Browse Source

Final touches on cuda nondeterministic linear equation solver & modelchecker

Former-commit-id: c549ae0401
tempestpy_adaptions
David_Korzeniewski 10 years ago
parent
commit
8ebc0e4640
  1. 24
      CMakeLists.txt
  2. 64
      resources/cudaForStorm/CMakeAlignmentCheck.cpp
  3. 31
      resources/cudaForStorm/CMakeFloatAlignmentCheck.cpp
  4. 294
      resources/cudaForStorm/CMakeLists.txt
  5. 6
      resources/cudaForStorm/srcCuda/allCudaKernels.h
  6. 0
      resources/cudaForStorm/srcCuda/bandWidth.cu
  7. 0
      resources/cudaForStorm/srcCuda/bandWidth.h
  8. 286
      resources/cudaForStorm/srcCuda/basicAdd.cu
  9. 9
      resources/cudaForStorm/srcCuda/basicAdd.h
  10. 879
      resources/cudaForStorm/srcCuda/basicValueIteration.cu
  11. 107
      resources/cudaForStorm/srcCuda/basicValueIteration.h
  12. 19
      resources/cudaForStorm/srcCuda/cudaForStorm.h
  13. 49
      resources/cudaForStorm/srcCuda/cuspExtension.h
  14. 361
      resources/cudaForStorm/srcCuda/cuspExtensionDouble.h
  15. 375
      resources/cudaForStorm/srcCuda/cuspExtensionFloat.h
  16. 39
      resources/cudaForStorm/srcCuda/kernelSwitchTest.cu
  17. 1
      resources/cudaForStorm/srcCuda/kernelSwitchTest.h
  18. 33
      resources/cudaForStorm/srcCuda/utility.cu
  19. 12
      resources/cudaForStorm/srcCuda/utility.h
  20. 28
      resources/cudaForStorm/srcCuda/version.cu
  21. 16
      resources/cudaForStorm/srcCuda/version.h
  22. 21
      resources/cudaForStorm/storm-cudaplugin-config.h.in
  23. 4
      src/modelchecker/prctl/TopologicalValueIterationMdpPrctlModelChecker.h
  24. 6
      src/solver/TopologicalValueIterationNondeterministicLinearEquationSolver.cpp
  25. 2
      src/solver/TopologicalValueIterationNondeterministicLinearEquationSolver.h
  26. 59
      src/utility/cli.h
  27. 8
      test/functional/modelchecker/TopologicalValueIterationMdpPrctlModelCheckerTest.cpp

24
CMakeLists.txt

@ -27,7 +27,6 @@ option(STORM_USE_INTELTBB "Sets whether the Intel TBB libraries should be used."
option(STORM_USE_COTIRE "Sets whether Cotire should be used (for building precompiled headers)." OFF) option(STORM_USE_COTIRE "Sets whether Cotire should be used (for building precompiled headers)." OFF)
option(LINK_LIBCXXABI "Sets whether libc++abi should be linked." OFF) option(LINK_LIBCXXABI "Sets whether libc++abi should be linked." OFF)
option(USE_LIBCXX "Sets whether the standard library is libc++." OFF) option(USE_LIBCXX "Sets whether the standard library is libc++." OFF)
option(STORM_USE_CUDAFORSTORM "Sets whether StoRM is built with its CUDA extension." OFF)
set(GUROBI_ROOT "" CACHE STRING "The root directory of Gurobi (if available).") set(GUROBI_ROOT "" CACHE STRING "The root directory of Gurobi (if available).")
set(Z3_ROOT "" CACHE STRING "The root directory of Z3 (if available).") set(Z3_ROOT "" CACHE STRING "The root directory of Z3 (if available).")
set(CUDA_ROOT "" CACHE STRING "The root directory of CUDA.") set(CUDA_ROOT "" CACHE STRING "The root directory of CUDA.")
@ -227,11 +226,7 @@ endif()
set(STORM_CPP_GLPK_DEF "define") set(STORM_CPP_GLPK_DEF "define")
# CUDA Defines # CUDA Defines
if (STORM_USE_CUDAFORSTORM)
set(STORM_CPP_CUDAFORSTORM_DEF "define")
else()
set(STORM_CPP_CUDAFORSTORM_DEF "undef")
endif()
set(STORM_CPP_CUDAFORSTORM_DEF "undef")
# Z3 Defines # Z3 Defines
if (ENABLE_Z3) if (ENABLE_Z3)
@ -492,9 +487,6 @@ else(GMP_FOUND)
endif(ENABLE_MSAT) endif(ENABLE_MSAT)
endif(GMP_FOUND) endif(GMP_FOUND)
if (STORM_USE_CUDAFORSTORM)
link_directories("${PROJECT_BINARY_DIR}/cudaForStorm/lib")
endif()
if ((NOT Boost_LIBRARY_DIRS) OR ("${Boost_LIBRARY_DIRS}" STREQUAL "")) if ((NOT Boost_LIBRARY_DIRS) OR ("${Boost_LIBRARY_DIRS}" STREQUAL ""))
set(Boost_LIBRARY_DIRS "${Boost_INCLUDE_DIRS}/stage/lib") set(Boost_LIBRARY_DIRS "${Boost_INCLUDE_DIRS}/stage/lib")
endif () endif ()
@ -529,20 +521,6 @@ target_link_libraries(storm ${Boost_LIBRARIES})
#message(STATUS "BOOST_INCLUDE_DIRS is ${Boost_INCLUDE_DIRS}") #message(STATUS "BOOST_INCLUDE_DIRS is ${Boost_INCLUDE_DIRS}")
#message(STATUS "BOOST_LIBRARY_DIRS is ${Boost_LIBRARY_DIRS}") #message(STATUS "BOOST_LIBRARY_DIRS is ${Boost_LIBRARY_DIRS}")
#############################################################
##
## CUDA For Storm
##
#############################################################
if (STORM_USE_CUDAFORSTORM)
message (STATUS "StoRM - Linking with CudaForStorm")
include_directories("${PROJECT_BINARY_DIR}/cudaForStorm/include")
include_directories("${PROJECT_SOURCE_DIR}/resources/cudaForStorm")
target_link_libraries(storm cudaForStorm)
target_link_libraries(storm-functional-tests cudaForStorm)
target_link_libraries(storm-performance-tests cudaForStorm)
endif(STORM_USE_CUDAFORSTORM)
############################################################# #############################################################
## ##
## CUDD ## CUDD

64
resources/cudaForStorm/CMakeAlignmentCheck.cpp

@ -1,64 +0,0 @@
/*
* This is component of StoRM - Cuda Plugin to check whether type alignment matches the assumptions done while optimizing the code.
*/
#include <cstdint>
#include <utility>
#include <vector>
#define CONTAINER_SIZE 100ul
template <typename IndexType, typename ValueType>
int checkForAlignmentOfPairTypes(size_t containerSize, IndexType const firstValue, ValueType const secondValue) {
std::vector<std::pair<IndexType, ValueType>>* myVector = new std::vector<std::pair<IndexType, ValueType>>();
for (size_t i = 0; i < containerSize; ++i) {
myVector->push_back(std::make_pair(firstValue, secondValue));
}
size_t myVectorSize = myVector->size();
IndexType* firstStart = &(myVector->at(0).first);
IndexType* firstEnd = &(myVector->at(myVectorSize - 1).first);
ValueType* secondStart = &(myVector->at(0).second);
ValueType* secondEnd = &(myVector->at(myVectorSize - 1).second);
size_t startOffset = reinterpret_cast<size_t>(secondStart) - reinterpret_cast<size_t>(firstStart);
size_t endOffset = reinterpret_cast<size_t>(secondEnd) - reinterpret_cast<size_t>(firstEnd);
size_t firstOffset = reinterpret_cast<size_t>(firstEnd) - reinterpret_cast<size_t>(firstStart);
size_t secondOffset = reinterpret_cast<size_t>(secondEnd) - reinterpret_cast<size_t>(secondStart);
delete myVector;
myVector = nullptr;
if (myVectorSize != containerSize) {
return -2;
}
// Check for alignment:
// Requirement is that the pairs are aligned like: first, second, first, second, first, second, ...
if (sizeof(IndexType) != sizeof(ValueType)) {
return -3;
}
if (startOffset != sizeof(IndexType)) {
return -4;
}
if (endOffset != sizeof(IndexType)) {
return -5;
}
if (firstOffset != ((sizeof(IndexType) + sizeof(ValueType)) * (myVectorSize - 1))) {
return -6;
}
if (secondOffset != ((sizeof(IndexType) + sizeof(ValueType)) * (myVectorSize - 1))) {
return -7;
}
return 0;
}
int main(int argc, char* argv[]) {
int result = 0;
result = checkForAlignmentOfPairTypes<uint_fast64_t, double>(CONTAINER_SIZE, 42, 3.14);
if (result != 0) {
return result;
}
return 0;
}

31
resources/cudaForStorm/CMakeFloatAlignmentCheck.cpp

@ -1,31 +0,0 @@
/*
* This is component of StoRM - Cuda Plugin to check whether a pair of uint_fast64_t and float gets auto-aligned to match 64bit boundaries
*/
#include <cstdint>
#include <utility>
#include <vector>
#define CONTAINER_SIZE 100ul
int main(int argc, char* argv[]) {
int result = 0;
std::vector<std::pair<uint_fast64_t, float>> myVector;
for (size_t i = 0; i < CONTAINER_SIZE; ++i) {
myVector.push_back(std::make_pair(i, 42.12345f * i));
}
char* firstUintPointer = reinterpret_cast<char*>(&(myVector.at(0).first));
char* secondUintPointer = reinterpret_cast<char*>(&(myVector.at(1).first));
ptrdiff_t uintDiff = secondUintPointer - firstUintPointer;
if (uintDiff == (2 * sizeof(uint_fast64_t))) {
result = 2;
} else if (uintDiff == (sizeof(uint_fast64_t) + sizeof(float))) {
result = 3;
} else {
result = -5;
}
return result;
}

