Browse Source

Splitted graph in h and cpp`

Former-commit-id: e22ab7f8eb
tempestpy_adaptions
sjunges 9 years ago
parent
commit
35a154f67f
  1. 1
      src/modelchecker/csl/helper/HybridCtmcCslHelper.cpp
  2. 3
      src/modelchecker/csl/helper/SparseMarkovAutomatonCslHelper.cpp
  3. 1
      src/modelchecker/prctl/HybridDtmcPrctlModelChecker.cpp
  4. 3
      src/modelchecker/prctl/SparseMdpPrctlModelChecker.cpp
  5. 2
      src/modelchecker/prctl/SymbolicMdpPrctlModelChecker.cpp
  6. 1
      src/modelchecker/prctl/helper/HybridDtmcPrctlHelper.cpp
  7. 1
      src/modelchecker/prctl/helper/HybridMdpPrctlHelper.cpp
  8. 3
      src/modelchecker/prctl/helper/SparseMdpPrctlHelper.cpp
  9. 1
      src/modelchecker/prctl/helper/SymbolicDtmcPrctlHelper.cpp
  10. 3
      src/modelchecker/prctl/helper/SymbolicMdpPrctlHelper.cpp
  11. 1025
      src/utility/graph.cpp
  12. 794
      src/utility/graph.h

1
src/modelchecker/csl/helper/HybridCtmcCslHelper.cpp

@ -10,6 +10,7 @@
#include "src/utility/macros.h"
#include "src/utility/graph.h"
#include "src/utility/constants.h"
#include "src/models/symbolic/StandardRewardModel.h"

3
src/modelchecker/csl/helper/SparseMarkovAutomatonCslHelper.cpp

@ -12,6 +12,9 @@
#include "src/utility/vector.h"
#include "src/utility/graph.h"
#include "src/storage/expressions/Variable.h"
#include "src/storage/expressions/Expression.h"
#include "src/utility/numerical.h"
#include "src/solver/MinMaxLinearEquationSolver.h"

1
src/modelchecker/prctl/HybridDtmcPrctlModelChecker.cpp

@ -19,6 +19,7 @@
#include "src/exceptions/InvalidStateException.h"
#include "src/exceptions/InvalidPropertyException.h"
#include "src/exceptions/InvalidArgumentException.h"
namespace storm {
namespace modelchecker {

3
src/modelchecker/prctl/SparseMdpPrctlModelChecker.cpp

@ -21,6 +21,9 @@
#include "src/storage/MaximalEndComponentDecomposition.h"
#include "src/exceptions/InvalidArgumentException.h"
namespace storm {
namespace modelchecker {
template<typename SparseMdpModelType>

2
src/modelchecker/prctl/SymbolicMdpPrctlModelChecker.cpp

@ -15,6 +15,8 @@
#include "src/exceptions/InvalidStateException.h"
#include "src/exceptions/InvalidPropertyException.h"
#include "src/exceptions/InvalidArgumentException.h"
namespace storm {
namespace modelchecker {
template<storm::dd::DdType DdType, typename ValueType>

1
src/modelchecker/prctl/helper/HybridDtmcPrctlHelper.cpp

@ -9,6 +9,7 @@
#include "src/storage/dd/CuddOdd.h"
#include "src/utility/graph.h"
#include "src/utility/constants.h"
#include "src/models/symbolic/StandardRewardModel.h"

1
src/modelchecker/prctl/helper/HybridMdpPrctlHelper.cpp

@ -6,6 +6,7 @@
#include "src/storage/dd/CuddOdd.h"
#include "src/utility/graph.h"
#include "src/utility/constants.h"
#include "src/models/symbolic/StandardRewardModel.h"

3
src/modelchecker/prctl/helper/SparseMdpPrctlHelper.cpp

@ -6,6 +6,9 @@
#include "src/utility/vector.h"
#include "src/utility/graph.h"
#include "src/storage/expressions/Variable.h"
#include "src/storage/expressions/Expression.h"
#include "src/solver/MinMaxLinearEquationSolver.h"
#include "src/solver/LpSolver.h"

1
src/modelchecker/prctl/helper/SymbolicDtmcPrctlHelper.cpp

@ -11,6 +11,7 @@
#include "src/models/symbolic/StandardRewardModel.h"
#include "src/utility/graph.h"
#include "src/utility/constants.h"
#include "src/exceptions/InvalidPropertyException.h"

3
src/modelchecker/prctl/helper/SymbolicMdpPrctlHelper.cpp

@ -8,6 +8,8 @@
#include "src/storage/dd/CuddOdd.h"
#include "src/utility/graph.h"
#include "src/utility/constants.h"
#include "src/models/symbolic/StandardRewardModel.h"
@ -15,6 +17,7 @@
#include "src/modelchecker/results/SymbolicQuantitativeCheckResult.h"
#include "src/exceptions/InvalidPropertyException.h"
#include "src/exceptions/InvalidArgumentException.h"
namespace storm {
namespace modelchecker {

1025
src/utility/graph.cpp
File diff suppressed because it is too large
View File

