} else { |
|
|
|
qs[i][j] = qs[i - 1][j]; |
|
|
|
} |
|
|
|
qsRow.push_back(storm::utility::zero<BeliefValueType>()); |
|
|
|
assert(!freudenthalData.empty()); |
|
|
|
|
|
|
|
Triangulation result; |
|
|
|
result.weights.reserve(freudenthalData.size()); |
|
|
|
result.gridPoints.reserve(freudenthalData.size()); |
|
|
|
|
|
|
|
// Insert first grid point |
|
|
|
// TODO: this special treatment is actually not necessary. |
|
|
|
BeliefValueType firstWeight = storm::utility::one<ValueType>() - freudenthalData.begin()->diff + freudenthalData.rbegin()->diff; |
|
|
|
if (!cc.isZero(firstWeight)) { |
|
|
|
result.weights.push_back(firstWeight); |
|
|
|
BeliefType gridPoint; |
|
|
|
for (StateType j = 0; j < dataIterators.size(); ++j) { |
|
|
|
BeliefValueType gridPointEntry = qsRow[j] - qsRow[j + 1]; |
|
|
|
if (!cc.isZero(gridPointEntry)) { |
|
|
|
gridPoint[dataIterators[j]->pomdpState] = gridPointEntry / convResolution; |
|
|
|
} |
|
|
|
} |
|
|
|
result.gridPoints.push_back(getOrAddBeliefId(gridPoint)); |
|
|
|
} |
|
|
|
|
|
|
|
Triangulation result; |
|
|
|
// The first weight is 1-sum(other weights). We therefore process the js in reverse order |
|
|
|
BeliefValueType firstWeight = storm::utility::one<BeliefValueType>(); |
|
|
|
for (size_t j = nrStates; j > 0;) { |
|
|
|
--j; |
|
|
|
// First create the weights. The weights vector will be reversed at the end. |
|
|
|
ValueType weight; |
|
|
|
if (j == 0) { |
|
|
|
weight = firstWeight; |
|
|
|
} else { |
|
|
|
weight = d[p[j - 1]] - d[p[j]]; |
|
|
|
firstWeight -= weight; |
|
|
|
} |
|
|
|
if (!cc.isZero(weight)) { |
|
|
|
result.weights.push_back(weight); |
|
|
|
BeliefType gridPoint; |
|
|
|
auto const& qsj = qs[j]; |
|
|
|
for (size_t i = 0; i < nrStates - 1; ++i) { |
|
|
|
BeliefValueType gridPointEntry = qsj[i] - qsj[i + 1]; |
|
|
|
if (!cc.isZero(gridPointEntry)) { |
|
|
|
gridPoint[i] = gridPointEntry / convResolution; |
|
|
|
if (freudenthalData.size() > 1) { |
|
|
|
// Insert remaining grid points |
|
|
|
auto currentSortedEntry = freudenthalData.begin(); |
|
|
|
auto previousSortedEntry = currentSortedEntry++; |
|
|
|
for (StateType i = 1; i < dataIterators.size(); ++i) { |
|
|
|
// 'compute' the next row of the qs matrix |
|
|
|
qsRow[previousSortedEntry->dimension] += storm::utility::one<BeliefValueType>(); |
|
|
|
|
|
|
|
BeliefValueType weight = previousSortedEntry->diff - currentSortedEntry->diff; |
|
|
|
if (!cc.isZero(weight)) { |
|
|
|
result.weights.push_back(weight); |
|
|
|
|
|
|
|
BeliefType gridPoint; |
|
|
|
for (StateType j = 0; j < dataIterators.size(); ++j) { |
|
|
|
BeliefValueType gridPointEntry = qsRow[j] - qsRow[j + 1]; |
|
|
|
if (!cc.isZero(gridPointEntry)) { |
|
|
|
gridPoint[dataIterators[j]->pomdpState] = gridPointEntry / convResolution; |
|
|
|
} |
|
|
|
} |
|
|
|
result.gridPoints.push_back(getOrAddBeliefId(gridPoint)); |
|
|
|
} |
|
|
|
if (!cc.isZero(qsj[nrStates - 1])) { |
|
|
|
gridPoint[nrStates - 1] = qsj[nrStates - 1] / convResolution; |
|
|
|
} |
|
|
|
result.gridPoints.push_back(getOrAddBeliefId(gridPoint)); |
|
|
|
++previousSortedEntry; |
|
|
|
++currentSortedEntry; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|