294
resources/cudaForStorm/CMakeLists.txt

@ -1,294 +0,0 @@
cmake_minimum_required (VERSION 2.8.6)
# Set project name
project (cudaForStorm CXX C)
# Set the version number
set (STORM_CPP_VERSION_MAJOR 1)
set (STORM_CPP_VERSION_MINOR 0)
# Add base folder for better inclusion paths
include_directories("${PROJECT_SOURCE_DIR}")
include_directories("${PROJECT_SOURCE_DIR}/src")
message(STATUS "StoRM (CudaPlugin) - CUDA_PATH is ${CUDA_PATH} or $ENV{CUDA_PATH}")
#############################################################
##
## CMake options of StoRM
##
#############################################################
option(CUDAFORSTORM_DEBUG "Sets whether the DEBUG mode is used" ON)
option(LINK_LIBCXXABI "Sets whether libc++abi should be linked." OFF)
option(USE_LIBCXX "Sets whether the standard library is libc++." OFF)
set(ADDITIONAL_INCLUDE_DIRS "" CACHE STRING "Additional directories added to the include directories.")
set(ADDITIONAL_LINK_DIRS "" CACHE STRING "Additional directories added to the link directories.")
set(STORM_LIB_INSTALL_DIR "${PROJECT_SOURCE_DIR}/../../build/cudaForStorm" CACHE STRING "The Build directory of storm, where the library files should be installed to (if available).")
#############################################################
##
## Inclusion of required libraries
##
#############################################################
# Add the resources/cmake folder to Module Search Path for FindTBB.cmake
set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${PROJECT_SOURCE_DIR}/../cmake/")
# Set the hint for CUSP
set(CUSP_HINT "${PROJECT_SOURCE_DIR}/../3rdparty/cusplibrary")
find_package(CUDA REQUIRED)
find_package(Cusp REQUIRED)
find_package(Doxygen REQUIRED)
find_package(Thrust REQUIRED)
# If the DEBUG option was turned on, we will target a debug version and a release version otherwise
if (CUDAFORSTORM_DEBUG)
set (CMAKE_BUILD_TYPE "DEBUG")
else()
set (CMAKE_BUILD_TYPE "RELEASE")
endif()
message(STATUS "StoRM (CudaPlugin) - Building ${CMAKE_BUILD_TYPE} version.")
message(STATUS "StoRM (CudaPlugin) - CMAKE_BUILD_TYPE: ${CMAKE_BUILD_TYPE}")
message(STATUS "StoRM (CudaPlugin) - CMAKE_BUILD_TYPE (ENV): $ENV{CMAKE_BUILD_TYPE}")
#############################################################
##
## CUDA Options
##
#############################################################
SET (CUDA_VERBOSE_BUILD ON CACHE BOOL "nvcc verbose" FORCE)
set(CUDA_ATTACH_VS_BUILD_RULE_TO_CUDA_FILE ON)
set(BUILD_SHARED_LIBS OFF)
set(CUDA_SEPARABLE_COMPILATION ON)
#set(CUDA_NVCC_FLAGS "-arch=sm_30")
# Because the FindCUDA.cmake file has a path related bug, two folders have to be present
file(MAKE_DIRECTORY "${PROJECT_BINARY_DIR}/CMakeFiles/cudaForStorm.dir/Debug")
file(MAKE_DIRECTORY "${PROJECT_BINARY_DIR}/CMakeFiles/cudaForStorm.dir/Release")
#############################################################
##
## Compiler specific settings and definitions
##
#############################################################
if(CMAKE_COMPILER_IS_GNUCC)
message(STATUS "StoRM (CudaPlugin) - Using Compiler Configuration: GCC")
# Set standard flags for GCC
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -funroll-loops")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11 -Wall -pedantic")
elseif(MSVC)
message(STATUS "StoRM (CudaPlugin) - Using Compiler Configuration: MSVC")
# required for GMM to compile, ugly error directive in their code
add_definitions(/D_SCL_SECURE_NO_DEPRECATE /D_CRT_SECURE_NO_WARNINGS)
# required as the PRCTL Parser bloats object files (COFF) beyond their maximum size (see http://msdn.microsoft.com/en-us/library/8578y171(v=vs.110).aspx)
add_definitions(/bigobj)
# required by GTest and PrismGrammar::createIntegerVariable
add_definitions(/D_VARIADIC_MAX=10)
# Windows.h breaks GMM in gmm_except.h because of its macro definition for min and max
add_definitions(/DNOMINMAX)
else(CLANG)
message(STATUS "StoRM (CudaPlugin) - Using Compiler Configuration: Clang (LLVM)")
# As CLANG is not set as a variable, we need to set it in case we have not matched another compiler.
set (CLANG ON)
# Set standard flags for clang
set (CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -funroll-loops -O3")
if(UNIX AND NOT APPLE AND NOT USE_LIBCXX)
set(CLANG_STDLIB libstdc++)
message(STATUS "StoRM (CudaPlugin) - Linking against libstdc++")
else()
set(CLANG_STDLIB libc++)
message(STATUS "StoRM (CudaPlugin) - Linking against libc++")
# Set up some Xcode specific settings
set(CMAKE_XCODE_ATTRIBUTE_CLANG_CXX_LANGUAGE_STANDARD "c++11")
set(CMAKE_XCODE_ATTRIBUTE_CLANG_CXX_LIBRARY "libc++")
endif()
set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11 -stdlib=${CLANG_STDLIB} -Wall -pedantic -Wno-unused-variable -DBOOST_RESULT_OF_USE_TR1 -DBOOST_NO_DECLTYPE -ftemplate-depth=1024")
set (CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -g")
endif()
#############################################################
##
## CMake-generated Config File for StoRM
##
#############################################################
# Test for type alignment
try_run(STORM_CUDA_RUN_RESULT_TYPEALIGNMENT STORM_CUDA_COMPILE_RESULT_TYPEALIGNMENT
${PROJECT_BINARY_DIR} "${PROJECT_SOURCE_DIR}/CMakeAlignmentCheck.cpp"
COMPILE_OUTPUT_VARIABLE OUTPUT_TEST_VAR
)
if(NOT STORM_CUDA_COMPILE_RESULT_TYPEALIGNMENT)
message(FATAL_ERROR "StoRM (CudaPlugin) - Could not test type alignment, there was an Error while compiling the file ${PROJECT_SOURCE_DIR}/CMakeAlignmentCheck.cpp: ${OUTPUT_TEST_VAR}")
elseif(STORM_CUDA_RUN_RESULT_TYPEALIGNMENT EQUAL 0)
message(STATUS "StoRM (CudaPlugin) - Result of Type Alignment Check: OK.")
else()
message(FATAL_ERROR "StoRM (CudaPlugin) - Result of Type Alignment Check: FAILED (Code ${STORM_CUDA_RUN_RESULT_TYPEALIGNMENT})")
endif()
# Test for Float 64bit Alignment
try_run(STORM_CUDA_RUN_RESULT_FLOATALIGNMENT STORM_CUDA_COMPILE_RESULT_FLOATALIGNMENT
${PROJECT_BINARY_DIR} "${PROJECT_SOURCE_DIR}/CMakeFloatAlignmentCheck.cpp"
COMPILE_OUTPUT_VARIABLE OUTPUT_TEST_VAR
)
if(NOT STORM_CUDA_COMPILE_RESULT_FLOATALIGNMENT)
message(FATAL_ERROR "StoRM (CudaPlugin) - Could not test float type alignment, there was an Error while compiling the file ${PROJECT_SOURCE_DIR}/CMakeFloatAlignmentCheck.cpp: ${OUTPUT_TEST_VAR}")
elseif(STORM_CUDA_RUN_RESULT_FLOATALIGNMENT EQUAL 2)
message(STATUS "StoRM (CudaPlugin) - Result of Float Type Alignment Check: 64bit alignment active.")
set(STORM_CUDAPLUGIN_FLOAT_64BIT_ALIGN_DEF "define")
elseif(STORM_CUDA_RUN_RESULT_FLOATALIGNMENT EQUAL 3)
message(STATUS "StoRM (CudaPlugin) - Result of Float Type Alignment Check: 64bit alignment disabled.")
set(STORM_CUDAPLUGIN_FLOAT_64BIT_ALIGN_DEF "undef")
else()
message(FATAL_ERROR "StoRM (CudaPlugin) - Result of Float Type Alignment Check: FAILED (Code ${STORM_CUDA_RUN_RESULT_FLOATALIGNMENT})")
endif()
#
# Make a version file containing the current version from git.
#
include(GetGitRevisionDescription)
git_describe_checkout(STORM_GIT_VERSION_STRING)
# Parse the git Tag into variables
string(REGEX REPLACE "^([0-9]+)\\..*" "\\1" STORM_CUDAPLUGIN_VERSION_MAJOR "${STORM_GIT_VERSION_STRING}")
string(REGEX REPLACE "^[0-9]+\\.([0-9]+).*" "\\1" STORM_CUDAPLUGIN_VERSION_MINOR "${STORM_GIT_VERSION_STRING}")
string(REGEX REPLACE "^[0-9]+\\.[0-9]+\\.([0-9]+).*" "\\1" STORM_CUDAPLUGIN_VERSION_PATCH "${STORM_GIT_VERSION_STRING}")
string(REGEX REPLACE "^[0-9]+\\.[0-9]+\\.[0-9]+\\-([0-9]+)\\-.*" "\\1" STORM_CUDAPLUGIN_VERSION_COMMITS_AHEAD "${STORM_GIT_VERSION_STRING}")
string(REGEX REPLACE "^[0-9]+\\.[0-9]+\\.[0-9]+\\-[0-9]+\\-([a-z0-9]+).*" "\\1" STORM_CUDAPLUGIN_VERSION_HASH "${STORM_GIT_VERSION_STRING}")
string(REGEX REPLACE "^[0-9]+\\.[0-9]+\\.[0-9]+\\-[0-9]+\\-[a-z0-9]+\\-(.*)" "\\1" STORM_CUDAPLUGIN_VERSION_APPENDIX "${STORM_GIT_VERSION_STRING}")
if ("${STORM_CUDAPLUGIN_VERSION_APPENDIX}" MATCHES "^.*dirty.*$")
set(STORM_CUDAPLUGIN_VERSION_DIRTY 1)
else()
set(STORM_CUDAPLUGIN_VERSION_DIRTY 0)
endif()
message(STATUS "StoRM (CudaPlugin) - Version information: ${STORM_CUDAPLUGIN_VERSION_MAJOR}.${STORM_CUDAPLUGIN_VERSION_MINOR}.${STORM_CUDAPLUGIN_VERSION_PATCH} (${STORM_CUDAPLUGIN_VERSION_COMMITS_AHEAD} commits ahead of Tag) build from ${STORM_CUDAPLUGIN_VERSION_HASH} (Dirty: ${STORM_CUDAPLUGIN_VERSION_DIRTY})")
# Configure a header file to pass some of the CMake settings to the source code
configure_file (
"${PROJECT_SOURCE_DIR}/storm-cudaplugin-config.h.in"
"${PROJECT_BINARY_DIR}/include/storm-cudaplugin-config.h"
)
# Add the binary dir include directory for storm-config.h
include_directories("${PROJECT_BINARY_DIR}/include")
# Add the main source directory for includes
include_directories("${PROJECT_SOURCE_DIR}/../../src")
#############################################################
##
## Source file aggregation and clustering
##
#############################################################
file(GLOB_RECURSE CUDAFORSTORM_HEADERS ${PROJECT_SOURCE_DIR}/src/*.h)
file(GLOB_RECURSE CUDAFORSTORM_SOURCES ${PROJECT_SOURCE_DIR}/src/*.cpp)
file(GLOB_RECURSE CUDAFORSTORM_CUDA_SOURCES "${PROJECT_SOURCE_DIR}/srcCuda/*.cu")
file(GLOB_RECURSE CUDAFORSTORM_CUDA_HEADERS "${PROJECT_SOURCE_DIR}/srcCuda/*.h")
# Additional include files like the storm-config.h
file(GLOB_RECURSE CUDAFORSTORM_BUILD_HEADERS ${PROJECT_BINARY_DIR}/include/*.h)
# Group the headers and sources
source_group(main FILES ${CUDAFORSTORM_HEADERS} ${CUDAFORSTORM_SOURCES})
source_group(cuda FILES ${CUDAFORSTORM_CUDA_SOURCES} ${CUDAFORSTORM_CUDA_HEADERS})
# Add custom additional include or link directories
if (ADDITIONAL_INCLUDE_DIRS)
message(STATUS "StoRM (CudaPlugin) - Using additional include directories ${ADDITIONAL_INCLUDE_DIRS}")
include_directories(${ADDITIONAL_INCLUDE_DIRS})
endif(ADDITIONAL_INCLUDE_DIRS)
if (ADDITIONAL_LINK_DIRS)
message(STATUS "StoRM (CudaPlugin) - Using additional link directories ${ADDITIONAL_LINK_DIRS}")
link_directories(${ADDITIONAL_LINK_DIRS})
endif(ADDITIONAL_LINK_DIRS)
#############################################################
##
## Pre executable-creation link_directories setup
##
#############################################################
#############################################################
##
## CUDA
##
#############################################################
#set(CUDA_NVCC_FLAGS ${CUDA_NVCC_FLAGS} --gpu-architecture sm_30)
#target_link_libraries(cudaLibrary ${CUDA_cusparse_LIBRARY})
#ADD_DEPENDENCIES(cudaForStorm cudaLibrary)
#target_link_libraries(cudaForStorm cudaLibrary)
message(STATUS "StoRM (CudaPlugin) - Found CUDA SDK in Version ${CUDA_VERSION_STRING}, sparse lib is ${CUDA_cusparse_LIBRARY}")
include_directories(${CUDA_INCLUDE_DIRS})
#############################################################
##
## CUSP
##
#############################################################
if(CUSP_FOUND)
include_directories(${CUSP_INCLUDE_DIR})
cuda_include_directories(${CUSP_INCLUDE_DIR})
message(STATUS "StoRM (CudaPlugin) - Found CUSP Version ${CUSP_VERSION} in location ${CUSP_INCLUDE_DIR}")
else()
message(FATAL_ERROR "StoRM (CudaPlugin) - Could not find CUSP!")
endif()
#############################################################
##
## Thrust
##
#############################################################
if(THRUST_FOUND)
include_directories(${THRUST_INCLUDE_DIR})
cuda_include_directories(${THRUST_INCLUDE_DIR})
message(STATUS "StoRM (CudaPlugin) - Found Thrust Version ${THRUST_VERSION} in location ${THRUST_INCLUDE_DIR}")
else()
message(FATAL_ERROR "StoRM (CudaPlugin) - Could not find Thrust! Check your CUDA installation.")
endif()
###############################################################################
## #
## Executable Creation #
## #
## All link_directories() calls AND include_directories() calls #
## MUST be made before this point #
## #
###############################################################################
include (GenerateExportHeader)
cuda_add_library(cudaForStorm SHARED
${CUDAFORSTORM_CUDA_SOURCES} ${CUDAFORSTORM_CUDA_HEADERS}
OPTIONS -DSTUFF="" -arch=sm_30
RELEASE -DNDEBUG
DEBUG -g -DDEBUG
)
GENERATE_EXPORT_HEADER( cudaForStorm
BASE_NAME cudaForStorm
EXPORT_MACRO_NAME cudaForStorm_EXPORT
EXPORT_FILE_NAME include/cudaForStorm_Export.h
STATIC_DEFINE cudaForStorm_BUILT_AS_STATIC
)
if (MSVC)
# Add the DebugHelper DLL
set(CMAKE_CXX_STANDARD_LIBRARIES "${CMAKE_CXX_STANDARD_LIBRARIES} Dbghelp.lib")
target_link_libraries(cudaForStorm "Dbghelp.lib")
endif(MSVC)
# Link against libc++abi if requested. May be needed to build on Linux systems using clang.
if (LINK_LIBCXXABI)
message (STATUS "StoRM (CudaPlugin) - Linking against libc++abi.")
target_link_libraries(cudaForStorm "c++abi")
endif(LINK_LIBCXXABI)
# Install Directive
install(TARGETS cudaForStorm DESTINATION "${STORM_LIB_INSTALL_DIR}/lib")
install(FILES "${PROJECT_SOURCE_DIR}/srcCuda/cudaForStorm.h" "${PROJECT_BINARY_DIR}/include/cudaForStorm_Export.h" DESTINATION "${STORM_LIB_INSTALL_DIR}/include")

6
resources/cudaForStorm/srcCuda/allCudaKernels.h

@ -1,6 +0,0 @@
#include "utility.h"
#include "bandWidth.h"
#include "basicAdd.h"
#include "kernelSwitchTest.h"
#include "basicValueIteration.h"
#include "version.h"

0
resources/cudaForStorm/srcCuda/bandWidth.cu

0
resources/cudaForStorm/srcCuda/bandWidth.h

286
resources/cudaForStorm/srcCuda/basicAdd.cu

@ -1,286 +0,0 @@
#include <cuda.h>
#include <stdlib.h>
#include <stdio.h>
#include <chrono>
#include <iostream>
__global__ void cuda_kernel_basicAdd(int a, int b, int *c) {
*c = a + b;
}
__global__ void cuda_kernel_arrayFma(int const * const A, int const * const B, int const * const C, int * const D, int const N) {
// Fused Multiply Add:
// A * B + C => D
/*
*Die Variable i dient für den Zugriff auf das Array. Da jeder Thread die Funktion VecAdd
*ausführt, muss i für jeden Thread unterschiedlich sein. Ansonsten würden unterschiedliche
*Threads auf denselben Index im Array schreiben. blockDim.x ist die Anzahl der Threads der x-Komponente
*des Blocks, blockIdx.x ist die x-Koordinate des aktuellen Blocks und threadIdx.x ist die x-Koordinate des
*Threads, der die Funktion gerade ausführt.
*/
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < N) {
D[i] = A[i] * B[i] + C[i];
}
}
__global__ void cuda_kernel_arrayFmaOptimized(int * const A, int const N, int const M) {
// Fused Multiply Add:
// A * B + C => D
// Layout:
// A B C D A B C D A B C D
int i = blockDim.x * blockIdx.x + threadIdx.x;
if ((i*M) < N) {
for (int j = i*M; j < i*M + M; ++j) {
A[j*4 + 3] = A[j*4] * A[j*4 + 1] + A[j*4 + 2];
}
}
}
extern "C" int cuda_basicAdd(int a, int b) {
int c = 0;
int *dev_c;
cudaMalloc((void**)&dev_c, sizeof(int));
cuda_kernel_basicAdd<<<1, 1>>>(a, b, dev_c);
cudaMemcpy(&c, dev_c, sizeof(int), cudaMemcpyDeviceToHost);
//printf("%d + %d + 42 is %d\n", a, b, c);
cudaFree(dev_c);
return c;
}
void cpp_cuda_bandwidthTest(int entryCount, int N) {
// Size of the Arrays
size_t arraySize = entryCount * sizeof(int);
int* deviceIntArray;
int* hostIntArray = new int[arraySize];
// Allocate space on the device
auto start_time = std::chrono::high_resolution_clock::now();
for (int i = 0; i < N; ++i) {
if (cudaMalloc((void**)&deviceIntArray, arraySize) != cudaSuccess) {
std::cout << "Error in cudaMalloc while allocating " << arraySize << " Bytes!" << std::endl;
delete[] hostIntArray;
return;
}
// Free memory on device
if (cudaFree(deviceIntArray) != cudaSuccess) {
std::cout << "Error in cudaFree!" << std::endl;
delete[] hostIntArray;
return;
}
}
auto end_time = std::chrono::high_resolution_clock::now();
auto copyTime = std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count();
double mBytesPerSecond = (((double)(N * arraySize)) / copyTime) * 0.95367431640625;
std::cout << "Allocating the Array " << N << " times took " << copyTime << " Microseconds." << std::endl;
std::cout << "Resulting in " << mBytesPerSecond << " MBytes per Second Allocationspeed." << std::endl;
if (cudaMalloc((void**)&deviceIntArray, arraySize) != cudaSuccess) {
std::cout << "Error in cudaMalloc while allocating " << arraySize << " Bytes for copyTest!" << std::endl;
delete[] hostIntArray;
return;
}
// Prepare data
for (int i = 0; i < N; ++i) {
hostIntArray[i] = i * 333 + 123;
}
// Copy data TO device
start_time = std::chrono::high_resolution_clock::now();
for (int i = 0; i < N; ++i) {
if (cudaMemcpy(deviceIntArray, hostIntArray, arraySize, cudaMemcpyHostToDevice) != cudaSuccess) {
std::cout << "Error in cudaMemcpy while copying " << arraySize << " Bytes to device!" << std::endl;
// Free memory on device
if (cudaFree(deviceIntArray) != cudaSuccess) {
std::cout << "Error in cudaFree!" << std::endl;
}
delete[] hostIntArray;
return;
}
}
end_time = std::chrono::high_resolution_clock::now();
copyTime = std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count();
mBytesPerSecond = (((double)(N * arraySize)) / copyTime) * 0.95367431640625;
std::cout << "Copying the Array " << N << " times took " << copyTime << " Microseconds." << std::endl;
std::cout << "Resulting in " << mBytesPerSecond << " MBytes per Second TO device." << std::endl;
// Copy data FROM device
start_time = std::chrono::high_resolution_clock::now();
for (int i = 0; i < N; ++i) {
if (cudaMemcpy(hostIntArray, deviceIntArray, arraySize, cudaMemcpyDeviceToHost) != cudaSuccess) {
std::cout << "Error in cudaMemcpy while copying " << arraySize << " Bytes to host!" << std::endl;
// Free memory on device
if (cudaFree(deviceIntArray) != cudaSuccess) {
std::cout << "Error in cudaFree!" << std::endl;
}
delete[] hostIntArray;
return;
}
}
end_time = std::chrono::high_resolution_clock::now();
copyTime = std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count();
mBytesPerSecond = (((double)(N * arraySize)) / copyTime) * 0.95367431640625;
std::cout << "Copying the Array " << N << " times took " << copyTime << " Microseconds." << std::endl;
std::cout << "Resulting in " << mBytesPerSecond << " MBytes per Second FROM device." << std::endl;
// Free memory on device
if (cudaFree(deviceIntArray) != cudaSuccess) {
std::cout << "Error in cudaFree!" << std::endl;
}
delete[] hostIntArray;
}
extern "C" void cuda_arrayFma(int const * const A, int const * const B, int const * const C, int * const D, int const N) {
// Size of the Arrays
size_t arraySize = N * sizeof(int);
int* deviceIntArrayA;
int* deviceIntArrayB;
int* deviceIntArrayC;
int* deviceIntArrayD;
// Allocate space on the device
if (cudaMalloc((void**)&deviceIntArrayA, arraySize) != cudaSuccess) {
printf("Error in cudaMalloc1!\n");
return;
}
if (cudaMalloc((void**)&deviceIntArrayB, arraySize) != cudaSuccess) {
printf("Error in cudaMalloc2!\n");
cudaFree(deviceIntArrayA);
return;
}
if (cudaMalloc((void**)&deviceIntArrayC, arraySize) != cudaSuccess) {
printf("Error in cudaMalloc3!\n");
cudaFree(deviceIntArrayA);
cudaFree(deviceIntArrayB);
return;
}
if (cudaMalloc((void**)&deviceIntArrayD, arraySize) != cudaSuccess) {
printf("Error in cudaMalloc4!\n");
cudaFree(deviceIntArrayA);
cudaFree(deviceIntArrayB);
cudaFree(deviceIntArrayC);
return;
}
// Copy data TO device
if (cudaMemcpy(deviceIntArrayA, A, arraySize, cudaMemcpyHostToDevice) != cudaSuccess) {
printf("Error in cudaMemcpy!\n");
cudaFree(deviceIntArrayA);
cudaFree(deviceIntArrayB);
cudaFree(deviceIntArrayC);
cudaFree(deviceIntArrayD);
return;
}
if (cudaMemcpy(deviceIntArrayB, B, arraySize, cudaMemcpyHostToDevice) != cudaSuccess) {
printf("Error in cudaMemcpy!\n");
cudaFree(deviceIntArrayA);
cudaFree(deviceIntArrayB);
cudaFree(deviceIntArrayC);
cudaFree(deviceIntArrayD);
return;
}
if (cudaMemcpy(deviceIntArrayC, C, arraySize, cudaMemcpyHostToDevice) != cudaSuccess) {
printf("Error in cudaMemcpy!\n");
cudaFree(deviceIntArrayA);
cudaFree(deviceIntArrayB);
cudaFree(deviceIntArrayC);
cudaFree(deviceIntArrayD);
return;
}
// Festlegung der Threads pro Block
int threadsPerBlock = 512;
// Es werden soviele Blöcke benötigt, dass alle Elemente der Vektoren abgearbeitet werden können
int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;
// Run kernel
cuda_kernel_arrayFma<<<blocksPerGrid, threadsPerBlock>>>(deviceIntArrayA, deviceIntArrayB, deviceIntArrayC, deviceIntArrayD, N);
// Copy data FROM device
if (cudaMemcpy(D, deviceIntArrayD, arraySize, cudaMemcpyDeviceToHost) != cudaSuccess) {
printf("Error in cudaMemcpy!\n");
cudaFree(deviceIntArrayA);
cudaFree(deviceIntArrayB);
cudaFree(deviceIntArrayC);
cudaFree(deviceIntArrayD);
return;
}
// Free memory on device
cudaFree(deviceIntArrayA);
cudaFree(deviceIntArrayB);
cudaFree(deviceIntArrayC);
cudaFree(deviceIntArrayD);
}
extern "C" void cuda_arrayFmaOptimized(int * const A, int const N, int const M) {
// Size of the Arrays
size_t arraySize = N * sizeof(int) * 4;
int* deviceIntArrayA;
// Allocate space on the device
if (cudaMalloc((void**)&deviceIntArrayA, arraySize) != cudaSuccess) {
printf("Error in cudaMalloc1!\n");
return;
}
#define ONFAILFREE0() do { } while(0)
#define ONFAILFREE1(a) do { cudaFree(a); } while(0)
#define ONFAILFREE2(a, b) do { cudaFree(a); cudaFree(b); } while(0)
#define ONFAILFREE3(a, b, c) do { cudaFree(a); cudaFree(b); cudaFree(c); } while(0)
#define ONFAILFREE4(a, b, c, d) do { cudaFree(a); cudaFree(b); cudaFree(c); cudaFree(d); } while(0)
#define CHECKED_CUDA_CALL(func__, freeArgs, ...) do { int retCode = cuda##func__ (__VA_ARGS__); if (retCode != cudaSuccess) { freeArgs; printf("Error in func__!\n"); return; } } while(0)
// Copy data TO device
CHECKED_CUDA_CALL(Memcpy, ONFAILFREE1(deviceIntArrayA), deviceIntArrayA, A, arraySize, cudaMemcpyHostToDevice);
/*if (cudaMemcpy(deviceIntArrayA, A, arraySize, cudaMemcpyHostToDevice) != cudaSuccess) {
printf("Error in cudaMemcpy!\n");
cudaFree(deviceIntArrayA);
return;
}*/
// Festlegung der Threads pro Block
int threadsPerBlock = 512;
// Es werden soviele Blöcke benötigt, dass alle Elemente der Vektoren abgearbeitet werden können
int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;
// Run kernel
cuda_kernel_arrayFmaOptimized<<<blocksPerGrid, threadsPerBlock>>>(deviceIntArrayA, N, M);
// Copy data FROM device
if (cudaMemcpy(A, deviceIntArrayA, arraySize, cudaMemcpyDeviceToHost) != cudaSuccess) {
printf("Error in cudaMemcpy!\n");
cudaFree(deviceIntArrayA);
return;
}
// Free memory on device
if (cudaFree(deviceIntArrayA) != cudaSuccess) {
printf("Error in cudaFree!\n");
return;
}
}
extern "C" void cuda_arrayFmaHelper(int const * const A, int const * const B, int const * const C, int * const D, int const N) {
for (int i = 0; i < N; ++i) {
D[i] = A[i] * B[i] + C[i];
}
}
extern "C" void cuda_arrayFmaOptimizedHelper(int * const A, int const N) {
for (int i = 0; i < N; i += 4) {
A[i+3] = A[i] * A[i+1] + A[i+2];
}
}