794
src/utility/graph.h

@ -7,19 +7,33 @@
#include "utility/OsDetection.h"
#include "src/storage/sparse/StateType.h"
#include "src/models/symbolic/DeterministicModel.h"
#include "src/models/symbolic/NondeterministicModel.h"
#include "src/models/sparse/DeterministicModel.h"
#include "src/models/sparse/NondeterministicModel.h"
#include "src/utility/constants.h"
#include "src/exceptions/InvalidArgumentException.h"
#include "log4cplus/logger.h"
#include "log4cplus/loggingmacros.h"
extern log4cplus::Logger logger;
#include "src/models/sparse/DeterministicModel.h"
#include "src/storage/dd/DdType.h"
namespace storm {
namespace storage {
class BitVector;
template<typename VT> class SparseMatrix;
}
namespace models {
namespace symbolic {
template<storm::dd::DdType T> class Model;
template<storm::dd::DdType T> class DeterministicModel;
template<storm::dd::DdType T> class NondeterministicModel;
}
}
namespace dd {
template<storm::dd::DdType T> class Bdd;
template<storm::dd::DdType T> class Add;
}
namespace utility {
namespace graph {
@ -34,38 +48,7 @@ namespace storm {
* @param targetStates The target states that may not be passed.
*/
template<typename T>
storm::storage::BitVector getReachableStates(storm::storage::SparseMatrix<T> const& transitionMatrix, storm::storage::BitVector const& initialStates, storm::storage::BitVector const& constraintStates, storm::storage::BitVector const& targetStates) {
storm::storage::BitVector reachableStates(initialStates);
// Initialize the stack used for the DFS with the states.
std::vector<uint_fast64_t> stack(initialStates.begin(), initialStates.end());
// Perform the actual DFS.
uint_fast64_t currentState = 0;
while (!stack.empty()) {
currentState = stack.back();
stack.pop_back();
for (auto const& successor : transitionMatrix.getRowGroup(currentState)) {
// Only explore the state if the transition was actually there and the successor has not yet
// been visited.
if (successor.getValue() != storm::utility::zero<T>() && !reachableStates.get(successor.getColumn())) {
// If the successor is one of the target states, we need to include it, but must not explore
// it further.
if (targetStates.get(successor.getColumn())) {
reachableStates.set(successor.getColumn());
} else if (constraintStates.get(successor.getColumn())) {
// However, if the state is in the constrained set of states, we need to follow it.
reachableStates.set(successor.getColumn());
stack.push_back(successor.getColumn());
}
}
}
}
return reachableStates;
}
storm::storage::BitVector getReachableStates(storm::storage::SparseMatrix<T> const& transitionMatrix, storm::storage::BitVector const& initialStates, storm::storage::BitVector const& constraintStates, storm::storage::BitVector const& targetStates);
/*!
* Performs a breadth-first search through the underlying graph structure to compute the distance from all
* states to the starting states of the search.
@ -75,35 +58,7 @@ namespace storm {
* @return The distances of each state to the initial states of the sarch.
*/
template<typename T>
std::vector<std::size_t> getDistances(storm::storage::SparseMatrix<T> const& transitionMatrix, storm::storage::BitVector const& initialStates) {
std::vector<std::size_t> distances(transitionMatrix.getRowGroupCount());
std::vector<std::pair<storm::storage::sparse::state_type, std::size_t>> stateQueue;
stateQueue.reserve(transitionMatrix.getRowGroupCount());
storm::storage::BitVector statesInQueue(transitionMatrix.getRowGroupCount());
storm::storage::sparse::state_type currentPosition = 0;
for (auto const& initialState : initialStates) {
stateQueue.emplace_back(initialState, 0);
statesInQueue.set(initialState);
}
// Perform a BFS.
while (currentPosition < stateQueue.size()) {
std::pair<storm::storage::sparse::state_type, std::size_t> const& stateDistancePair = stateQueue[currentPosition];
distances[stateDistancePair.first] = stateDistancePair.second;
for (auto const& successorEntry : transitionMatrix.getRowGroup(stateDistancePair.first)) {
if (!statesInQueue.get(successorEntry.getColumn())) {
stateQueue.emplace_back(successorEntry.getColumn(), stateDistancePair.second + 1);
statesInQueue.set(successorEntry.getColumn());
}
}
++currentPosition;
}
return distances;
}
std::vector<std::size_t> getDistances(storm::storage::SparseMatrix<T> const& transitionMatrix, storm::storage::BitVector const& initialStates);
/*!
* Performs a backward depth-first search trough the underlying graph structure
@ -118,61 +73,7 @@ namespace storm {
* @return A bit vector with all indices of states that have a probability greater than 0.
*/
template <typename T>
storm::storage::BitVector performProbGreater0(storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool useStepBound = false, uint_fast64_t maximalSteps = 0) {
// Prepare the resulting bit vector.
uint_fast64_t numberOfStates = phiStates.size();
storm::storage::BitVector statesWithProbabilityGreater0(numberOfStates);
// Add all psi states as they already satisfy the condition.
statesWithProbabilityGreater0 |= psiStates;
// Initialize the stack used for the DFS with the states.
std::vector<uint_fast64_t> stack(psiStates.begin(), psiStates.end());
// Initialize the stack for the step bound, if the number of steps is bounded.
std::vector<uint_fast64_t> stepStack;
std::vector<uint_fast64_t> remainingSteps;
if (useStepBound) {
stepStack.reserve(numberOfStates);
stepStack.insert(stepStack.begin(), psiStates.getNumberOfSetBits(), maximalSteps);
remainingSteps.resize(numberOfStates);
for (auto state : psiStates) {
remainingSteps[state] = maximalSteps;
}
}
// Perform the actual DFS.
uint_fast64_t currentState, currentStepBound;
while (!stack.empty()) {
currentState = stack.back();
stack.pop_back();
if (useStepBound) {
currentStepBound = stepStack.back();
stepStack.pop_back();
}
for (typename storm::storage::SparseMatrix<T>::const_iterator entryIt = backwardTransitions.begin(currentState), entryIte = backwardTransitions.end(currentState); entryIt != entryIte; ++entryIt) {
if (phiStates[entryIt->getColumn()] && (!statesWithProbabilityGreater0.get(entryIt->getColumn()) || (useStepBound && remainingSteps[entryIt->getColumn()] < currentStepBound - 1))) {
// If we don't have a bound on the number of steps to take, just add the state to the stack.
if (!useStepBound) {
statesWithProbabilityGreater0.set(entryIt->getColumn(), true);
stack.push_back(entryIt->getColumn());
} else if (currentStepBound > 0) {
// If there is at least one more step to go, we need to push the state and the new number of steps.
remainingSteps[entryIt->getColumn()] = currentStepBound - 1;
statesWithProbabilityGreater0.set(entryIt->getColumn(), true);
stack.push_back(entryIt->getColumn());
stepStack.push_back(currentStepBound - 1);
}
}
}
}
// Return result.
return statesWithProbabilityGreater0;
}
storm::storage::BitVector performProbGreater0(storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool useStepBound = false, uint_fast64_t maximalSteps = 0);
/*!
* Computes the set of states of the given model for which all paths lead to
* the given set of target states and only visit states from the filter set
@ -188,11 +89,7 @@ namespace storm {
* @return A bit vector with all indices of states that have a probability greater than 1.
*/
template <typename T>
storm::storage::BitVector performProb1(storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, storm::storage::BitVector const& statesWithProbabilityGreater0) {
storm::storage::BitVector statesWithProbability1 = performProbGreater0(backwardTransitions, ~psiStates, ~statesWithProbabilityGreater0);
statesWithProbability1.complement();
return statesWithProbability1;
}
storm::storage::BitVector performProb1(storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, storm::storage::BitVector const& statesWithProbabilityGreater0);
/*!
* Computes the set of states of the given model for which all paths lead to
@ -207,12 +104,7 @@ namespace storm {
* @return A bit vector with all indices of states that have a probability greater than 1.
*/
template <typename T>
storm::storage::BitVector performProb1(storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) {
storm::storage::BitVector statesWithProbabilityGreater0 = performProbGreater0(backwardTransitions, phiStates, psiStates);
storm::storage::BitVector statesWithProbability1 = performProbGreater0(backwardTransitions, ~psiStates, ~(statesWithProbabilityGreater0));
statesWithProbability1.complement();
return statesWithProbability1;
}
storm::storage::BitVector performProb1(storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
/*!
* Computes the sets of states that have probability 0 or 1, respectively, of satisfying phi until psi in a
@ -225,14 +117,7 @@ namespace storm {
* with probability 0 and the second stores all indices of states with probability 1.
*/
template <typename T>
static std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01(storm::models::sparse::DeterministicModel<T> const& model, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) {
std::pair<storm::storage::BitVector, storm::storage::BitVector> result;
storm::storage::SparseMatrix<T> backwardTransitions = model.getBackwardTransitions();
result.first = performProbGreater0(backwardTransitions, phiStates, psiStates);
result.second = performProb1(backwardTransitions, phiStates, psiStates, result.first);
result.first.complement();
return result;
}
std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01(storm::models::sparse::DeterministicModel<T> const& model, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
/*!
* Computes the sets of states that have probability 0 or 1, respectively, of satisfying phi until psi in a
@ -245,13 +130,8 @@ namespace storm {
* with probability 0 and the second stores all indices of states with probability 1.
*/
template <typename T>
static std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01(storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) {
std::pair<storm::storage::BitVector, storm::storage::BitVector> result;
result.first = performProbGreater0(backwardTransitions, phiStates, psiStates);
result.second = performProb1(backwardTransitions, phiStates, psiStates, result.first);
result.first.complement();
return result;
}
std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01(storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
/*!
* Computes the set of states that has a positive probability of reaching psi states after only passing
@ -265,30 +145,7 @@ namespace storm {
* @return All states with positive probability.
*/
template <storm::dd::DdType Type>
storm::dd::Bdd<Type> performProbGreater0(storm::models::symbolic::Model<Type> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates, boost::optional<uint_fast64_t> const& stepBound = boost::optional<uint_fast64_t>()) {
// Initialize environment for backward search.
storm::dd::DdManager<Type> const& manager = model.getManager();
storm::dd::Bdd<Type> lastIterationStates = manager.getBddZero();
storm::dd::Bdd<Type> statesWithProbabilityGreater0 = psiStates;
uint_fast64_t iterations = 0;