9
resources/cudaForStorm/srcCuda/basicAdd.h

@ -1,9 +0,0 @@
extern "C" int cuda_basicAdd(int a, int b);
extern "C" void cuda_arrayFmaOptimized(int * const A, int const N, int const M);
extern "C" void cuda_arrayFmaOptimizedHelper(int * const A, int const N);
extern "C" void cuda_arrayFma(int const * const A, int const * const B, int const * const C, int * const D, int const N);
extern "C" void cuda_arrayFmaHelper(int const * const A, int const * const B, int const * const C, int * const D, int const N);
void cpp_cuda_bandwidthTest(int entryCount, int N);

879
resources/cudaForStorm/srcCuda/basicValueIteration.cu

@ -1,879 +0,0 @@
#include "basicValueIteration.h"
#define CUSP_USE_TEXTURE_MEMORY
#include <iostream>
#include <chrono>
#include <cuda_runtime.h>
#include "cusparse_v2.h"
#include "utility.h"
#include "cuspExtension.h"
#include <thrust/transform.h>
#include <thrust/device_ptr.h>
#include <thrust/functional.h>
#include "storm-cudaplugin-config.h"
#ifdef DEBUG
#define CUDA_CHECK_ALL_ERRORS() do { cudaError_t errSync = cudaGetLastError(); cudaError_t errAsync = cudaDeviceSynchronize(); if (errSync != cudaSuccess) { std::cout << "(DLL) Sync kernel error: " << cudaGetErrorString(errSync) << " (Code: " << errSync << ") in Line " << __LINE__ << std::endl; } if (errAsync != cudaSuccess) { std::cout << "(DLL) Async kernel error: " << cudaGetErrorString(errAsync) << " (Code: " << errAsync << ") in Line " << __LINE__ << std::endl; } } while(false)
#else
#define CUDA_CHECK_ALL_ERRORS() do {} while (false)
#endif
template<typename T, bool Relative>
struct equalModuloPrecision : public thrust::binary_function<T,T,T>
{
__host__ __device__ T operator()(const T &x, const T &y) const
{
if (Relative) {
if (y == 0) {
return ((x >= 0) ? (x) : (-x));
}
const T result = (x - y) / y;
return ((result >= 0) ? (result) : (-result));
} else {
const T result = (x - y);
return ((result >= 0) ? (result) : (-result));
}
}
};
template<typename IndexType, typename ValueType>
void exploadVector(std::vector<std::pair<IndexType, ValueType>> const& inputVector, std::vector<IndexType>& indexVector, std::vector<ValueType>& valueVector) {
indexVector.reserve(inputVector.size());
valueVector.reserve(inputVector.size());
for (size_t i = 0; i < inputVector.size(); ++i) {
indexVector.push_back(inputVector.at(i).first);
valueVector.push_back(inputVector.at(i).second);
}
}
// TEMPLATE VERSION
template <bool Minimize, bool Relative, typename IndexType, typename ValueType>
bool basicValueIteration_mvReduce(uint_fast64_t const maxIterationCount, double const precision, std::vector<IndexType> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<ValueType>> const& columnIndicesAndValues, std::vector<ValueType>& x, std::vector<ValueType> const& b, std::vector<IndexType> const& nondeterministicChoiceIndices, size_t& iterationCount) {
//std::vector<IndexType> matrixColumnIndices;
//std::vector<ValueType> matrixValues;
//exploadVector<IndexType, ValueType>(columnIndicesAndValues, matrixColumnIndices, matrixValues);
bool errorOccured = false;
IndexType* device_matrixRowIndices = nullptr;
ValueType* device_matrixColIndicesAndValues = nullptr;
ValueType* device_x = nullptr;
ValueType* device_xSwap = nullptr;
ValueType* device_b = nullptr;
ValueType* device_multiplyResult = nullptr;
IndexType* device_nondeterministicChoiceIndices = nullptr;
#ifdef DEBUG
std::cout.sync_with_stdio(true);
std::cout << "(DLL) Entering CUDA Function: basicValueIteration_mvReduce" << std::endl;
std::cout << "(DLL) Device has " << getTotalCudaMemory() << " Bytes of Memory with " << getFreeCudaMemory() << "Bytes free (" << (static_cast<double>(getFreeCudaMemory()) / static_cast<double>(getTotalCudaMemory())) * 100 << "%)." << std::endl;
size_t memSize = sizeof(IndexType) * matrixRowIndices.size() + sizeof(IndexType) * columnIndicesAndValues.size() * 2 + sizeof(ValueType) * x.size() + sizeof(ValueType) * x.size() + sizeof(ValueType) * b.size() + sizeof(ValueType) * b.size() + sizeof(IndexType) * nondeterministicChoiceIndices.size();
std::cout << "(DLL) We will allocate " << memSize << " Bytes." << std::endl;
#endif
const IndexType matrixRowCount = matrixRowIndices.size() - 1;
const IndexType matrixColCount = nondeterministicChoiceIndices.size() - 1;
const IndexType matrixNnzCount = columnIndicesAndValues.size();
cudaError_t cudaMallocResult;
bool converged = false;
iterationCount = 0;
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_matrixRowIndices), sizeof(IndexType) * (matrixRowCount + 1));
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Matrix Row Indices, Error Code " << cudaMallocResult << "." << std::endl;
errorOccured = true;
goto cleanup;
}
#ifdef STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT
#define STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT_VALUE true
#else
#define STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT_VALUE false
#endif
if (sizeof(ValueType) == sizeof(float) && STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT_VALUE) {
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_matrixColIndicesAndValues), sizeof(IndexType) * matrixNnzCount + sizeof(IndexType) * matrixNnzCount);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Matrix Column Indices and Values, Error Code " << cudaMallocResult << "." << std::endl;
errorOccured = true;
goto cleanup;
}
} else {
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_matrixColIndicesAndValues), sizeof(IndexType) * matrixNnzCount + sizeof(ValueType) * matrixNnzCount);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Matrix Column Indices and Values, Error Code " << cudaMallocResult << "." << std::endl;
errorOccured = true;
goto cleanup;
}
}
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_x), sizeof(ValueType) * matrixColCount);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector x, Error Code " << cudaMallocResult << "." << std::endl;
errorOccured = true;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_xSwap), sizeof(ValueType) * matrixColCount);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector x swap, Error Code " << cudaMallocResult << "." << std::endl;
errorOccured = true;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_b), sizeof(ValueType) * matrixRowCount);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector b, Error Code " << cudaMallocResult << "." << std::endl;
errorOccured = true;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_multiplyResult), sizeof(ValueType) * matrixRowCount);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector multiplyResult, Error Code " << cudaMallocResult << "." << std::endl;
errorOccured = true;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_nondeterministicChoiceIndices), sizeof(IndexType) * (matrixColCount + 1));
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Nondeterministic Choice Indices, Error Code " << cudaMallocResult << "." << std::endl;
errorOccured = true;
goto cleanup;
}
#ifdef DEBUG
std::cout << "(DLL) Finished allocating memory." << std::endl;
#endif
// Memory allocated, copy data to device
cudaError_t cudaCopyResult;
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_matrixRowIndices, matrixRowIndices.data(), sizeof(IndexType) * (matrixRowCount + 1), cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Matrix Row Indices, Error Code " << cudaCopyResult << std::endl;
errorOccured = true;
goto cleanup;
}
// Copy all data as floats are expanded to 64bits :/
if (sizeof(ValueType) == sizeof(float) && STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT_VALUE) {
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_matrixColIndicesAndValues, columnIndicesAndValues.data(), (sizeof(IndexType) * matrixNnzCount) + (sizeof(IndexType) * matrixNnzCount), cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Matrix Column Indices and Values, Error Code " << cudaCopyResult << std::endl;
errorOccured = true;
goto cleanup;
}
} else {
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_matrixColIndicesAndValues, columnIndicesAndValues.data(), (sizeof(IndexType) * matrixNnzCount) + (sizeof(ValueType) * matrixNnzCount), cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Matrix Column Indices and Values, Error Code " << cudaCopyResult << std::endl;
errorOccured = true;
goto cleanup;
}
}
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_x, x.data(), sizeof(ValueType) * matrixColCount, cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Vector x, Error Code " << cudaCopyResult << std::endl;
errorOccured = true;
goto cleanup;
}
// Preset the xSwap to zeros...
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemset(device_xSwap, 0, sizeof(ValueType) * matrixColCount);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not zero the Swap Vector x, Error Code " << cudaCopyResult << std::endl;
errorOccured = true;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_b, b.data(), sizeof(ValueType) * matrixRowCount, cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Vector b, Error Code " << cudaCopyResult << std::endl;
errorOccured = true;
goto cleanup;
}
// Preset the multiplyResult to zeros...
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemset(device_multiplyResult, 0, sizeof(ValueType) * matrixRowCount);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not zero the multiply Result, Error Code " << cudaCopyResult << std::endl;
errorOccured = true;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_nondeterministicChoiceIndices, nondeterministicChoiceIndices.data(), sizeof(IndexType) * (matrixColCount + 1), cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Vector b, Error Code " << cudaCopyResult << std::endl;
errorOccured = true;
goto cleanup;
}
#ifdef DEBUG
std::cout << "(DLL) Finished copying data to GPU memory." << std::endl;
#endif
// Data is on device, start Kernel
while (!converged && iterationCount < maxIterationCount) { // In a sub-area since transfer of control via label evades initialization
cusp::detail::device::storm_cuda_opt_spmv_csr_vector<ValueType>(matrixRowCount, matrixNnzCount, device_matrixRowIndices, device_matrixColIndicesAndValues, device_x, device_multiplyResult);
CUDA_CHECK_ALL_ERRORS();
thrust::device_ptr<ValueType> devicePtrThrust_b(device_b);
thrust::device_ptr<ValueType> devicePtrThrust_multiplyResult(device_multiplyResult);
// Transform: Add multiplyResult + b inplace to multiplyResult
thrust::transform(devicePtrThrust_multiplyResult, devicePtrThrust_multiplyResult + matrixRowCount, devicePtrThrust_b, devicePtrThrust_multiplyResult, thrust::plus<ValueType>());
CUDA_CHECK_ALL_ERRORS();
// Reduce: Reduce multiplyResult to a new x vector
cusp::detail::device::storm_cuda_opt_vector_reduce<Minimize, ValueType>(matrixColCount, matrixRowCount, device_nondeterministicChoiceIndices, device_xSwap, device_multiplyResult);
CUDA_CHECK_ALL_ERRORS();
// Check for convergence
// Transform: x = abs(x - xSwap)/ xSwap
thrust::device_ptr<ValueType> devicePtrThrust_x(device_x);
thrust::device_ptr<ValueType> devicePtrThrust_x_end(device_x + matrixColCount);
thrust::device_ptr<ValueType> devicePtrThrust_xSwap(device_xSwap);
thrust::transform(devicePtrThrust_x, devicePtrThrust_x_end, devicePtrThrust_xSwap, devicePtrThrust_x, equalModuloPrecision<ValueType, Relative>());
CUDA_CHECK_ALL_ERRORS();
// Reduce: get Max over x and check for res < Precision
ValueType maxX = thrust::reduce(devicePtrThrust_x, devicePtrThrust_x_end, -std::numeric_limits<ValueType>::max(), thrust::maximum<ValueType>());
CUDA_CHECK_ALL_ERRORS();
converged = (maxX < precision);
++iterationCount;
// Swap pointers, device_x always contains the most current result
std::swap(device_x, device_xSwap);
}
if (!converged && (iterationCount == maxIterationCount)) {
iterationCount = 0;
errorOccured = true;
}
#ifdef DEBUG
std::cout << "(DLL) Finished kernel execution." << std::endl;
std::cout << "(DLL) Executed " << iterationCount << " of max. " << maxIterationCount << " Iterations." << std::endl;
#endif
// Get x back from the device
cudaCopyResult = cudaMemcpy(x.data(), device_x, sizeof(ValueType) * matrixColCount, cudaMemcpyDeviceToHost);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy back data for result vector x, Error Code " << cudaCopyResult << std::endl;
errorOccured = true;
goto cleanup;
}
#ifdef DEBUG
std::cout << "(DLL) Finished copying result data." << std::endl;
#endif
// All code related to freeing memory and clearing up the device
cleanup:
if (device_matrixRowIndices != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_matrixRowIndices);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Matrix Row Indices, Error Code " << cudaFreeResult << "." << std::endl;
errorOccured = true;
}
device_matrixRowIndices = nullptr;
}
if (device_matrixColIndicesAndValues != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_matrixColIndicesAndValues);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Matrix Column Indices and Values, Error Code " << cudaFreeResult << "." << std::endl;
errorOccured = true;
}
device_matrixColIndicesAndValues = nullptr;
}
if (device_x != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_x);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector x, Error Code " << cudaFreeResult << "." << std::endl;
errorOccured = true;
}
device_x = nullptr;
}
if (device_xSwap != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_xSwap);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector x swap, Error Code " << cudaFreeResult << "." << std::endl;
errorOccured = true;
}
device_xSwap = nullptr;
}
if (device_b != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_b);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector b, Error Code " << cudaFreeResult << "." << std::endl;
errorOccured = true;
}
device_b = nullptr;
}
if (device_multiplyResult != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_multiplyResult);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector multiplyResult, Error Code " << cudaFreeResult << "." << std::endl;
errorOccured = true;
}
device_multiplyResult = nullptr;
}
if (device_nondeterministicChoiceIndices != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_nondeterministicChoiceIndices);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Nondeterministic Choice Indices, Error Code " << cudaFreeResult << "." << std::endl;
errorOccured = true;
}
device_nondeterministicChoiceIndices = nullptr;
}
#ifdef DEBUG
std::cout << "(DLL) Finished cleanup." << std::endl;
#endif
return !errorOccured;
}
template <typename IndexType, typename ValueType>
void basicValueIteration_spmv(uint_fast64_t const matrixColCount, std::vector<IndexType> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<ValueType>> const& columnIndicesAndValues, std::vector<ValueType> const& x, std::vector<ValueType>& b) {
IndexType* device_matrixRowIndices = nullptr;
ValueType* device_matrixColIndicesAndValues = nullptr;
ValueType* device_x = nullptr;
ValueType* device_multiplyResult = nullptr;
#ifdef DEBUG
std::cout.sync_with_stdio(true);
std::cout << "(DLL) Entering CUDA Function: basicValueIteration_spmv" << std::endl;
std::cout << "(DLL) Device has " << getTotalCudaMemory() << " Bytes of Memory with " << getFreeCudaMemory() << "Bytes free (" << (static_cast<double>(getFreeCudaMemory()) / static_cast<double>(getTotalCudaMemory()))*100 << "%)." << std::endl;
size_t memSize = sizeof(IndexType) * matrixRowIndices.size() + sizeof(IndexType) * columnIndicesAndValues.size() * 2 + sizeof(ValueType) * x.size() + sizeof(ValueType) * b.size();
std::cout << "(DLL) We will allocate " << memSize << " Bytes." << std::endl;
#endif
const IndexType matrixRowCount = matrixRowIndices.size() - 1;
const IndexType matrixNnzCount = columnIndicesAndValues.size();
cudaError_t cudaMallocResult;
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_matrixRowIndices), sizeof(IndexType) * (matrixRowCount + 1));
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Matrix Row Indices, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
#ifdef STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_matrixColIndicesAndValues), sizeof(IndexType) * matrixNnzCount + sizeof(IndexType) * matrixNnzCount);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Matrix Column Indices And Values, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
#else
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_matrixColIndicesAndValues), sizeof(IndexType) * matrixNnzCount + sizeof(ValueType) * matrixNnzCount);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Matrix Column Indices And Values, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
#endif
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_x), sizeof(ValueType) * matrixColCount);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector x, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_multiplyResult), sizeof(ValueType) * matrixRowCount);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector multiplyResult, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
#ifdef DEBUG
std::cout << "(DLL) Finished allocating memory." << std::endl;
#endif
// Memory allocated, copy data to device
cudaError_t cudaCopyResult;
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_matrixRowIndices, matrixRowIndices.data(), sizeof(IndexType) * (matrixRowCount + 1), cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Matrix Row Indices, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
#ifdef STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_matrixColIndicesAndValues, columnIndicesAndValues.data(), (sizeof(IndexType) * matrixNnzCount) + (sizeof(IndexType) * matrixNnzCount), cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Matrix Column Indices and Values, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