while (lastIterationStates != statesWithProbabilityGreater0) {
if (stepBound && iterations >= stepBound.get()) {
break;
}
lastIterationStates = statesWithProbabilityGreater0;
statesWithProbabilityGreater0 = statesWithProbabilityGreater0.swapVariables(model.getRowColumnMetaVariablePairs());
statesWithProbabilityGreater0 &= transitionMatrix;
statesWithProbabilityGreater0 = statesWithProbabilityGreater0.existsAbstract(model.getColumnVariables());
statesWithProbabilityGreater0 &= phiStates;
statesWithProbabilityGreater0 |= lastIterationStates;
++iterations;
}
return statesWithProbabilityGreater0;
}
storm::dd::Bdd<Type> performProbGreater0(storm::models::symbolic::Model<Type> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates, boost::optional<uint_fast64_t> const& stepBound = boost::optional<uint_fast64_t>());
/*!
* Computes the set of states that have a probability of one of reaching psi states after only passing
* through phi states before.
@ -302,11 +159,7 @@ namespace storm {
* @return All states with probability 1.
*/
template <storm::dd::DdType Type>
storm::dd::Bdd<Type> performProb1(storm::models::symbolic::Model<Type> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates, storm::dd::Bdd<Type> const& statesWithProbabilityGreater0) {
storm::dd::Bdd<Type> statesWithProbability1 = performProbGreater0(model, transitionMatrix, !psiStates && model.getReachableStates(), !statesWithProbabilityGreater0 && model.getReachableStates());
statesWithProbability1 = !statesWithProbability1 && model.getReachableStates();
return statesWithProbability1;
}
storm::dd::Bdd<Type> performProb1(storm::models::symbolic::Model<Type> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates, storm::dd::Bdd<Type> const& statesWithProbabilityGreater0);
/*!
* Computes the set of states that have a probability of one of reaching psi states after only passing
@ -319,10 +172,7 @@ namespace storm {
* @return All states with probability 1.
*/
template <storm::dd::DdType Type>
storm::dd::Bdd<Type> performProb1(storm::models::symbolic::Model<Type> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates) {
storm::dd::Bdd<Type> statesWithProbabilityGreater0 = performProbGreater0(model, transitionMatrix, phiStates, psiStates);
return performProb1(model, transitionMatrix, phiStates, psiStates, statesWithProbabilityGreater0);
}
storm::dd::Bdd<Type> performProb1(storm::models::symbolic::Model<Type> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates) ;
/*!
* Computes the sets of states that have probability 0 or 1, respectively, of satisfying phi until psi in a
@ -334,14 +184,7 @@ namespace storm {
* @return A pair of BDDs that represent all states with probability 0 and 1, respectively.
*/
template <storm::dd::DdType Type>
static std::pair<storm::dd::Bdd<Type>, storm::dd::Bdd<Type>> performProb01(storm::models::symbolic::DeterministicModel<Type> const& model, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates) {
std::pair<storm::dd::Bdd<Type>, storm::dd::Bdd<Type>> result;
storm::dd::Bdd<Type> transitionMatrix = model.getTransitionMatrix().notZero();
result.first = performProbGreater0(model, transitionMatrix, phiStates, psiStates);
result.second = !performProbGreater0(model, transitionMatrix, !psiStates && model.getReachableStates(), !result.first && model.getReachableStates()) && model.getReachableStates();
result.first = !result.first && model.getReachableStates();
return result;
}
std::pair<storm::dd::Bdd<Type>, storm::dd::Bdd<Type>> performProb01(storm::models::symbolic::DeterministicModel<Type> const& model, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates);
/*!
* Computes the sets of states that have probability 0 or 1, respectively, of satisfying phi until psi in a
@ -354,14 +197,7 @@ namespace storm {
* @return A pair of BDDs that represent all states with probability 0 and 1, respectively.
*/
template <storm::dd::DdType Type>
static std::pair<storm::dd::Bdd<Type>, storm::dd::Bdd<Type>> performProb01(storm::models::symbolic::Model<Type> const& model, storm::dd::Add<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates) {
std::pair<storm::dd::Bdd<Type>, storm::dd::Bdd<Type>> result;
storm::dd::Bdd<Type> transitionMatrixBdd = transitionMatrix.notZero();
result.first = performProbGreater0(model, transitionMatrixBdd, phiStates, psiStates);
result.second = !performProbGreater0(model, transitionMatrixBdd, !psiStates && model.getReachableStates(), !result.first && model.getReachableStates()) && model.getReachableStates();
result.first = !result.first && model.getReachableStates();
return result;
}
std::pair<storm::dd::Bdd<Type>, storm::dd::Bdd<Type>> performProb01(storm::models::symbolic::Model<Type> const& model, storm::dd::Add<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates);
/*!
* Computes the sets of states that have probability greater 0 of satisfying phi until psi under at least
@ -378,67 +214,10 @@ namespace storm {
* @return A bit vector that represents all states with probability 0.
*/
template <typename T>
storm::storage::BitVector performProbGreater0E(storm::storage::SparseMatrix<T> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool useStepBound = false, uint_fast64_t maximalSteps = 0) {
size_t numberOfStates = phiStates.size();
// Prepare resulting bit vector.
storm::storage::BitVector statesWithProbabilityGreater0(numberOfStates);
// Add all psi states as the already satisfy the condition.
statesWithProbabilityGreater0 |= psiStates;
// Initialize the stack used for the DFS with the states
std::vector<uint_fast64_t> stack(psiStates.begin(), psiStates.end());
// Initialize the stack for the step bound, if the number of steps is bounded.
std::vector<uint_fast64_t> stepStack;
std::vector<uint_fast64_t> remainingSteps;
if (useStepBound) {
stepStack.reserve(numberOfStates);
stepStack.insert(stepStack.begin(), psiStates.getNumberOfSetBits(), maximalSteps);
remainingSteps.resize(numberOfStates);
for (auto state : psiStates) {
remainingSteps[state] = maximalSteps;
}
}
// Perform the actual DFS.
uint_fast64_t currentState, currentStepBound;
while (!stack.empty()) {
currentState = stack.back();
stack.pop_back();
if (useStepBound) {
currentStepBound = stepStack.back();
stepStack.pop_back();
}
for (typename storm::storage::SparseMatrix<T>::const_iterator entryIt = backwardTransitions.begin(currentState), entryIte = backwardTransitions.end(currentState); entryIt != entryIte; ++entryIt) {
if (phiStates.get(entryIt->getColumn()) && (!statesWithProbabilityGreater0.get(entryIt->getColumn()) || (useStepBound && remainingSteps[entryIt->getColumn()] < currentStepBound - 1))) {
// If we don't have a bound on the number of steps to take, just add the state to the stack.
if (!useStepBound) {
statesWithProbabilityGreater0.set(entryIt->getColumn(), true);
stack.push_back(entryIt->getColumn());
} else if (currentStepBound > 0) {
// If there is at least one more step to go, we need to push the state and the new number of steps.
remainingSteps[entryIt->getColumn()] = currentStepBound - 1;
statesWithProbabilityGreater0.set(entryIt->getColumn(), true);
stack.push_back(entryIt->getColumn());
stepStack.push_back(currentStepBound - 1);
}
}
}
}
return statesWithProbabilityGreater0;
}
storm::storage::BitVector performProbGreater0E(storm::storage::SparseMatrix<T> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool useStepBound = false, uint_fast64_t maximalSteps = 0) ;
template <typename T>
storm::storage::BitVector performProb0A(storm::storage::SparseMatrix<T> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) {
storm::storage::BitVector statesWithProbability0 = performProbGreater0E(transitionMatrix, nondeterministicChoiceIndices, backwardTransitions, phiStates, psiStates);
statesWithProbability0.complement();
return statesWithProbability0;
}
storm::storage::BitVector performProb0A(storm::storage::SparseMatrix<T> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
/*!
* Computes the sets of states that have probability 0 of satisfying phi until psi under all
@ -455,10 +234,7 @@ namespace storm {
* @return A bit vector that represents all states with probability 0.
*/
template <typename T>
storm::storage::BitVector performProb0A(storm::models::sparse::NondeterministicModel<T> const& model, storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) {
return performProb0A(model.getTransitionMatrix(), model.getNondeterministicChoiceIndices(), backwardTransitions, phiStates, psiStates);
}
storm::storage::BitVector performProb0A(storm::models::sparse::NondeterministicModel<T> const& model, storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) ;
/*!
* Computes the sets of states that have probability 1 of satisfying phi until psi under at least
* one possible resolution of non-determinism in a non-deterministic model. Stated differently,
@ -472,62 +248,7 @@ namespace storm {
* @return A bit vector that represents all states with probability 1.
*/
template <typename T>
storm::storage::BitVector performProb1E(storm::storage::SparseMatrix<T> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) {
size_t numberOfStates = phiStates.size();
// Initialize the environment for the iterative algorithm.
storm::storage::BitVector currentStates(numberOfStates, true);
std::vector<uint_fast64_t> stack;
stack.reserve(numberOfStates);
// Perform the loop as long as the set of states gets larger.
bool done = false;
uint_fast64_t currentState;
while (!done) {
stack.clear();
storm::storage::BitVector nextStates(psiStates);
stack.insert(stack.end(), psiStates.begin(), psiStates.end());
while (!stack.empty()) {
currentState = stack.back();
stack.pop_back();
for (typename storm::storage::SparseMatrix<T>::const_iterator predecessorEntryIt = backwardTransitions.begin(currentState), predecessorEntryIte = backwardTransitions.end(currentState); predecessorEntryIt != predecessorEntryIte; ++predecessorEntryIt) {
if (phiStates.get(predecessorEntryIt->getColumn()) && !nextStates.get(predecessorEntryIt->getColumn())) {
// Check whether the predecessor has only successors in the current state set for one of the
// nondeterminstic choices.
for (uint_fast64_t row = nondeterministicChoiceIndices[predecessorEntryIt->getColumn()]; row < nondeterministicChoiceIndices[predecessorEntryIt->getColumn() + 1]; ++row) {
bool allSuccessorsInCurrentStates = true;
for (typename storm::storage::SparseMatrix<T>::const_iterator successorEntryIt = transitionMatrix.begin(row), successorEntryIte = transitionMatrix.end(row); successorEntryIt != successorEntryIte; ++successorEntryIt) {
if (!currentStates.get(successorEntryIt->getColumn())) {
allSuccessorsInCurrentStates = false;
break;
}
}
// If all successors for a given nondeterministic choice are in the current state set, we
// add it to the set of states for the next iteration and perform a backward search from
// that state.
if (allSuccessorsInCurrentStates) {
nextStates.set(predecessorEntryIt->getColumn(), true);
stack.push_back(predecessorEntryIt->getColumn());
break;
}
}
}
}
}
// Check whether we need to perform an additional iteration.