#else
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_matrixColIndicesAndValues, columnIndicesAndValues.data(), (sizeof(IndexType) * matrixNnzCount) + (sizeof(ValueType) * matrixNnzCount), cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Matrix Column Indices and Values, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
#endif
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_x, x.data(), sizeof(ValueType) * matrixColCount, cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Vector x, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
// Preset the multiplyResult to zeros...
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemset(device_multiplyResult, 0, sizeof(ValueType) * matrixRowCount);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not zero the multiply Result, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
#ifdef DEBUG
std::cout << "(DLL) Finished copying data to GPU memory." << std::endl;
#endif
cusp::detail::device::storm_cuda_opt_spmv_csr_vector<ValueType>(matrixRowCount, matrixNnzCount, device_matrixRowIndices, device_matrixColIndicesAndValues, device_x, device_multiplyResult);
CUDA_CHECK_ALL_ERRORS();
#ifdef DEBUG
std::cout << "(DLL) Finished kernel execution." << std::endl;
#endif
// Get result back from the device
cudaCopyResult = cudaMemcpy(b.data(), device_multiplyResult, sizeof(ValueType) * matrixRowCount, cudaMemcpyDeviceToHost);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy back data for result vector, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
#ifdef DEBUG
std::cout << "(DLL) Finished copying result data." << std::endl;
#endif
// All code related to freeing memory and clearing up the device
cleanup:
if (device_matrixRowIndices != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_matrixRowIndices);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Matrix Row Indices, Error Code " << cudaFreeResult << "." << std::endl;
}
device_matrixRowIndices = nullptr;
}
if (device_matrixColIndicesAndValues != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_matrixColIndicesAndValues);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Matrix Column Indices and Values, Error Code " << cudaFreeResult << "." << std::endl;
}
device_matrixColIndicesAndValues = nullptr;
}
if (device_x != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_x);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector x, Error Code " << cudaFreeResult << "." << std::endl;
}
device_x = nullptr;
}
if (device_multiplyResult != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_multiplyResult);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector multiplyResult, Error Code " << cudaFreeResult << "." << std::endl;
}
device_multiplyResult = nullptr;
}
#ifdef DEBUG
std::cout << "(DLL) Finished cleanup." << std::endl;
#endif
}
template <typename ValueType>
void basicValueIteration_addVectorsInplace(std::vector<ValueType>& a, std::vector<ValueType> const& b) {
ValueType* device_a = nullptr;
ValueType* device_b = nullptr;
const size_t vectorSize = std::max(a.size(), b.size());
cudaError_t cudaMallocResult;
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_a), sizeof(ValueType) * vectorSize);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector a, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_b), sizeof(ValueType) * vectorSize);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector b, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
// Memory allocated, copy data to device
cudaError_t cudaCopyResult;
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_a, a.data(), sizeof(ValueType) * vectorSize, cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Vector a, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_b, b.data(), sizeof(ValueType) * vectorSize, cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Vector b, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
do {
// Transform: Add multiplyResult + b inplace to multiplyResult
thrust::device_ptr<ValueType> devicePtrThrust_a(device_a);
thrust::device_ptr<ValueType> devicePtrThrust_b(device_b);
thrust::transform(devicePtrThrust_a, devicePtrThrust_a + vectorSize, devicePtrThrust_b, devicePtrThrust_a, thrust::plus<ValueType>());
CUDA_CHECK_ALL_ERRORS();
} while (false);
// Get result back from the device
cudaCopyResult = cudaMemcpy(a.data(), device_a, sizeof(ValueType) * vectorSize, cudaMemcpyDeviceToHost);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy back data for result vector, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
// All code related to freeing memory and clearing up the device
cleanup:
if (device_a != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_a);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector a, Error Code " << cudaFreeResult << "." << std::endl;
}
device_a = nullptr;
}
if (device_b != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_b);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector b, Error Code " << cudaFreeResult << "." << std::endl;
}
device_b = nullptr;
}
}
template <typename IndexType, typename ValueType, bool Minimize>
void basicValueIteration_reduceGroupedVector(std::vector<ValueType> const& groupedVector, std::vector<IndexType> const& grouping, std::vector<ValueType>& targetVector) {
ValueType* device_groupedVector = nullptr;
IndexType* device_grouping = nullptr;
ValueType* device_target = nullptr;
const size_t groupedSize = groupedVector.size();
const size_t groupingSize = grouping.size();
const size_t targetSize = targetVector.size();
cudaError_t cudaMallocResult;
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_groupedVector), sizeof(ValueType) * groupedSize);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector groupedVector, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_grouping), sizeof(IndexType) * groupingSize);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector grouping, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_target), sizeof(ValueType) * targetSize);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector targetVector, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
// Memory allocated, copy data to device
cudaError_t cudaCopyResult;
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_groupedVector, groupedVector.data(), sizeof(ValueType) * groupedSize, cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Vector groupedVector, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_grouping, grouping.data(), sizeof(IndexType) * groupingSize, cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Vector grouping, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
do {
// Reduce: Reduce multiplyResult to a new x vector
cusp::detail::device::storm_cuda_opt_vector_reduce<Minimize, ValueType>(groupingSize - 1, groupedSize, device_grouping, device_target, device_groupedVector);
CUDA_CHECK_ALL_ERRORS();
} while (false);
// Get result back from the device
cudaCopyResult = cudaMemcpy(targetVector.data(), device_target, sizeof(ValueType) * targetSize, cudaMemcpyDeviceToHost);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy back data for result vector, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
// All code related to freeing memory and clearing up the device
cleanup:
if (device_groupedVector != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_groupedVector);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector groupedVector, Error Code " << cudaFreeResult << "." << std::endl;
}
device_groupedVector = nullptr;
}
if (device_grouping != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_grouping);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector grouping, Error Code " << cudaFreeResult << "." << std::endl;
}
device_grouping = nullptr;
}
if (device_target != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_target);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector target, Error Code " << cudaFreeResult << "." << std::endl;
}
device_target = nullptr;
}
}
template <typename ValueType, bool Relative>
void basicValueIteration_equalModuloPrecision(std::vector<ValueType> const& x, std::vector<ValueType> const& y, ValueType& maxElement) {
ValueType* device_x = nullptr;
ValueType* device_y = nullptr;
const size_t vectorSize = x.size();
cudaError_t cudaMallocResult;
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_x), sizeof(ValueType) * vectorSize);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector x, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_y), sizeof(ValueType) * vectorSize);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector y, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
// Memory allocated, copy data to device
cudaError_t cudaCopyResult;
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_x, x.data(), sizeof(ValueType) * vectorSize, cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Vector x, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_y, y.data(), sizeof(ValueType) * vectorSize, cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Vector y, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
do {
// Transform: x = abs(x - xSwap)/ xSwap
thrust::device_ptr<ValueType> devicePtrThrust_x(device_x);
thrust::device_ptr<ValueType> devicePtrThrust_y(device_y);
thrust::transform(devicePtrThrust_x, devicePtrThrust_x + vectorSize, devicePtrThrust_y, devicePtrThrust_x, equalModuloPrecision<ValueType, Relative>());
CUDA_CHECK_ALL_ERRORS();
// Reduce: get Max over x and check for res < Precision
maxElement = thrust::reduce(devicePtrThrust_x, devicePtrThrust_x + vectorSize, -std::numeric_limits<ValueType>::max(), thrust::maximum<ValueType>());
CUDA_CHECK_ALL_ERRORS();
} while (false);
// All code related to freeing memory and clearing up the device
cleanup:
if (device_x != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_x);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector x, Error Code " << cudaFreeResult << "." << std::endl;
}
device_x = nullptr;
}
if (device_y != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_y);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector y, Error Code " << cudaFreeResult << "." << std::endl;
}
device_y = nullptr;
}
}
/*
* Declare and implement all exported functions for these Kernels here
*
*/
void basicValueIteration_spmv_uint64_double(uint_fast64_t const matrixColCount, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<double>> const& columnIndicesAndValues, std::vector<double> const& x, std::vector<double>& b) {
basicValueIteration_spmv<uint_fast64_t, double>(matrixColCount, matrixRowIndices, columnIndicesAndValues, x, b);
}
void basicValueIteration_addVectorsInplace_double(std::vector<double>& a, std::vector<double> const& b) {
basicValueIteration_addVectorsInplace<double>(a, b);
}
void basicValueIteration_reduceGroupedVector_uint64_double_minimize(std::vector<double> const& groupedVector, std::vector<uint_fast64_t> const& grouping, std::vector<double>& targetVector) {
basicValueIteration_reduceGroupedVector<uint_fast64_t, double, true>(groupedVector, grouping, targetVector);
}
void basicValueIteration_reduceGroupedVector_uint64_double_maximize(std::vector<double> const& groupedVector, std::vector<uint_fast64_t> const& grouping, std::vector<double>& targetVector) {
basicValueIteration_reduceGroupedVector<uint_fast64_t, double, false>(groupedVector, grouping, targetVector);
}
void basicValueIteration_equalModuloPrecision_double_Relative(std::vector<double> const& x, std::vector<double> const& y, double& maxElement) {
basicValueIteration_equalModuloPrecision<double, true>(x, y, maxElement);
}
void basicValueIteration_equalModuloPrecision_double_NonRelative(std::vector<double> const& x, std::vector<double> const& y, double& maxElement) {
basicValueIteration_equalModuloPrecision<double, false>(x, y, maxElement);
}
// Float
void basicValueIteration_spmv_uint64_float(uint_fast64_t const matrixColCount, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<float>> const& columnIndicesAndValues, std::vector<float> const& x, std::vector<float>& b) {
basicValueIteration_spmv<uint_fast64_t, float>(matrixColCount, matrixRowIndices, columnIndicesAndValues, x, b);
}
void basicValueIteration_addVectorsInplace_float(std::vector<float>& a, std::vector<float> const& b) {
basicValueIteration_addVectorsInplace<float>(a, b);
}
void basicValueIteration_reduceGroupedVector_uint64_float_minimize(std::vector<float> const& groupedVector, std::vector<uint_fast64_t> const& grouping, std::vector<float>& targetVector) {
basicValueIteration_reduceGroupedVector<uint_fast64_t, float, true>(groupedVector, grouping, targetVector);
}
void basicValueIteration_reduceGroupedVector_uint64_float_maximize(std::vector<float> const& groupedVector, std::vector<uint_fast64_t> const& grouping, std::vector<float>& targetVector) {
basicValueIteration_reduceGroupedVector<uint_fast64_t, float, false>(groupedVector, grouping, targetVector);
}
void basicValueIteration_equalModuloPrecision_float_Relative(std::vector<float> const& x, std::vector<float> const& y, float& maxElement) {
basicValueIteration_equalModuloPrecision<float, true>(x, y, maxElement);
}
void basicValueIteration_equalModuloPrecision_float_NonRelative(std::vector<float> const& x, std::vector<float> const& y, float& maxElement) {
basicValueIteration_equalModuloPrecision<float, false>(x, y, maxElement);
}
bool basicValueIteration_mvReduce_uint64_double_minimize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<double>> const& columnIndicesAndValues, std::vector<double>& x, std::vector<double> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
if (relativePrecisionCheck) {
return basicValueIteration_mvReduce<true, true, uint_fast64_t, double>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
} else {
return basicValueIteration_mvReduce<true, false, uint_fast64_t, double>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
}
}
bool basicValueIteration_mvReduce_uint64_double_maximize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<double>> const& columnIndicesAndValues, std::vector<double>& x, std::vector<double> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
if (relativePrecisionCheck) {
return basicValueIteration_mvReduce<false, true, uint_fast64_t, double>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
} else {
return basicValueIteration_mvReduce<false, false, uint_fast64_t, double>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
}
}
bool basicValueIteration_mvReduce_uint64_float_minimize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<float>> const& columnIndicesAndValues, std::vector<float>& x, std::vector<float> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
if (relativePrecisionCheck) {
return basicValueIteration_mvReduce<true, true, uint_fast64_t, float>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
} else {
return basicValueIteration_mvReduce<true, false, uint_fast64_t, float>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
}
}
bool basicValueIteration_mvReduce_uint64_float_maximize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<float>> const& columnIndicesAndValues, std::vector<float>& x, std::vector<float> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
if (relativePrecisionCheck) {
return basicValueIteration_mvReduce<false, true, uint_fast64_t, float>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
} else {
return basicValueIteration_mvReduce<false, false, uint_fast64_t, float>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
}
}
size_t basicValueIteration_mvReduce_uint64_double_calculateMemorySize(size_t const rowCount, size_t const rowGroupCount, size_t const nnzCount) {
size_t const valueTypeSize = sizeof(double);
size_t const indexTypeSize = sizeof(uint_fast64_t);
/*
IndexType* device_matrixRowIndices = nullptr;
IndexType* device_matrixColIndices = nullptr;
ValueType* device_matrixValues = nullptr;
ValueType* device_x = nullptr;
ValueType* device_xSwap = nullptr;
ValueType* device_b = nullptr;
ValueType* device_multiplyResult = nullptr;
IndexType* device_nondeterministicChoiceIndices = nullptr;
*/
// Row Indices, Column Indices, Values, Choice Indices
size_t const matrixDataSize = ((rowCount + 1) * indexTypeSize) + (nnzCount * indexTypeSize) + (nnzCount * valueTypeSize) + ((rowGroupCount + 1) * indexTypeSize);
// Vectors x, xSwap, b, multiplyResult
size_t const vectorSizes = (rowGroupCount * valueTypeSize) + (rowGroupCount * valueTypeSize) + (rowCount * valueTypeSize) + (rowCount * valueTypeSize);
return (matrixDataSize + vectorSizes);
}
size_t basicValueIteration_mvReduce_uint64_float_calculateMemorySize(size_t const rowCount, size_t const rowGroupCount, size_t const nnzCount) {
size_t const valueTypeSize = sizeof(float);
size_t const indexTypeSize = sizeof(uint_fast64_t);
/*
IndexType* device_matrixRowIndices = nullptr;
IndexType* device_matrixColIndices = nullptr;
ValueType* device_matrixValues = nullptr;
ValueType* device_x = nullptr;
ValueType* device_xSwap = nullptr;
ValueType* device_b = nullptr;
ValueType* device_multiplyResult = nullptr;
IndexType* device_nondeterministicChoiceIndices = nullptr;
*/
// Row Indices, Column Indices, Values, Choice Indices
size_t const matrixDataSize = ((rowCount + 1) * indexTypeSize) + (nnzCount * indexTypeSize) + (nnzCount * valueTypeSize) + ((rowGroupCount + 1) * indexTypeSize);
// Vectors x, xSwap, b, multiplyResult
size_t const vectorSizes = (rowGroupCount * valueTypeSize) + (rowGroupCount * valueTypeSize) + (rowCount * valueTypeSize) + (rowCount * valueTypeSize);
return (matrixDataSize + vectorSizes);
}