if (currentStates == nextStates) {
done = true;
} else {
currentStates = std::move(nextStates);
}
}
return currentStates;
}
storm::storage::BitVector performProb1E(storm::storage::SparseMatrix<T> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
/*!
* Computes the sets of states that have probability 1 of satisfying phi until psi under at least
@ -542,18 +263,10 @@ namespace storm {
* @return A bit vector that represents all states with probability 1.
*/
template <typename T>
storm::storage::BitVector performProb1E(storm::models::sparse::NondeterministicModel<T> const& model, storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) {
return performProb1E(model.getTransitionMatrix(), model.getNondeterministicChoiceIndices(), backwardTransitions, phiStates, psiStates);
}
storm::storage::BitVector performProb1E(storm::models::sparse::NondeterministicModel<T> const& model, storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
template <typename T>
std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01Max(storm::storage::SparseMatrix<T> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) {
std::pair<storm::storage::BitVector, storm::storage::BitVector> result;
result.first = performProb0A(transitionMatrix, nondeterministicChoiceIndices, backwardTransitions, phiStates, psiStates);
result.second = performProb1E(transitionMatrix, nondeterministicChoiceIndices, backwardTransitions, phiStates, psiStates);
return result;
}
std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01Max(storm::storage::SparseMatrix<T> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) ;
/*!
* Computes the sets of states that have probability 0 or 1, respectively, of satisfying phi
@ -566,9 +279,7 @@ namespace storm {
* @return A pair of bit vectors that represent all states with probability 0 and 1, respectively.
*/
template <typename T>
std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01Max(storm::models::sparse::NondeterministicModel<T> const& model, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) {
return performProb01Max(model.getTransitionMatrix(), model.getTransitionMatrix().getRowGroupIndices(), model.getBackwardTransitions(), phiStates, psiStates);
}
std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01Max(storm::models::sparse::NondeterministicModel<T> const& model, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) ;
/*!
* Computes the sets of states that have probability greater 0 of satisfying phi until psi under any
@ -585,81 +296,7 @@ namespace storm {
* @return A bit vector that represents all states with probability 0.
*/
template <typename T>
storm::storage::BitVector performProbGreater0A(storm::storage::SparseMatrix<T> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool useStepBound = false, uint_fast64_t maximalSteps = 0) {
size_t numberOfStates = phiStates.size();
// Prepare resulting bit vector.
storm::storage::BitVector statesWithProbabilityGreater0(numberOfStates);
// Add all psi states as the already satisfy the condition.
statesWithProbabilityGreater0 |= psiStates;
// Initialize the stack used for the DFS with the states
std::vector<uint_fast64_t> stack(psiStates.begin(), psiStates.end());
// Initialize the stack for the step bound, if the number of steps is bounded.
std::vector<uint_fast64_t> stepStack;
std::vector<uint_fast64_t> remainingSteps;
if (useStepBound) {
stepStack.reserve(numberOfStates);
stepStack.insert(stepStack.begin(), psiStates.getNumberOfSetBits(), maximalSteps);
remainingSteps.resize(numberOfStates);
for (auto state : psiStates) {
remainingSteps[state] = maximalSteps;
}
}
// Perform the actual DFS.
uint_fast64_t currentState, currentStepBound;
while(!stack.empty()) {
currentState = stack.back();
stack.pop_back();
if (useStepBound) {
currentStepBound = stepStack.back();
stepStack.pop_back();
}
for(typename storm::storage::SparseMatrix<T>::const_iterator predecessorEntryIt = backwardTransitions.begin(currentState), predecessorEntryIte = backwardTransitions.end(currentState); predecessorEntryIt != predecessorEntryIte; ++predecessorEntryIt) {
if (phiStates.get(predecessorEntryIt->getColumn()) && (!statesWithProbabilityGreater0.get(predecessorEntryIt->getColumn()) || (useStepBound && remainingSteps[predecessorEntryIt->getColumn()] < currentStepBound - 1))) {
// Check whether the predecessor has at least one successor in the current state set for every
// nondeterministic choice.
bool addToStatesWithProbabilityGreater0 = true;
for (uint_fast64_t row = nondeterministicChoiceIndices[predecessorEntryIt->getColumn()]; row < nondeterministicChoiceIndices[predecessorEntryIt->getColumn() + 1]; ++row) {
bool hasAtLeastOneSuccessorWithProbabilityGreater0 = false;
for (typename storm::storage::SparseMatrix<T>::const_iterator successorEntryIt = transitionMatrix.begin(row), successorEntryIte = transitionMatrix.end(row); successorEntryIt != successorEntryIte; ++successorEntryIt) {
if (statesWithProbabilityGreater0.get(successorEntryIt->getColumn())) {
hasAtLeastOneSuccessorWithProbabilityGreater0 = true;
break;
}
}
if (!hasAtLeastOneSuccessorWithProbabilityGreater0) {
addToStatesWithProbabilityGreater0 = false;
break;
}
}
// If we need to add the state, then actually add it and perform further search from the state.
if (addToStatesWithProbabilityGreater0) {
// If we don't have a bound on the number of steps to take, just add the state to the stack.
if (!useStepBound) {
statesWithProbabilityGreater0.set(predecessorEntryIt->getColumn(), true);
stack.push_back(predecessorEntryIt->getColumn());
} else if (currentStepBound > 0) {
// If there is at least one more step to go, we need to push the state and the new number of steps.
remainingSteps[predecessorEntryIt->getColumn()] = currentStepBound - 1;
statesWithProbabilityGreater0.set(predecessorEntryIt->getColumn(), true);
stack.push_back(predecessorEntryIt->getColumn());
stepStack.push_back(currentStepBound - 1);
}
}
}
}
}
return statesWithProbabilityGreater0;
}
storm::storage::BitVector performProbGreater0A(storm::storage::SparseMatrix<T> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool useStepBound = false, uint_fast64_t maximalSteps = 0);
/*!
* Computes the sets of states that have probability 0 of satisfying phi until psi under at least
@ -674,18 +311,9 @@ namespace storm {
* @return A bit vector that represents all states with probability 0.
*/
template <typename T>
storm::storage::BitVector performProb0E(storm::models::sparse::NondeterministicModel<T> const& model, storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) {
storm::storage::BitVector statesWithProbability0 = performProbGreater0A(model.getTransitionMatrix(), model.getNondeterministicChoiceIndices(), backwardTransitions, phiStates, psiStates);
statesWithProbability0.complement();
return statesWithProbability0;
}
storm::storage::BitVector performProb0E(storm::models::sparse::NondeterministicModel<T> const& model, storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
template <typename T>
storm::storage::BitVector performProb0E(storm::storage::SparseMatrix<T> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) {
storm::storage::BitVector statesWithProbability0 = performProbGreater0A(transitionMatrix, nondeterministicChoiceIndices, backwardTransitions, phiStates, psiStates);
statesWithProbability0.complement();
return statesWithProbability0;
}
storm::storage::BitVector performProb0E(storm::storage::SparseMatrix<T> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) ;
/*!
* Computes the sets of states that have probability 1 of satisfying phi until psi under all
@ -700,79 +328,10 @@ namespace storm {
* @return A bit vector that represents all states with probability 0.
*/
template <typename T>
storm::storage::BitVector performProb1A( storm::storage::SparseMatrix<T> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) {
size_t numberOfStates = phiStates.size();
// Initialize the environment for the iterative algorithm.
storm::storage::BitVector currentStates(numberOfStates, true);
std::vector<uint_fast64_t> stack;
stack.reserve(numberOfStates);
// Perform the loop as long as the set of states gets smaller.
bool done = false;
uint_fast64_t currentState;
while (!done) {
stack.clear();
storm::storage::BitVector nextStates(psiStates);
stack.insert(stack.end(), psiStates.begin(), psiStates.end());
while (!stack.empty()) {
currentState = stack.back();
stack.pop_back();
for(typename storm::storage::SparseMatrix<T>::const_iterator predecessorEntryIt = backwardTransitions.begin(currentState), predecessorEntryIte = backwardTransitions.end(currentState); predecessorEntryIt != predecessorEntryIte; ++predecessorEntryIt) {
if (phiStates.get(predecessorEntryIt->getColumn()) && !nextStates.get(predecessorEntryIt->getColumn())) {
// Check whether the predecessor has only successors in the current state set for all of the
// nondeterminstic choices and that for each choice there exists a successor that is already
// in the next states.
bool addToStatesWithProbability1 = true;
for (uint_fast64_t row = nondeterministicChoiceIndices[predecessorEntryIt->getColumn()]; row < nondeterministicChoiceIndices[predecessorEntryIt->getColumn() + 1]; ++row) {
bool hasAtLeastOneSuccessorWithProbability1 = false;
for (typename storm::storage::SparseMatrix<T>::const_iterator successorEntryIt = transitionMatrix.begin(row), successorEntryIte = transitionMatrix.end(row); successorEntryIt != successorEntryIte; ++successorEntryIt) {
if (!currentStates.get(successorEntryIt->getColumn())) {
addToStatesWithProbability1 = false;
goto afterCheckLoop;
}
if (nextStates.get(successorEntryIt->getColumn())) {
hasAtLeastOneSuccessorWithProbability1 = true;
}
}
if (!hasAtLeastOneSuccessorWithProbability1) {
addToStatesWithProbability1 = false;
break;
}
}
afterCheckLoop:
// If all successors for all nondeterministic choices are in the current state set, we
// add it to the set of states for the next iteration and perform a backward search from
// that state.
if (addToStatesWithProbability1) {
nextStates.set(predecessorEntryIt->getColumn(), true);
stack.push_back(predecessorEntryIt->getColumn());
}
}
}
}
// Check whether we need to perform an additional iteration.
if (currentStates == nextStates) {
done = true;
} else {
currentStates = std::move(nextStates);
}
}
return currentStates;
}
storm::storage::BitVector performProb1A( storm::storage::SparseMatrix<T> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
template <typename T>
std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01Min(storm::storage::SparseMatrix<T> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) {
std::pair<storm::storage::BitVector, storm::storage::BitVector> result;
result.first = performProb0E(transitionMatrix, nondeterministicChoiceIndices, backwardTransitions, phiStates, psiStates);
result.second = performProb1A(transitionMatrix, nondeterministicChoiceIndices, backwardTransitions, phiStates, psiStates);
return result;
}