107
resources/cudaForStorm/srcCuda/basicValueIteration.h

@ -1,107 +0,0 @@
#ifndef STORM_CUDAFORSTORM_BASICVALUEITERATION_H_
#define STORM_CUDAFORSTORM_BASICVALUEITERATION_H_
#include <cstdint>
#include <vector>
#include <utility>
// Library exports
#include "cudaForStorm_Export.h"
/* Helper declaration to cope with new internal format */
#ifndef STORM_STORAGE_SPARSEMATRIX_H_
namespace storm {
namespace storage {
template<typename T>
class MatrixEntry {
public:
/*!
* Constructs a matrix entry with the given column and value.
*
* @param column The column of the matrix entry.
* @param value The value of the matrix entry.
*/
MatrixEntry(uint_fast64_t column, T value);
/*!
* Move-constructs the matrix entry fro the given column-value pair.
*
* @param pair The column-value pair from which to move-construct the matrix entry.
*/
MatrixEntry(std::pair<uint_fast64_t, T>&& pair);
//MatrixEntry() = default;
//MatrixEntry(MatrixEntry const& other) = default;
//MatrixEntry& operator=(MatrixEntry const& other) = default;
#ifndef WINDOWS
//MatrixEntry(MatrixEntry&& other) = default;
//MatrixEntry& operator=(MatrixEntry&& other) = default;
#endif
/*!
* Retrieves the column of the matrix entry.
*
* @return The column of the matrix entry.
*/
uint_fast64_t const& getColumn() const;
/*!
* Retrieves the column of the matrix entry.
*
* @return The column of the matrix entry.
*/
uint_fast64_t& getColumn();
/*!
* Retrieves the value of the matrix entry.
*
* @return The value of the matrix entry.
*/
T const& getValue() const;
/*!
* Retrieves the value of the matrix entry.
*
* @return The value of the matrix entry.
*/
T& getValue();
/*!
* Retrieves a pair of column and value that characterizes this entry.
*
* @return A column-value pair that characterizes this entry.
*/
std::pair<uint_fast64_t, T> const& getColumnValuePair() const;
private:
// The actual matrix entry.
std::pair<uint_fast64_t, T> entry;
};
}
}
#endif
cudaForStorm_EXPORT size_t basicValueIteration_mvReduce_uint64_double_calculateMemorySize(size_t const rowCount, size_t const rowGroupCount, size_t const nnzCount);
cudaForStorm_EXPORT bool basicValueIteration_mvReduce_uint64_double_minimize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<double>> const& columnIndicesAndValues, std::vector<double>& x, std::vector<double> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount);
cudaForStorm_EXPORT bool basicValueIteration_mvReduce_uint64_double_maximize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<double>> const& columnIndicesAndValues, std::vector<double>& x, std::vector<double> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount);
cudaForStorm_EXPORT size_t basicValueIteration_mvReduce_uint64_float_calculateMemorySize(size_t const rowCount, size_t const rowGroupCount, size_t const nnzCount);
cudaForStorm_EXPORT bool basicValueIteration_mvReduce_uint64_float_minimize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<float>> const& columnIndicesAndValues, std::vector<float>& x, std::vector<float> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount);
cudaForStorm_EXPORT bool basicValueIteration_mvReduce_uint64_float_maximize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<float>> const& columnIndicesAndValues, std::vector<float>& x, std::vector<float> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount);
cudaForStorm_EXPORT void basicValueIteration_spmv_uint64_double(uint_fast64_t const matrixColCount, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<double>> const& columnIndicesAndValues, std::vector<double> const& x, std::vector<double>& b);
cudaForStorm_EXPORT void basicValueIteration_addVectorsInplace_double(std::vector<double>& a, std::vector<double> const& b);
cudaForStorm_EXPORT void basicValueIteration_reduceGroupedVector_uint64_double_minimize(std::vector<double> const& groupedVector, std::vector<uint_fast64_t> const& grouping, std::vector<double>& targetVector);
cudaForStorm_EXPORT void basicValueIteration_reduceGroupedVector_uint64_double_maximize(std::vector<double> const& groupedVector, std::vector<uint_fast64_t> const& grouping, std::vector<double>& targetVector);
cudaForStorm_EXPORT void basicValueIteration_equalModuloPrecision_double_Relative(std::vector<double> const& x, std::vector<double> const& y, double& maxElement);
cudaForStorm_EXPORT void basicValueIteration_equalModuloPrecision_double_NonRelative(std::vector<double> const& x, std::vector<double> const& y, double& maxElement);
cudaForStorm_EXPORT void basicValueIteration_spmv_uint64_float(uint_fast64_t const matrixColCount, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<float>> const& columnIndicesAndValues, std::vector<float> const& x, std::vector<float>& b);
cudaForStorm_EXPORT void basicValueIteration_addVectorsInplace_float(std::vector<float>& a, std::vector<float> const& b);
cudaForStorm_EXPORT void basicValueIteration_reduceGroupedVector_uint64_float_minimize(std::vector<float> const& groupedVector, std::vector<uint_fast64_t> const& grouping, std::vector<float>& targetVector);
cudaForStorm_EXPORT void basicValueIteration_reduceGroupedVector_uint64_float_maximize(std::vector<float> const& groupedVector, std::vector<uint_fast64_t> const& grouping, std::vector<float>& targetVector);
cudaForStorm_EXPORT void basicValueIteration_equalModuloPrecision_float_Relative(std::vector<float> const& x, std::vector<float> const& y, float& maxElement);
cudaForStorm_EXPORT void basicValueIteration_equalModuloPrecision_float_NonRelative(std::vector<float> const& x, std::vector<float> const& y, float& maxElement);
#endif // STORM_CUDAFORSTORM_BASICVALUEITERATION_H_

19
resources/cudaForStorm/srcCuda/cudaForStorm.h

@ -1,19 +0,0 @@
#ifndef STORM_CUDAFORSTORM_CUDAFORSTORM_H_
#define STORM_CUDAFORSTORM_CUDAFORSTORM_H_
/*
* List of exported functions in this library
*/
// TopologicalValueIteration
#include "srcCuda/basicValueIteration.h"
// Utility Functions
#include "srcCuda/utility.h"
// Version Information
#include "srcCuda/version.h"
#endif // STORM_CUDAFORSTORM_CUDAFORSTORM_H_

49
resources/cudaForStorm/srcCuda/cuspExtension.h

@ -1,49 +0,0 @@
#pragma once
#include "cuspExtensionFloat.h"
#include "cuspExtensionDouble.h"
namespace cusp {
namespace detail {
namespace device {
template <typename ValueType>
void storm_cuda_opt_spmv_csr_vector(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * matrixRowIndices, const ValueType * matrixColumnIndicesAndValues, const ValueType* x, ValueType* y) {
//
throw;
}
template <>
void storm_cuda_opt_spmv_csr_vector<double>(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * matrixRowIndices, const double * matrixColumnIndicesAndValues, const double* x, double* y) {
storm_cuda_opt_spmv_csr_vector_double(num_rows, num_entries, matrixRowIndices, matrixColumnIndicesAndValues, x, y);
}
template <>
void storm_cuda_opt_spmv_csr_vector<float>(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * matrixRowIndices, const float * matrixColumnIndicesAndValues, const float* x, float* y) {
storm_cuda_opt_spmv_csr_vector_float(num_rows, num_entries, matrixRowIndices, matrixColumnIndicesAndValues, x, y);
}
template <bool Minimize, typename ValueType>
void storm_cuda_opt_vector_reduce(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * nondeterministicChoiceIndices, ValueType * x, const ValueType * y) {
//
throw;
}
template <>
void storm_cuda_opt_vector_reduce<true, double>(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * nondeterministicChoiceIndices, double * x, const double * y) {
storm_cuda_opt_vector_reduce_double<true>(num_rows, num_entries, nondeterministicChoiceIndices, x, y);
}
template <>
void storm_cuda_opt_vector_reduce<false, double>(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * nondeterministicChoiceIndices, double * x, const double * y) {
storm_cuda_opt_vector_reduce_double<false>(num_rows, num_entries, nondeterministicChoiceIndices, x, y);
}
template <>
void storm_cuda_opt_vector_reduce<true, float>(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * nondeterministicChoiceIndices, float * x, const float * y) {
storm_cuda_opt_vector_reduce_float<true>(num_rows, num_entries, nondeterministicChoiceIndices, x, y);
}
template <>
void storm_cuda_opt_vector_reduce<false, float>(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * nondeterministicChoiceIndices, float * x, const float * y) {
storm_cuda_opt_vector_reduce_float<false>(num_rows, num_entries, nondeterministicChoiceIndices, x, y);
}
} // end namespace device
} // end namespace detail
} // end namespace cusp

361
resources/cudaForStorm/srcCuda/cuspExtensionDouble.h

@ -1,361 +0,0 @@
/*
* This is an extension of the original CUSP csr_vector.h SPMV implementation.
* It is based on the Code and incorporates changes as to cope with the details
* of the StoRM code.
* Changes have been made for 1) different input format, 2) the sum calculation and 3) the group-reduce algorithm
*/
/*
* Copyright 2008-2009 NVIDIA Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <limits>
#include <cstdint>
#include <algorithm>
#include <math_functions.h>
#include <cusp/detail/device/spmv/csr_vector.h>
namespace cusp
{
namespace detail
{
namespace device
{
//////////////////////////////////////////////////////////////////////////////
// CSR SpMV kernels based on a vector model (one warp per row)
//////////////////////////////////////////////////////////////////////////////
//
// spmv_csr_vector_device
// Each row of the CSR matrix is assigned to a warp. The warp computes
// y[i] = A[i,:] * x, i.e. the dot product of the i-th row of A with
// the x vector, in parallel. This division of work implies that
// the CSR index and data arrays (Aj and Ax) are accessed in a contiguous
// manner (but generally not aligned). On GT200 these accesses are
// coalesced, unlike kernels based on the one-row-per-thread division of
// work. Since an entire 32-thread warp is assigned to each row, many
// threads will remain idle when their row contains a small number
// of elements. This code relies on implicit synchronization among
// threads in a warp.
//
// spmv_csr_vector_tex_device
// Same as spmv_csr_vector_tex_device, except that the texture cache is
// used for accessing the x vector.
//
// Note: THREADS_PER_VECTOR must be one of [2,4,8,16,32]
template <unsigned int VECTORS_PER_BLOCK, unsigned int THREADS_PER_VECTOR, bool UseCache>
__launch_bounds__(VECTORS_PER_BLOCK * THREADS_PER_VECTOR,1)
__global__ void
storm_cuda_opt_spmv_csr_vector_kernel_double(const uint_fast64_t num_rows, const uint_fast64_t * __restrict__ matrixRowIndices, const double * __restrict__ matrixColumnIndicesAndValues, const double * __restrict__ x, double * __restrict__ y)
{
__shared__ volatile double sdata[VECTORS_PER_BLOCK * THREADS_PER_VECTOR + THREADS_PER_VECTOR / 2]; // padded to avoid reduction conditionals
__shared__ volatile uint_fast64_t ptrs[VECTORS_PER_BLOCK][2];
const uint_fast64_t THREADS_PER_BLOCK = VECTORS_PER_BLOCK * THREADS_PER_VECTOR;
const uint_fast64_t thread_id = THREADS_PER_BLOCK * blockIdx.x + threadIdx.x; // global thread index
const uint_fast64_t thread_lane = threadIdx.x & (THREADS_PER_VECTOR - 1); // thread index within the vector
const uint_fast64_t vector_id = thread_id / THREADS_PER_VECTOR; // global vector index
const uint_fast64_t vector_lane = threadIdx.x / THREADS_PER_VECTOR; // vector index within the block
const uint_fast64_t num_vectors = VECTORS_PER_BLOCK * gridDim.x; // total number of active vectors
for(uint_fast64_t row = vector_id; row < num_rows; row += num_vectors)
{
// use two threads to fetch Ap[row] and Ap[row+1]
// this is considerably faster than the straightforward version
if(thread_lane < 2)
ptrs[vector_lane][thread_lane] = matrixRowIndices[row + thread_lane];
const uint_fast64_t row_start = ptrs[vector_lane][0]; //same as: row_start = Ap[row];
const uint_fast64_t row_end = ptrs[vector_lane][1]; //same as: row_end = Ap[row+1];
// initialize local sum
double sum = 0;
if (THREADS_PER_VECTOR == 32 && row_end - row_start > 32)
{
// ensure aligned memory access to Aj and Ax
uint_fast64_t jj = row_start - (row_start & (THREADS_PER_VECTOR - 1)) + thread_lane;
// accumulate local sums
if(jj >= row_start && jj < row_end) {
sum += matrixColumnIndicesAndValues[2 * jj + 1] * fetch_x<UseCache>(*reinterpret_cast<uint_fast64_t const*>(matrixColumnIndicesAndValues + 2 * jj), x);
//sum += reinterpret_cast<ValueType const*>(matrixColumnIndicesAndValues)[2*jj + 1] * fetch_x<UseCache>(matrixColumnIndicesAndValues[2*jj], x);
}
// accumulate local sums
for(jj += THREADS_PER_VECTOR; jj < row_end; jj += THREADS_PER_VECTOR) {
//sum += reinterpret_cast<ValueType const*>(matrixColumnIndicesAndValues)[2*jj + 1] * fetch_x<UseCache>(matrixColumnIndicesAndValues[2*jj], x);
sum += matrixColumnIndicesAndValues[2 * jj + 1] * fetch_x<UseCache>(*reinterpret_cast<uint_fast64_t const*>(matrixColumnIndicesAndValues + 2 * jj), x);
}
} else {
// accumulate local sums
for(uint_fast64_t jj = row_start + thread_lane; jj < row_end; jj += THREADS_PER_VECTOR) {
//sum += reinterpret_cast<ValueType const*>(matrixColumnIndicesAndValues)[2*jj + 1] * fetch_x<UseCache>(matrixColumnIndicesAndValues[2*jj], x);
sum += matrixColumnIndicesAndValues[2 * jj + 1] * fetch_x<UseCache>(*reinterpret_cast<uint_fast64_t const*>(matrixColumnIndicesAndValues + 2 * jj), x);
}
}
// store local sum in shared memory
sdata[threadIdx.x] = sum;
// reduce local sums to row sum
if (THREADS_PER_VECTOR > 16) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 16];
if (THREADS_PER_VECTOR > 8) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 8];
if (THREADS_PER_VECTOR > 4) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 4];
if (THREADS_PER_VECTOR > 2) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 2];
if (THREADS_PER_VECTOR > 1) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 1];
// first thread writes the result
if (thread_lane == 0)
y[row] = sdata[threadIdx.x];
}
}
template <unsigned int ROWS_PER_BLOCK, unsigned int THREADS_PER_ROW, bool Minimize>
__launch_bounds__(ROWS_PER_BLOCK * THREADS_PER_ROW,1)
__global__ void
storm_cuda_opt_vector_reduce_kernel_double(const uint_fast64_t num_rows, const uint_fast64_t * __restrict__ nondeterministicChoiceIndices, double * __restrict__ x, const double * __restrict__ y, const double minMaxInitializer)
{
__shared__ volatile double sdata[ROWS_PER_BLOCK * THREADS_PER_ROW + THREADS_PER_ROW / 2]; // padded to avoid reduction conditionals
__shared__ volatile uint_fast64_t ptrs[ROWS_PER_BLOCK][2];
const uint_fast64_t THREADS_PER_BLOCK = ROWS_PER_BLOCK * THREADS_PER_ROW;
const uint_fast64_t thread_id = THREADS_PER_BLOCK * blockIdx.x + threadIdx.x; // global thread index
const uint_fast64_t thread_lane = threadIdx.x & (THREADS_PER_ROW - 1); // thread index within the vector
const uint_fast64_t vector_id = thread_id / THREADS_PER_ROW; // global vector index
const uint_fast64_t vector_lane = threadIdx.x / THREADS_PER_ROW; // vector index within the block
const uint_fast64_t num_vectors = ROWS_PER_BLOCK * gridDim.x; // total number of active vectors
for(uint_fast64_t row = vector_id; row < num_rows; row += num_vectors)
{
// use two threads to fetch Ap[row] and Ap[row+1]
// this is considerably faster than the straightforward version
if(thread_lane < 2)
ptrs[vector_lane][thread_lane] = nondeterministicChoiceIndices[row + thread_lane];
const uint_fast64_t row_start = ptrs[vector_lane][0]; //same as: row_start = Ap[row];
const uint_fast64_t row_end = ptrs[vector_lane][1]; //same as: row_end = Ap[row+1];
// initialize local Min/Max
double localMinMaxElement = minMaxInitializer;
if (THREADS_PER_ROW == 32 && row_end - row_start > 32)
{
// ensure aligned memory access to Aj and Ax
uint_fast64_t jj = row_start - (row_start & (THREADS_PER_ROW - 1)) + thread_lane;
// accumulate local sums
if(jj >= row_start && jj < row_end) {
if(Minimize) {
localMinMaxElement = min(localMinMaxElement, y[jj]);
//localMinMaxElement = (localMinMaxElement > y[jj]) ? y[jj] : localMinMaxElement;
} else {
localMinMaxElement = max(localMinMaxElement, y[jj]);
//localMinMaxElement = (localMinMaxElement < y[jj]) ? y[jj] : localMinMaxElement;
}
}
// accumulate local sums
for(jj += THREADS_PER_ROW; jj < row_end; jj += THREADS_PER_ROW)
if(Minimize) {
localMinMaxElement = min(localMinMaxElement, y[jj]);
//localMinMaxElement = (localMinMaxElement > y[jj]) ? y[jj] : localMinMaxElement;
} else {
localMinMaxElement = max(localMinMaxElement, y[jj]);
//localMinMaxElement = (localMinMaxElement < y[jj]) ? y[jj] : localMinMaxElement;
}
}
else
{
// accumulate local sums
for(uint_fast64_t jj = row_start + thread_lane; jj < row_end; jj += THREADS_PER_ROW)
if(Minimize) {
localMinMaxElement = min(localMinMaxElement, y[jj]);
//localMinMaxElement = (localMinMaxElement > y[jj]) ? y[jj] : localMinMaxElement;
} else {
localMinMaxElement = max(localMinMaxElement, y[jj]);
//localMinMaxElement = (localMinMaxElement < y[jj]) ? y[jj] : localMinMaxElement;
}
}
// store local sum in shared memory
sdata[threadIdx.x] = localMinMaxElement;
// reduce local min/max to row min/max
if (Minimize) {
/*if (THREADS_PER_ROW > 16) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement > sdata[threadIdx.x + 16]) ? sdata[threadIdx.x + 16] : localMinMaxElement);
if (THREADS_PER_ROW > 8) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement > sdata[threadIdx.x + 8]) ? sdata[threadIdx.x + 8] : localMinMaxElement);
if (THREADS_PER_ROW > 4) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement > sdata[threadIdx.x + 4]) ? sdata[threadIdx.x + 4] : localMinMaxElement);
if (THREADS_PER_ROW > 2) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement > sdata[threadIdx.x + 2]) ? sdata[threadIdx.x + 2] : localMinMaxElement);
if (THREADS_PER_ROW > 1) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement > sdata[threadIdx.x + 1]) ? sdata[threadIdx.x + 1] : localMinMaxElement);*/
if (THREADS_PER_ROW > 16) sdata[threadIdx.x] = localMinMaxElement = min(localMinMaxElement, sdata[threadIdx.x + 16]);
if (THREADS_PER_ROW > 8) sdata[threadIdx.x] = localMinMaxElement = min(localMinMaxElement, sdata[threadIdx.x + 8]);
if (THREADS_PER_ROW > 4) sdata[threadIdx.x] = localMinMaxElement = min(localMinMaxElement, sdata[threadIdx.x + 4]);
if (THREADS_PER_ROW > 2) sdata[threadIdx.x] = localMinMaxElement = min(localMinMaxElement, sdata[threadIdx.x + 2]);
if (THREADS_PER_ROW > 1) sdata[threadIdx.x] = localMinMaxElement = min(localMinMaxElement, sdata[threadIdx.x + 1]);
} else {
/*if (THREADS_PER_ROW > 16) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement < sdata[threadIdx.x + 16]) ? sdata[threadIdx.x + 16] : localMinMaxElement);
if (THREADS_PER_ROW > 8) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement < sdata[threadIdx.x + 8]) ? sdata[threadIdx.x + 8] : localMinMaxElement);
if (THREADS_PER_ROW > 4) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement < sdata[threadIdx.x + 4]) ? sdata[threadIdx.x + 4] : localMinMaxElement);
if (THREADS_PER_ROW > 2) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement < sdata[threadIdx.x + 2]) ? sdata[threadIdx.x + 2] : localMinMaxElement);
if (THREADS_PER_ROW > 1) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement < sdata[threadIdx.x + 1]) ? sdata[threadIdx.x + 1] : localMinMaxElement);*/
if (THREADS_PER_ROW > 16) sdata[threadIdx.x] = localMinMaxElement = max(localMinMaxElement, sdata[threadIdx.x + 16]);
if (THREADS_PER_ROW > 8) sdata[threadIdx.x] = localMinMaxElement = max(localMinMaxElement, sdata[threadIdx.x + 8]);
if (THREADS_PER_ROW > 4) sdata[threadIdx.x] = localMinMaxElement = max(localMinMaxElement, sdata[threadIdx.x + 4]);
if (THREADS_PER_ROW > 2) sdata[threadIdx.x] = localMinMaxElement = max(localMinMaxElement, sdata[threadIdx.x + 2]);
if (THREADS_PER_ROW > 1) sdata[threadIdx.x] = localMinMaxElement = max(localMinMaxElement, sdata[threadIdx.x + 1]);
}
// first thread writes the result
if (thread_lane == 0)
x[row] = sdata[threadIdx.x];
}
}
template <bool Minimize, unsigned int THREADS_PER_VECTOR>
void __storm_cuda_opt_vector_reduce_double(const uint_fast64_t num_rows, const uint_fast64_t * nondeterministicChoiceIndices, double * x, const double * y)
{
double __minMaxInitializer = -std::numeric_limits<double>::max();
if (Minimize) {
__minMaxInitializer = std::numeric_limits<double>::max();
}
const double minMaxInitializer = __minMaxInitializer;
const size_t THREADS_PER_BLOCK = 128;
const size_t VECTORS_PER_BLOCK = THREADS_PER_BLOCK / THREADS_PER_VECTOR;
const size_t MAX_BLOCKS = cusp::detail::device::arch::max_active_blocks(storm_cuda_opt_vector_reduce_kernel_double<VECTORS_PER_BLOCK, THREADS_PER_VECTOR, Minimize>, THREADS_PER_BLOCK, (size_t) 0);
const size_t NUM_BLOCKS = std::min<size_t>(MAX_BLOCKS, DIVIDE_INTO(num_rows, VECTORS_PER_BLOCK));
storm_cuda_opt_vector_reduce_kernel_double<VECTORS_PER_BLOCK, THREADS_PER_VECTOR, Minimize> <<<NUM_BLOCKS, THREADS_PER_BLOCK>>>
(num_rows, nondeterministicChoiceIndices, x, y, minMaxInitializer);
}
template <bool Minimize>
void storm_cuda_opt_vector_reduce_double(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * nondeterministicChoiceIndices, double * x, const double * y)
{
const uint_fast64_t rows_per_group = num_entries / num_rows;
if (rows_per_group <= 2) { __storm_cuda_opt_vector_reduce_double<Minimize, 2>(num_rows, nondeterministicChoiceIndices, x, y); return; }
if (rows_per_group <= 4) { __storm_cuda_opt_vector_reduce_double<Minimize, 4>(num_rows, nondeterministicChoiceIndices, x, y); return; }
if (rows_per_group <= 8) { __storm_cuda_opt_vector_reduce_double<Minimize, 8>(num_rows, nondeterministicChoiceIndices, x, y); return; }
if (rows_per_group <= 16) { __storm_cuda_opt_vector_reduce_double<Minimize,16>(num_rows, nondeterministicChoiceIndices, x, y); return; }
__storm_cuda_opt_vector_reduce_double<Minimize,32>(num_rows, nondeterministicChoiceIndices, x, y);
}
template <bool UseCache, unsigned int THREADS_PER_VECTOR>
void __storm_cuda_opt_spmv_csr_vector_double(const uint_fast64_t num_rows, const uint_fast64_t * matrixRowIndices, const double * matrixColumnIndicesAndValues, const double* x, double* y)
{
const size_t THREADS_PER_BLOCK = 128;
const size_t VECTORS_PER_BLOCK = THREADS_PER_BLOCK / THREADS_PER_VECTOR;
const size_t MAX_BLOCKS = cusp::detail::device::arch::max_active_blocks(storm_cuda_opt_spmv_csr_vector_kernel_double<VECTORS_PER_BLOCK, THREADS_PER_VECTOR, UseCache>, THREADS_PER_BLOCK, (size_t) 0);
const size_t NUM_BLOCKS = std::min<size_t>(MAX_BLOCKS, DIVIDE_INTO(num_rows, VECTORS_PER_BLOCK));
if (UseCache)
bind_x(x);
storm_cuda_opt_spmv_csr_vector_kernel_double<VECTORS_PER_BLOCK, THREADS_PER_VECTOR, UseCache> <<<NUM_BLOCKS, THREADS_PER_BLOCK>>>
(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y);
if (UseCache)
unbind_x(x);
}
void storm_cuda_opt_spmv_csr_vector_double(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * matrixRowIndices, const double * matrixColumnIndicesAndValues, const double* x, double* y)
{
const uint_fast64_t nnz_per_row = num_entries / num_rows;
if (nnz_per_row <= 2) { __storm_cuda_opt_spmv_csr_vector_double<false, 2>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
if (nnz_per_row <= 4) { __storm_cuda_opt_spmv_csr_vector_double<false, 4>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
if (nnz_per_row <= 8) { __storm_cuda_opt_spmv_csr_vector_double<false, 8>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
if (nnz_per_row <= 16) { __storm_cuda_opt_spmv_csr_vector_double<false,16>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
__storm_cuda_opt_spmv_csr_vector_double<false,32>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y);
}
void storm_cuda_opt_spmv_csr_vector_tex(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * matrixRowIndices, const double * matrixColumnIndicesAndValues, const double* x, double* y)
{
const uint_fast64_t nnz_per_row = num_entries / num_rows;
if (nnz_per_row <= 2) { __storm_cuda_opt_spmv_csr_vector_double<true, 2>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
if (nnz_per_row <= 4) { __storm_cuda_opt_spmv_csr_vector_double<true, 4>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
if (nnz_per_row <= 8) { __storm_cuda_opt_spmv_csr_vector_double<true, 8>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
if (nnz_per_row <= 16) { __storm_cuda_opt_spmv_csr_vector_double<true,16>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
__storm_cuda_opt_spmv_csr_vector_double<true,32>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y);
}
// NON-OPT
template <bool UseCache, unsigned int THREADS_PER_VECTOR>
void __storm_cuda_spmv_csr_vector_double(const uint_fast64_t num_rows, const uint_fast64_t * matrixRowIndices, const uint_fast64_t * matrixColumnIndices, const double * matrixValues, const double* x, double* y)
{
const size_t THREADS_PER_BLOCK = 128;
const size_t VECTORS_PER_BLOCK = THREADS_PER_BLOCK / THREADS_PER_VECTOR;
const size_t MAX_BLOCKS = cusp::detail::device::arch::max_active_blocks(spmv_csr_vector_kernel<uint_fast64_t, double, VECTORS_PER_BLOCK, THREADS_PER_VECTOR, UseCache>, THREADS_PER_BLOCK, (size_t) 0);
const size_t NUM_BLOCKS = std::min<size_t>(MAX_BLOCKS, DIVIDE_INTO(num_rows, VECTORS_PER_BLOCK));
if (UseCache)
bind_x(x);
spmv_csr_vector_kernel<uint_fast64_t, double, VECTORS_PER_BLOCK, THREADS_PER_VECTOR, UseCache> <<<NUM_BLOCKS, THREADS_PER_BLOCK>>>
(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y);
if (UseCache)
unbind_x(x);
}
void storm_cuda_spmv_csr_vector_double(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * matrixRowIndices, const uint_fast64_t * matrixColumnIndices, const double * matrixValues, const double* x, double* y)
{
const uint_fast64_t nnz_per_row = num_entries / num_rows;
if (nnz_per_row <= 2) { __storm_cuda_spmv_csr_vector_double<false, 2>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
if (nnz_per_row <= 4) { __storm_cuda_spmv_csr_vector_double<false, 4>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
if (nnz_per_row <= 8) { __storm_cuda_spmv_csr_vector_double<false, 8>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
if (nnz_per_row <= 16) { __storm_cuda_spmv_csr_vector_double<false,16>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
__storm_cuda_spmv_csr_vector_double<false,32>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y);
}
void storm_cuda_spmv_csr_vector_tex_double(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * matrixRowIndices, const uint_fast64_t * matrixColumnIndices, const double * matrixValues, const double* x, double* y)
{
const uint_fast64_t nnz_per_row = num_entries / num_rows;
if (nnz_per_row <= 2) { __storm_cuda_spmv_csr_vector_double<true, 2>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
if (nnz_per_row <= 4) { __storm_cuda_spmv_csr_vector_double<true, 4>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
if (nnz_per_row <= 8) { __storm_cuda_spmv_csr_vector_double<true, 8>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
if (nnz_per_row <= 16) { __storm_cuda_spmv_csr_vector_double<true,16>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
__storm_cuda_spmv_csr_vector_double<true,32>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y);
}
} // end namespace device
} // end namespace detail
} // end namespace cusp

375
resources/cudaForStorm/srcCuda/cuspExtensionFloat.h

@ -1,375 +0,0 @@
/*
* This is an extension of the original CUSP csr_vector.h SPMV implementation.
* It is based on the Code and incorporates changes as to cope with the details
* of the StoRM code.
* As this is mostly copy & paste, the original license still applies.
*/
/*
* Copyright 2008-2009 NVIDIA Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <limits>
#include <cstdint>
#include <algorithm>
#include <math_functions.h>
#include <cusp/detail/device/spmv/csr_vector.h>
#include "storm-cudaplugin-config.h"
namespace cusp
{
namespace detail
{
namespace device
{
//////////////////////////////////////////////////////////////////////////////
// CSR SpMV kernels based on a vector model (one warp per row)
//////////////////////////////////////////////////////////////////////////////
//
// spmv_csr_vector_device
// Each row of the CSR matrix is assigned to a warp. The warp computes
// y[i] = A[i,:] * x, i.e. the dot product of the i-th row of A with
// the x vector, in parallel. This division of work implies that
// the CSR index and data arrays (Aj and Ax) are accessed in a contiguous
// manner (but generally not aligned). On GT200 these accesses are
// coalesced, unlike kernels based on the one-row-per-thread division of
// work. Since an entire 32-thread warp is assigned to each row, many
// threads will remain idle when their row contains a small number
// of elements. This code relies on implicit synchronization among
// threads in a warp.
//
// spmv_csr_vector_tex_device
// Same as spmv_csr_vector_tex_device, except that the texture cache is
// used for accessing the x vector.
//
// Note: THREADS_PER_VECTOR must be one of [2,4,8,16,32]
template <unsigned int VECTORS_PER_BLOCK, unsigned int THREADS_PER_VECTOR, bool UseCache>
__launch_bounds__(VECTORS_PER_BLOCK * THREADS_PER_VECTOR,1)
__global__ void
storm_cuda_opt_spmv_csr_vector_kernel_float(const uint_fast64_t num_rows, const uint_fast64_t * matrixRowIndices, const float * matrixColumnIndicesAndValues, const float * x, float * y)
{
__shared__ volatile float sdata[VECTORS_PER_BLOCK * THREADS_PER_VECTOR + THREADS_PER_VECTOR / 2]; // padded to avoid reduction conditionals
__shared__ volatile uint_fast64_t ptrs[VECTORS_PER_BLOCK][2];
const uint_fast64_t THREADS_PER_BLOCK = VECTORS_PER_BLOCK * THREADS_PER_VECTOR;
const uint_fast64_t thread_id = THREADS_PER_BLOCK * blockIdx.x + threadIdx.x; // global thread index
const uint_fast64_t thread_lane = threadIdx.x & (THREADS_PER_VECTOR - 1); // thread index within the vector
const uint_fast64_t vector_id = thread_id / THREADS_PER_VECTOR; // global vector index
const uint_fast64_t vector_lane = threadIdx.x / THREADS_PER_VECTOR; // vector index within the block
const uint_fast64_t num_vectors = VECTORS_PER_BLOCK * gridDim.x; // total number of active vectors
for(uint_fast64_t row = vector_id; row < num_rows; row += num_vectors)
{
// use two threads to fetch Ap[row] and Ap[row+1]
// this is considerably faster than the straightforward version
if(thread_lane < 2)
ptrs[vector_lane][thread_lane] = matrixRowIndices[row + thread_lane];
const uint_fast64_t row_start = ptrs[vector_lane][0]; //same as: row_start = Ap[row];
const uint_fast64_t row_end = ptrs[vector_lane][1]; //same as: row_end = Ap[row+1];
// initialize local sum
float sum = 0;
if (THREADS_PER_VECTOR == 32 && row_end - row_start > 32)
{
// ensure aligned memory access to Aj and Ax
uint_fast64_t jj = row_start - (row_start & (THREADS_PER_VECTOR - 1)) + thread_lane;
// accumulate local sums
if(jj >= row_start && jj < row_end) {
#ifdef STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT
sum += matrixColumnIndicesAndValues[4 * jj + 2] * fetch_x<UseCache>(*reinterpret_cast<uint_fast64_t const*>(matrixColumnIndicesAndValues + 4 * jj), x);
#else
sum += matrixColumnIndicesAndValues[3 * jj + 2] * fetch_x<UseCache>(*reinterpret_cast<uint_fast64_t const*>(matrixColumnIndicesAndValues + 3 * jj), x);
#endif
//sum += reinterpret_cast<ValueType const*>(matrixColumnIndicesAndValues)[2*jj + 1] * fetch_x<UseCache>(matrixColumnIndicesAndValues[2*jj], x);
}
// accumulate local sums
for(jj += THREADS_PER_VECTOR; jj < row_end; jj += THREADS_PER_VECTOR) {
//sum += reinterpret_cast<ValueType const*>(matrixColumnIndicesAndValues)[2*jj + 1] * fetch_x<UseCache>(matrixColumnIndicesAndValues[2*jj], x);
#ifdef STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT
sum += matrixColumnIndicesAndValues[4 * jj + 2] * fetch_x<UseCache>(*reinterpret_cast<uint_fast64_t const*>(matrixColumnIndicesAndValues + 4 * jj), x);
#else
sum += matrixColumnIndicesAndValues[3 * jj + 2] * fetch_x<UseCache>(*reinterpret_cast<uint_fast64_t const*>(matrixColumnIndicesAndValues + 3 * jj), x);
#endif
}
} else {
// accumulate local sums
for(uint_fast64_t jj = row_start + thread_lane; jj < row_end; jj += THREADS_PER_VECTOR) {
//sum += reinterpret_cast<ValueType const*>(matrixColumnIndicesAndValues)[2*jj + 1] * fetch_x<UseCache>(matrixColumnIndicesAndValues[2*jj], x);
#ifdef STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT
sum += matrixColumnIndicesAndValues[4 * jj + 2] * fetch_x<UseCache>(*reinterpret_cast<uint_fast64_t const*>(matrixColumnIndicesAndValues + 4 * jj), x);
#else
sum += matrixColumnIndicesAndValues[3 * jj + 2] * fetch_x<UseCache>(*reinterpret_cast<uint_fast64_t const*>(matrixColumnIndicesAndValues + 3 * jj), x);
#endif
}
}
// store local sum in shared memory
sdata[threadIdx.x] = sum;
// reduce local sums to row sum
if (THREADS_PER_VECTOR > 16) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 16];
if (THREADS_PER_VECTOR > 8) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 8];
if (THREADS_PER_VECTOR > 4) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 4];
if (THREADS_PER_VECTOR > 2) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 2];
if (THREADS_PER_VECTOR > 1) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 1];
// first thread writes the result
if (thread_lane == 0)
y[row] = sdata[threadIdx.x];
}
}
template <unsigned int ROWS_PER_BLOCK, unsigned int THREADS_PER_ROW, bool Minimize>
__launch_bounds__(ROWS_PER_BLOCK * THREADS_PER_ROW,1)
__global__ void
storm_cuda_opt_vector_reduce_kernel_float(const uint_fast64_t num_rows, const uint_fast64_t * nondeterministicChoiceIndices, float * x, const float * y, const float minMaxInitializer)
{
__shared__ volatile float sdata[ROWS_PER_BLOCK * THREADS_PER_ROW + THREADS_PER_ROW / 2]; // padded to avoid reduction conditionals
__shared__ volatile uint_fast64_t ptrs[ROWS_PER_BLOCK][2];
const uint_fast64_t THREADS_PER_BLOCK = ROWS_PER_BLOCK * THREADS_PER_ROW;
const uint_fast64_t thread_id = THREADS_PER_BLOCK * blockIdx.x + threadIdx.x; // global thread index
const uint_fast64_t thread_lane = threadIdx.x & (THREADS_PER_ROW - 1); // thread index within the vector
const uint_fast64_t vector_id = thread_id / THREADS_PER_ROW; // global vector index
const uint_fast64_t vector_lane = threadIdx.x / THREADS_PER_ROW; // vector index within the block
const uint_fast64_t num_vectors = ROWS_PER_BLOCK * gridDim.x; // total number of active vectors
for(uint_fast64_t row = vector_id; row < num_rows; row += num_vectors)
{
// use two threads to fetch Ap[row] and Ap[row+1]
// this is considerably faster than the straightforward version
if(thread_lane < 2)
ptrs[vector_lane][thread_lane] = nondeterministicChoiceIndices[row + thread_lane];
const uint_fast64_t row_start = ptrs[vector_lane][0]; //same as: row_start = Ap[row];
const uint_fast64_t row_end = ptrs[vector_lane][1]; //same as: row_end = Ap[row+1];
// initialize local Min/Max
float localMinMaxElement = minMaxInitializer;
if (THREADS_PER_ROW == 32 && row_end - row_start > 32)
{
// ensure aligned memory access to Aj and Ax
uint_fast64_t jj = row_start - (row_start & (THREADS_PER_ROW - 1)) + thread_lane;
// accumulate local sums
if(jj >= row_start && jj < row_end) {
if(Minimize) {
localMinMaxElement = min(localMinMaxElement, y[jj]);
//localMinMaxElement = (localMinMaxElement > y[jj]) ? y[jj] : localMinMaxElement;
} else {
localMinMaxElement = max(localMinMaxElement, y[jj]);
//localMinMaxElement = (localMinMaxElement < y[jj]) ? y[jj] : localMinMaxElement;
}
}
// accumulate local sums
for(jj += THREADS_PER_ROW; jj < row_end; jj += THREADS_PER_ROW)
if(Minimize) {
localMinMaxElement = min(localMinMaxElement, y[jj]);
//localMinMaxElement = (localMinMaxElement > y[jj]) ? y[jj] : localMinMaxElement;
} else {
localMinMaxElement = max(localMinMaxElement, y[jj]);
//localMinMaxElement = (localMinMaxElement < y[jj]) ? y[jj] : localMinMaxElement;
}
}
else
{
// accumulate local sums
for(uint_fast64_t jj = row_start + thread_lane; jj < row_end; jj += THREADS_PER_ROW)
if(Minimize) {
localMinMaxElement = min(localMinMaxElement, y[jj]);
//localMinMaxElement = (localMinMaxElement > y[jj]) ? y[jj] : localMinMaxElement;
} else {
localMinMaxElement = max(localMinMaxElement, y[jj]);
//localMinMaxElement = (localMinMaxElement < y[jj]) ? y[jj] : localMinMaxElement;
}
}
// store local sum in shared memory
sdata[threadIdx.x] = localMinMaxElement;
// reduce local min/max to row min/max
if (Minimize) {
/*if (THREADS_PER_ROW > 16) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement > sdata[threadIdx.x + 16]) ? sdata[threadIdx.x + 16] : localMinMaxElement);
if (THREADS_PER_ROW > 8) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement > sdata[threadIdx.x + 8]) ? sdata[threadIdx.x + 8] : localMinMaxElement);
if (THREADS_PER_ROW > 4) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement > sdata[threadIdx.x + 4]) ? sdata[threadIdx.x + 4] : localMinMaxElement);
if (THREADS_PER_ROW > 2) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement > sdata[threadIdx.x + 2]) ? sdata[threadIdx.x + 2] : localMinMaxElement);
if (THREADS_PER_ROW > 1) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement > sdata[threadIdx.x + 1]) ? sdata[threadIdx.x + 1] : localMinMaxElement);*/
if (THREADS_PER_ROW > 16) sdata[threadIdx.x] = localMinMaxElement = min(localMinMaxElement, sdata[threadIdx.x + 16]);
if (THREADS_PER_ROW > 8) sdata[threadIdx.x] = localMinMaxElement = min(localMinMaxElement, sdata[threadIdx.x + 8]);
if (THREADS_PER_ROW > 4) sdata[threadIdx.x] = localMinMaxElement = min(localMinMaxElement, sdata[threadIdx.x + 4]);
if (THREADS_PER_ROW > 2) sdata[threadIdx.x] = localMinMaxElement = min(localMinMaxElement, sdata[threadIdx.x + 2]);
if (THREADS_PER_ROW > 1) sdata[threadIdx.x] = localMinMaxElement = min(localMinMaxElement, sdata[threadIdx.x + 1]);
} else {
/*if (THREADS_PER_ROW > 16) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement < sdata[threadIdx.x + 16]) ? sdata[threadIdx.x + 16] : localMinMaxElement);
if (THREADS_PER_ROW > 8) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement < sdata[threadIdx.x + 8]) ? sdata[threadIdx.x + 8] : localMinMaxElement);
if (THREADS_PER_ROW > 4) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement < sdata[threadIdx.x + 4]) ? sdata[threadIdx.x + 4] : localMinMaxElement);
if (THREADS_PER_ROW > 2) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement < sdata[threadIdx.x + 2]) ? sdata[threadIdx.x + 2] : localMinMaxElement);
if (THREADS_PER_ROW > 1) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement < sdata[threadIdx.x + 1]) ? sdata[threadIdx.x + 1] : localMinMaxElement);*/
if (THREADS_PER_ROW > 16) sdata[threadIdx.x] = localMinMaxElement = max(localMinMaxElement, sdata[threadIdx.x + 16]);
if (THREADS_PER_ROW > 8) sdata[threadIdx.x] = localMinMaxElement = max(localMinMaxElement, sdata[threadIdx.x + 8]);
if (THREADS_PER_ROW > 4) sdata[threadIdx.x] = localMinMaxElement = max(localMinMaxElement, sdata[threadIdx.x + 4]);
if (THREADS_PER_ROW > 2) sdata[threadIdx.x] = localMinMaxElement = max(localMinMaxElement, sdata[threadIdx.x + 2]);
if (THREADS_PER_ROW > 1) sdata[threadIdx.x] = localMinMaxElement = max(localMinMaxElement, sdata[threadIdx.x + 1]);
}
// first thread writes the result
if (thread_lane == 0)
x[row] = sdata[threadIdx.x];
}
}
template <bool Minimize, unsigned int THREADS_PER_VECTOR>
void __storm_cuda_opt_vector_reduce_float(const uint_fast64_t num_rows, const uint_fast64_t * nondeterministicChoiceIndices, float * x, const float * y)
{
float __minMaxInitializer = -std::numeric_limits<float>::max();
if (Minimize) {
__minMaxInitializer = std::numeric_limits<float>::max();
}
const float minMaxInitializer = __minMaxInitializer;
const size_t THREADS_PER_BLOCK = 128;
const size_t VECTORS_PER_BLOCK = THREADS_PER_BLOCK / THREADS_PER_VECTOR;
const size_t MAX_BLOCKS = cusp::detail::device::arch::max_active_blocks(storm_cuda_opt_vector_reduce_kernel_float<VECTORS_PER_BLOCK, THREADS_PER_VECTOR, Minimize>, THREADS_PER_BLOCK, (size_t) 0);
const size_t NUM_BLOCKS = std::min<size_t>(MAX_BLOCKS, DIVIDE_INTO(num_rows, VECTORS_PER_BLOCK));
storm_cuda_opt_vector_reduce_kernel_float<VECTORS_PER_BLOCK, THREADS_PER_VECTOR, Minimize> <<<NUM_BLOCKS, THREADS_PER_BLOCK>>>
(num_rows, nondeterministicChoiceIndices, x, y, minMaxInitializer);
}
template <bool Minimize>
void storm_cuda_opt_vector_reduce_float(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * nondeterministicChoiceIndices, float * x, const float * y)
{
const uint_fast64_t rows_per_group = num_entries / num_rows;
if (rows_per_group <= 2) { __storm_cuda_opt_vector_reduce_float<Minimize, 2>(num_rows, nondeterministicChoiceIndices, x, y); return; }
if (rows_per_group <= 4) { __storm_cuda_opt_vector_reduce_float<Minimize, 4>(num_rows, nondeterministicChoiceIndices, x, y); return; }
if (rows_per_group <= 8) { __storm_cuda_opt_vector_reduce_float<Minimize, 8>(num_rows, nondeterministicChoiceIndices, x, y); return; }
if (rows_per_group <= 16) { __storm_cuda_opt_vector_reduce_float<Minimize,16>(num_rows, nondeterministicChoiceIndices, x, y); return; }
__storm_cuda_opt_vector_reduce_float<Minimize,32>(num_rows, nondeterministicChoiceIndices, x, y);
}
template <bool UseCache, unsigned int THREADS_PER_VECTOR>
void __storm_cuda_opt_spmv_csr_vector_float(const uint_fast64_t num_rows, const uint_fast64_t * matrixRowIndices, const float * matrixColumnIndicesAndValues, const float* x, float* y)
{
const size_t THREADS_PER_BLOCK = 128;
const size_t VECTORS_PER_BLOCK = THREADS_PER_BLOCK / THREADS_PER_VECTOR;
const size_t MAX_BLOCKS = cusp::detail::device::arch::max_active_blocks(storm_cuda_opt_spmv_csr_vector_kernel_float<VECTORS_PER_BLOCK, THREADS_PER_VECTOR, UseCache>, THREADS_PER_BLOCK, (size_t) 0);
const size_t NUM_BLOCKS = std::min<size_t>(MAX_BLOCKS, DIVIDE_INTO(num_rows, VECTORS_PER_BLOCK));
if (UseCache)
bind_x(x);
storm_cuda_opt_spmv_csr_vector_kernel_float<VECTORS_PER_BLOCK, THREADS_PER_VECTOR, UseCache> <<<NUM_BLOCKS, THREADS_PER_BLOCK>>>
(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y);
if (UseCache)
unbind_x(x);
}
void storm_cuda_opt_spmv_csr_vector_float(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * matrixRowIndices, const float * matrixColumnIndicesAndValues, const float* x, float* y)
{
const uint_fast64_t nnz_per_row = num_entries / num_rows;
if (nnz_per_row <= 2) { __storm_cuda_opt_spmv_csr_vector_float<false, 2>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
if (nnz_per_row <= 4) { __storm_cuda_opt_spmv_csr_vector_float<false, 4>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
if (nnz_per_row <= 8) { __storm_cuda_opt_spmv_csr_vector_float<false, 8>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
if (nnz_per_row <= 16) { __storm_cuda_opt_spmv_csr_vector_float<false,16>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
__storm_cuda_opt_spmv_csr_vector_float<false,32>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y);
}
void storm_cuda_opt_spmv_csr_vector_tex(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * matrixRowIndices, const float * matrixColumnIndicesAndValues, const float* x, float* y)
{
const uint_fast64_t nnz_per_row = num_entries / num_rows;
if (nnz_per_row <= 2) { __storm_cuda_opt_spmv_csr_vector_float<true, 2>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
if (nnz_per_row <= 4) { __storm_cuda_opt_spmv_csr_vector_float<true, 4>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
if (nnz_per_row <= 8) { __storm_cuda_opt_spmv_csr_vector_float<true, 8>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
if (nnz_per_row <= 16) { __storm_cuda_opt_spmv_csr_vector_float<true,16>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
__storm_cuda_opt_spmv_csr_vector_float<true,32>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y);
}
// NON-OPT
template <bool UseCache, unsigned int THREADS_PER_VECTOR>
void __storm_cuda_spmv_csr_vector_float(const uint_fast64_t num_rows, const uint_fast64_t * matrixRowIndices, const uint_fast64_t * matrixColumnIndices, const float * matrixValues, const float* x, float* y)
{
const size_t THREADS_PER_BLOCK = 128;
const size_t VECTORS_PER_BLOCK = THREADS_PER_BLOCK / THREADS_PER_VECTOR;
const size_t MAX_BLOCKS = cusp::detail::device::arch::max_active_blocks(spmv_csr_vector_kernel<uint_fast64_t, float, VECTORS_PER_BLOCK, THREADS_PER_VECTOR, UseCache>, THREADS_PER_BLOCK, (size_t) 0);
const size_t NUM_BLOCKS = std::min<size_t>(MAX_BLOCKS, DIVIDE_INTO(num_rows, VECTORS_PER_BLOCK));
if (UseCache)
bind_x(x);
spmv_csr_vector_kernel<uint_fast64_t, float, VECTORS_PER_BLOCK, THREADS_PER_VECTOR, UseCache> <<<NUM_BLOCKS, THREADS_PER_BLOCK>>>
(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y);
if (UseCache)
unbind_x(x);
}
void storm_cuda_spmv_csr_vector_float(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * matrixRowIndices, const uint_fast64_t * matrixColumnIndices, const float * matrixValues, const float* x, float* y)
{
const uint_fast64_t nnz_per_row = num_entries / num_rows;
if (nnz_per_row <= 2) { __storm_cuda_spmv_csr_vector_float<false, 2>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
if (nnz_per_row <= 4) { __storm_cuda_spmv_csr_vector_float<false, 4>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
if (nnz_per_row <= 8) { __storm_cuda_spmv_csr_vector_float<false, 8>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
if (nnz_per_row <= 16) { __storm_cuda_spmv_csr_vector_float<false,16>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
__storm_cuda_spmv_csr_vector_float<false,32>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y);
}
void storm_cuda_spmv_csr_vector_tex_float(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * matrixRowIndices, const uint_fast64_t * matrixColumnIndices, const float * matrixValues, const float* x, float* y)
{
const uint_fast64_t nnz_per_row = num_entries / num_rows;
if (nnz_per_row <= 2) { __storm_cuda_spmv_csr_vector_float<true, 2>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
if (nnz_per_row <= 4) { __storm_cuda_spmv_csr_vector_float<true, 4>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
if (nnz_per_row <= 8) { __storm_cuda_spmv_csr_vector_float<true, 8>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
if (nnz_per_row <= 16) { __storm_cuda_spmv_csr_vector_float<true,16>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
__storm_cuda_spmv_csr_vector_float<true,32>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y);
}
} // end namespace device
} // end namespace detail
} // end namespace cusp

39
resources/cudaForStorm/srcCuda/kernelSwitchTest.cu

@ -1,39 +0,0 @@
#include <iostream>
#include <chrono>
__global__ void cuda_kernel_kernelSwitchTest(int const * const A, int * const B) {
*B = *A;
}
void kernelSwitchTest(size_t N) {
int* deviceIntA;
int* deviceIntB;
if (cudaMalloc((void**)&deviceIntA, sizeof(int)) != cudaSuccess) {
std::cout << "Error in cudaMalloc while allocating " << sizeof(int) << " Bytes!" << std::endl;
return;
}
if (cudaMalloc((void**)&deviceIntB, sizeof(int)) != cudaSuccess) {
std::cout << "Error in cudaMalloc while allocating " << sizeof(int) << " Bytes!" << std::endl;
return;
}
// Allocate space on the device
auto start_time = std::chrono::high_resolution_clock::now();
for (int i = 0; i < N; ++i) {
cuda_kernel_kernelSwitchTest<<<1,1>>>(deviceIntA, deviceIntB);
}
auto end_time = std::chrono::high_resolution_clock::now();
std::cout << "Switching the Kernel " << N << " times took " << std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count() << "micros" << std::endl;
std::cout << "Resulting in " << (std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count() / ((double)(N))) << "Microseconds per Kernel Switch" << std::endl;
// Free memory on device
if (cudaFree(deviceIntA) != cudaSuccess) {
std::cout << "Error in cudaFree!" << std::endl;
return;
}
if (cudaFree(deviceIntB) != cudaSuccess) {
std::cout << "Error in cudaFree!" << std::endl;
return;
}
}

1
resources/cudaForStorm/srcCuda/kernelSwitchTest.h

@ -1 +0,0 @@
void kernelSwitchTest(size_t N);

33
resources/cudaForStorm/srcCuda/utility.cu

@ -1,33 +0,0 @@
#include "utility.h"
#include <cuda_runtime.h>
size_t getFreeCudaMemory() {
size_t freeMemory;
size_t totalMemory;
cudaMemGetInfo(&freeMemory, &totalMemory);
return freeMemory;
}
size_t getTotalCudaMemory() {
size_t freeMemory;
size_t totalMemory;
cudaMemGetInfo(&freeMemory, &totalMemory);
return totalMemory;
}
bool resetCudaDevice() {
cudaError_t result = cudaDeviceReset();
return (result == cudaSuccess);
}
int getRuntimeCudaVersion() {
int result = -1;
cudaError_t errorResult = cudaRuntimeGetVersion(&result);
if (errorResult != cudaSuccess) {
return -1;
}
return result;
}

12
resources/cudaForStorm/srcCuda/utility.h

@ -1,12 +0,0 @@
#ifndef STORM_CUDAFORSTORM_UTILITY_H_
#define STORM_CUDAFORSTORM_UTILITY_H_
// Library exports
#include "cudaForStorm_Export.h"
cudaForStorm_EXPORT size_t getFreeCudaMemory();
cudaForStorm_EXPORT size_t getTotalCudaMemory();
cudaForStorm_EXPORT bool resetCudaDevice();
cudaForStorm_EXPORT int getRuntimeCudaVersion();
#endif // STORM_CUDAFORSTORM_UTILITY_H_

28
resources/cudaForStorm/srcCuda/version.cu

@ -1,28 +0,0 @@
#include "version.h"
#include "storm-cudaplugin-config.h"
size_t getStormCudaPluginVersionMajor() {
return STORM_CUDAPLUGIN_VERSION_MAJOR;
}
size_t getStormCudaPluginVersionMinor() {
return STORM_CUDAPLUGIN_VERSION_MINOR;
}
size_t getStormCudaPluginVersionPatch() {
return STORM_CUDAPLUGIN_VERSION_PATCH;
}
size_t getStormCudaPluginVersionCommitsAhead() {
return STORM_CUDAPLUGIN_VERSION_COMMITS_AHEAD;
}
const char* getStormCudaPluginVersionHash() {
static const std::string versionHash = STORM_CUDAPLUGIN_VERSION_HASH;
return versionHash.c_str();
}
bool getStormCudaPluginVersionIsDirty() {
return ((STORM_CUDAPLUGIN_VERSION_DIRTY) != 0);
}

16
resources/cudaForStorm/srcCuda/version.h

@ -1,16 +0,0 @@
#ifndef STORM_CUDAFORSTORM_VERSION_H_
#define STORM_CUDAFORSTORM_VERSION_H_
// Library exports
#include "cudaForStorm_Export.h"
#include <string>
cudaForStorm_EXPORT size_t getStormCudaPluginVersionMajor();
cudaForStorm_EXPORT size_t getStormCudaPluginVersionMinor();
cudaForStorm_EXPORT size_t getStormCudaPluginVersionPatch();
cudaForStorm_EXPORT size_t getStormCudaPluginVersionCommitsAhead();
cudaForStorm_EXPORT const char* getStormCudaPluginVersionHash();
cudaForStorm_EXPORT bool getStormCudaPluginVersionIsDirty();
#endif // STORM_CUDAFORSTORM_VERSION_H_

21
resources/cudaForStorm/storm-cudaplugin-config.h.in

@ -1,21 +0,0 @@
/*
* StoRM - Build-in Options
*
* This file is parsed by CMake during makefile generation
*/
#ifndef STORM_CUDAPLUGIN_GENERATED_STORMCONFIG_H_
#define STORM_CUDAPLUGIN_GENERATED_STORMCONFIG_H_
// Version Information
#define STORM_CUDAPLUGIN_VERSION_MAJOR @STORM_CUDAPLUGIN_VERSION_MAJOR@ // The major version of StoRM
#define STORM_CUDAPLUGIN_VERSION_MINOR @STORM_CUDAPLUGIN_VERSION_MINOR@ // The minor version of StoRM
#define STORM_CUDAPLUGIN_VERSION_PATCH @STORM_CUDAPLUGIN_VERSION_PATCH@ // The patch version of StoRM
#define STORM_CUDAPLUGIN_VERSION_COMMITS_AHEAD @STORM_CUDAPLUGIN_VERSION_COMMITS_AHEAD@ // How many commits passed since the tag was last set
#define STORM_CUDAPLUGIN_VERSION_HASH "@STORM_CUDAPLUGIN_VERSION_HASH@" // The short hash of the git commit this build is bases on
#define STORM_CUDAPLUGIN_VERSION_DIRTY @STORM_CUDAPLUGIN_VERSION_DIRTY@ // 0 iff there no files were modified in the checkout, 1 else
// Whether the size of float in a pair<uint_fast64_t, float> is expanded to 64bit
#@STORM_CUDAPLUGIN_FLOAT_64BIT_ALIGN_DEF@ STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT
#endif // STORM_CUDAPLUGIN_GENERATED_STORMCONFIG_H_

4
src/modelchecker/prctl/TopologicalValueIterationMdpPrctlModelChecker.h

@ -15,7 +15,6 @@
namespace storm { namespace storm {
namespace modelchecker { namespace modelchecker {
namespace prctl {
/* /*
* An implementation of the SparseMdpPrctlModelChecker interface that uses topoligical value iteration for solving * An implementation of the SparseMdpPrctlModelChecker interface that uses topoligical value iteration for solving
@ -38,7 +37,7 @@ public:
* Copy constructs a SparseMdpPrctlModelChecker from the given model checker. In particular, this means that the newly * Copy constructs a SparseMdpPrctlModelChecker from the given model checker. In particular, this means that the newly
* constructed model checker will have the model of the given model checker as its associated model. * constructed model checker will have the model of the given model checker as its associated model.
*/ */
explicit TopologicalValueIterationMdpPrctlModelChecker(storm::modelchecker::prctl::TopologicalValueIterationMdpPrctlModelChecker<Type> const& modelchecker)
explicit TopologicalValueIterationMdpPrctlModelChecker(storm::modelchecker::TopologicalValueIterationMdpPrctlModelChecker<Type> const& modelchecker)
: SparseMdpPrctlModelChecker<Type>(modelchecker) { : SparseMdpPrctlModelChecker<Type>(modelchecker) {
// Intentionally left empty. // Intentionally left empty.
} }
@ -49,7 +48,6 @@ public:
virtual ~TopologicalValueIterationMdpPrctlModelChecker() { } virtual ~TopologicalValueIterationMdpPrctlModelChecker() { }
}; };
} // namespace prctl
} // namespace modelchecker } // namespace modelchecker
} // namespace storm } // namespace storm

6
src/solver/TopologicalValueIterationNondeterministicLinearEquationSolver.cpp

@ -36,6 +36,12 @@ namespace storm {
this->maximalNumberOfIterations = settings.getMaximalIterationCount(); this->maximalNumberOfIterations = settings.getMaximalIterationCount();
this->precision = settings.getPrecision(); this->precision = settings.getPrecision();
this->relative = (settings.getConvergenceCriterion() == storm::settings::modules::TopologicalValueIterationEquationSolverSettings::ConvergenceCriterion::Relative); this->relative = (settings.getConvergenceCriterion() == storm::settings::modules::TopologicalValueIterationEquationSolverSettings::ConvergenceCriterion::Relative);
auto generalSettings = storm::settings::generalSettings();
this->enableCuda = generalSettings.isCudaSet();
#ifdef STORM_HAVE_CUDA
STORM_LOG_INFO_COND(this->enableCuda, "Option CUDA was not set, but the topological value iteration solver will use it anyways.");
#endif
} }
template<typename ValueType> template<typename ValueType>

2
src/solver/TopologicalValueIterationNondeterministicLinearEquationSolver.h

@ -44,6 +44,8 @@ namespace storm {
virtual void solveEquationSystem(bool minimize, storm::storage::SparseMatrix<ValueType> const& A, std::vector<ValueType>& x, std::vector<ValueType> const& b, std::vector<ValueType>* multiplyResult = nullptr, std::vector<ValueType>* newX = nullptr) const override; virtual void solveEquationSystem(bool minimize, storm::storage::SparseMatrix<ValueType> const& A, std::vector<ValueType>& x, std::vector<ValueType> const& b, std::vector<ValueType>* multiplyResult = nullptr, std::vector<ValueType>* newX = nullptr) const override;
private: private:
bool enableCuda;
/*! /*!
* Given a topological sort of a SCC Decomposition, this will calculate the optimal grouping of SCCs with respect to the size of the GPU memory. * Given a topological sort of a SCC Decomposition, this will calculate the optimal grouping of SCCs with respect to the size of the GPU memory.
*/ */

59
src/utility/cli.h

@ -25,6 +25,10 @@
#ifdef STORM_HAVE_MSAT #ifdef STORM_HAVE_MSAT
# include "mathsat.h" # include "mathsat.h"
#endif #endif
#ifdef STORM_HAVE_CUDA
#include <cuda.h>
#include <cuda_runtime.h>
#endif
#include "log4cplus/logger.h" #include "log4cplus/logger.h"
#include "log4cplus/loggingmacros.h" #include "log4cplus/loggingmacros.h"
@ -60,6 +64,7 @@ log4cplus::Logger printer;
#include "src/modelchecker/prctl/SparseDtmcPrctlModelChecker.h" #include "src/modelchecker/prctl/SparseDtmcPrctlModelChecker.h"
#include "src/modelchecker/reachability/SparseDtmcEliminationModelChecker.h" #include "src/modelchecker/reachability/SparseDtmcEliminationModelChecker.h"
#include "src/modelchecker/prctl/SparseMdpPrctlModelChecker.h" #include "src/modelchecker/prctl/SparseMdpPrctlModelChecker.h"
#include "src/modelchecker/prctl/TopologicalValueIterationMdpPrctlModelChecker.h"
// Headers for counterexample generation. // Headers for counterexample generation.
#include "src/counterexamples/MILPMinimalLabelSetGenerator.h" #include "src/counterexamples/MILPMinimalLabelSetGenerator.h"
@ -151,6 +156,44 @@ namespace storm {
std::cout << "Linked with " << msatVersion << "." << std::endl; std::cout << "Linked with " << msatVersion << "." << std::endl;
msat_free(msatVersion); msat_free(msatVersion);
#endif #endif
#ifdef STORM_HAVE_CUDA
int deviceCount = 0;
cudaError_t error_id = cudaGetDeviceCount(&deviceCount);
if (error_id == cudaSuccess)
{
std::cout << "Compiled with CUDA support, ";
// This function call returns 0 if there are no CUDA capable devices.
if (deviceCount == 0)
{
std::cout<< "but there are no available device(s) that support CUDA." << std::endl;
} else
{
std::cout << "detected " << deviceCount << " CUDA Capable device(s):" << std::endl;
}
int dev, driverVersion = 0, runtimeVersion = 0;
for (dev = 0; dev < deviceCount; ++dev)
{
cudaSetDevice(dev);
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, dev);
std::cout << "CUDA Device " << dev << ": \"" << deviceProp.name << "\"" << std::endl;
// Console log
cudaDriverGetVersion(&driverVersion);
cudaRuntimeGetVersion(&runtimeVersion);
std::cout << " CUDA Driver Version / Runtime Version " << driverVersion / 1000 << "." << (driverVersion % 100) / 10 << " / " << runtimeVersion / 1000 << "." << (runtimeVersion % 100) / 10 << std::endl;
std::cout << " CUDA Capability Major/Minor version number: " << deviceProp.major<<"."<<deviceProp.minor <<std::endl;
}
std::cout << std::endl;
}
else {
std::cout << "Compiled with CUDA support, but an error occured trying to find CUDA devices." << std::endl;
}
#endif
// "Compute" the command line argument string with which STORM was invoked. // "Compute" the command line argument string with which STORM was invoked.
std::stringstream commandStream; std::stringstream commandStream;
@ -362,9 +405,19 @@ namespace storm {
} }
} }
} else if (model->getType() == storm::models::MDP) { } else if (model->getType() == storm::models::MDP) {
std::shared_ptr<storm::models::Mdp<ValueType>> mdp = model->template as<storm::models::Mdp<ValueType>>();
storm::modelchecker::SparseMdpPrctlModelChecker<ValueType> modelchecker(*mdp);
result = modelchecker.check(*formula.get());
std::shared_ptr<storm::models::Mdp<ValueType>> mdp = model->template as<storm::models::Mdp<ValueType>>();
#ifdef STORM_HAVE_CUDA
if (settings.isCudaSet()) {
storm::modelchecker::TopologicalValueIterationMdpPrctlModelChecker<ValueType> modelchecker(*mdp);
result = modelchecker.check(*formula.get());
} else {
storm::modelchecker::SparseMdpPrctlModelChecker<ValueType> modelchecker(*mdp);
result = modelchecker.check(*formula.get());
}
#else
storm::modelchecker::SparseMdpPrctlModelChecker<ValueType> modelchecker(*mdp);
result = modelchecker.check(*formula.get());
#endif
} }
if (result) { if (result) {

8
test/functional/modelchecker/TopologicalValueIterationMdpPrctlModelCheckerTest.cpp

@ -20,7 +20,7 @@ TEST(TopologicalValueIterationMdpPrctlModelCheckerTest, Dice) {
ASSERT_EQ(mdp->getNumberOfStates(), 169ull); ASSERT_EQ(mdp->getNumberOfStates(), 169ull);
ASSERT_EQ(mdp->getNumberOfTransitions(), 436ull); ASSERT_EQ(mdp->getNumberOfTransitions(), 436ull);
storm::modelchecker::prctl::TopologicalValueIterationMdpPrctlModelChecker<double> mc(*mdp);
storm::modelchecker::TopologicalValueIterationMdpPrctlModelChecker<double> mc(*mdp);
//storm::property::prctl::Ap<double>* apFormula = new storm::property::prctl::Ap<double>("two"); //storm::property::prctl::Ap<double>* apFormula = new storm::property::prctl::Ap<double>("two");
auto apFormula = std::make_shared<storm::logic::AtomicLabelFormula>("two"); auto apFormula = std::make_shared<storm::logic::AtomicLabelFormula>("two");
@ -138,7 +138,7 @@ TEST(TopologicalValueIterationMdpPrctlModelCheckerTest, Dice) {
// ------------- state rewards -------------- // ------------- state rewards --------------
std::shared_ptr<storm::models::Mdp<double>> stateRewardMdp = storm::parser::AutoParser::parseModel(STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.tra", STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.lab", STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.flip.state.rew", "")->as<storm::models::Mdp<double>>(); std::shared_ptr<storm::models::Mdp<double>> stateRewardMdp = storm::parser::AutoParser::parseModel(STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.tra", STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.lab", STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.flip.state.rew", "")->as<storm::models::Mdp<double>>();
storm::modelchecker::prctl::TopologicalValueIterationMdpPrctlModelChecker<double> stateRewardModelChecker(*stateRewardMdp);
storm::modelchecker::TopologicalValueIterationMdpPrctlModelChecker<double> stateRewardModelChecker(*stateRewardMdp);
apFormula = std::make_shared<storm::logic::AtomicLabelFormula>("done"); apFormula = std::make_shared<storm::logic::AtomicLabelFormula>("done");
@ -174,7 +174,7 @@ TEST(TopologicalValueIterationMdpPrctlModelCheckerTest, Dice) {
// -------------------------------- state and transition reward ------------------------ // -------------------------------- state and transition reward ------------------------
std::shared_ptr<storm::models::Mdp<double>> stateAndTransitionRewardMdp = storm::parser::AutoParser::parseModel(STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.tra", STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.lab", STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.flip.state.rew", STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.flip.trans.rew")->as<storm::models::Mdp<double>>(); std::shared_ptr<storm::models::Mdp<double>> stateAndTransitionRewardMdp = storm::parser::AutoParser::parseModel(STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.tra", STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.lab", STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.flip.state.rew", STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.flip.trans.rew")->as<storm::models::Mdp<double>>();
storm::modelchecker::prctl::TopologicalValueIterationMdpPrctlModelChecker<double> stateAndTransitionRewardModelChecker(*stateAndTransitionRewardMdp);
storm::modelchecker::TopologicalValueIterationMdpPrctlModelChecker<double> stateAndTransitionRewardModelChecker(*stateAndTransitionRewardMdp);
apFormula = std::make_shared<storm::logic::AtomicLabelFormula>("done"); apFormula = std::make_shared<storm::logic::AtomicLabelFormula>("done");
@ -214,7 +214,7 @@ TEST(TopologicalValueIterationMdpPrctlModelCheckerTest, AsynchronousLeader) {
ASSERT_EQ(mdp->getNumberOfStates(), 3172ull); ASSERT_EQ(mdp->getNumberOfStates(), 3172ull);
ASSERT_EQ(mdp->getNumberOfTransitions(), 7144ull); ASSERT_EQ(mdp->getNumberOfTransitions(), 7144ull);
storm::modelchecker::prctl::TopologicalValueIterationMdpPrctlModelChecker<double> mc(*mdp);
storm::modelchecker::TopologicalValueIterationMdpPrctlModelChecker<double> mc(*mdp);
auto apFormula = std::make_shared<storm::logic::AtomicLabelFormula>("elected"); auto apFormula = std::make_shared<storm::logic::AtomicLabelFormula>("elected");
auto eventuallyFormula = std::make_shared<storm::logic::EventuallyFormula>(apFormula); auto eventuallyFormula = std::make_shared<storm::logic::EventuallyFormula>(apFormula);

Loading…
Cancel
Save