std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01Min(storm::storage::SparseMatrix<T> const& transitionMatrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, storm::storage::SparseMatrix<T> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) ;
/*!
* Computes the sets of states that have probability 0 or 1, respectively, of satisfying phi
@ -785,9 +344,7 @@ namespace storm {
* @return A pair of bit vectors that represent all states with probability 0 and 1, respectively.
*/
template <typename T>
std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01Min(storm::models::sparse::NondeterministicModel<T> const& model, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) {
return performProb01Min(model.getTransitionMatrix(), model.getTransitionMatrix().getRowGroupIndices(), model.getBackwardTransitions(), phiStates, psiStates);
}
std::pair<storm::storage::BitVector, storm::storage::BitVector> performProb01Min(storm::models::sparse::NondeterministicModel<T> const& model, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates);
/*!
* Computes the set of states for which there exists a scheduler that achieves a probability greater than
@ -800,26 +357,7 @@ namespace storm {
* @return A BDD representing all such states.
*/
template <storm::dd::DdType Type>
storm::dd::Bdd<Type> performProbGreater0E(storm::models::symbolic::NondeterministicModel<Type> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates) {
// Initialize environment for backward search.
storm::dd::DdManager<Type> const& manager = model.getManager();
storm::dd::Bdd<Type> lastIterationStates = manager.getBddZero();
storm::dd::Bdd<Type> statesWithProbabilityGreater0E = psiStates;
uint_fast64_t iterations = 0;
storm::dd::Bdd<Type> abstractedTransitionMatrix = transitionMatrix.existsAbstract(model.getNondeterminismVariables());
while (lastIterationStates != statesWithProbabilityGreater0E) {
lastIterationStates = statesWithProbabilityGreater0E;
statesWithProbabilityGreater0E = statesWithProbabilityGreater0E.swapVariables(model.getRowColumnMetaVariablePairs());
statesWithProbabilityGreater0E = statesWithProbabilityGreater0E.andExists(abstractedTransitionMatrix, model.getColumnVariables());
statesWithProbabilityGreater0E &= phiStates;
statesWithProbabilityGreater0E |= lastIterationStates;
++iterations;
}
return statesWithProbabilityGreater0E;
}
storm::dd::Bdd<Type> performProbGreater0E(storm::models::symbolic::NondeterministicModel<Type> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates);
/*!
* Computes the set of states for which there does not exist a scheduler that achieves a probability greater
* than zero of satisfying phi until psi.
@ -831,10 +369,7 @@ namespace storm {
* @return A BDD representing all such states.
*/
template <storm::dd::DdType Type>
storm::dd::Bdd<Type> performProb0A(storm::models::symbolic::NondeterministicModel<Type> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates) {
return !performProbGreater0E(model, transitionMatrix, phiStates, psiStates) && model.getReachableStates();
}
storm::dd::Bdd<Type> performProb0A(storm::models::symbolic::NondeterministicModel<Type> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates) ;
/*!
* Computes the set of states for which all schedulers achieve a probability greater than zero of satisfying
* phi until psi.
@ -846,27 +381,7 @@ namespace storm {
* @return A BDD representing all such states.
*/
template <storm::dd::DdType Type>
storm::dd::Bdd<Type> performProbGreater0A(storm::models::symbolic::NondeterministicModel<Type> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates) {
// Initialize environment for backward search.
storm::dd::DdManager<Type> const& manager = model.getManager();
storm::dd::Bdd<Type> lastIterationStates = manager.getBddZero();
storm::dd::Bdd<Type> statesWithProbabilityGreater0A = psiStates;
uint_fast64_t iterations = 0;
while (lastIterationStates != statesWithProbabilityGreater0A) {
lastIterationStates = statesWithProbabilityGreater0A;
statesWithProbabilityGreater0A = statesWithProbabilityGreater0A.swapVariables(model.getRowColumnMetaVariablePairs());
statesWithProbabilityGreater0A = statesWithProbabilityGreater0A.andExists(transitionMatrix, model.getColumnVariables());
statesWithProbabilityGreater0A |= model.getIllegalMask();
statesWithProbabilityGreater0A = statesWithProbabilityGreater0A.universalAbstract(model.getNondeterminismVariables());
statesWithProbabilityGreater0A &= phiStates;
statesWithProbabilityGreater0A |= psiStates;
++iterations;
}
return statesWithProbabilityGreater0A;
}
storm::dd::Bdd<Type> performProbGreater0A(storm::models::symbolic::NondeterministicModel<Type> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates) ;
/*!
* Computes the set of states for which there exists a scheduler that achieves probability zero of satisfying
* phi until psi.
@ -878,9 +393,7 @@ namespace storm {
* @return A BDD representing all such states.
*/
template <storm::dd::DdType Type>
storm::dd::Bdd<Type> performProb0E(storm::models::symbolic::NondeterministicModel<Type> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates) {
return !performProbGreater0A(model, transitionMatrix, phiStates, psiStates) && model.getReachableStates();
}
storm::dd::Bdd<Type> performProb0E(storm::models::symbolic::NondeterministicModel<Type> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates) ;
/*!
* Computes the set of states for which all schedulers achieve probability one of satisfying phi until psi.
@ -894,26 +407,7 @@ namespace storm {
* @return A BDD representing all such states.
*/
template <storm::dd::DdType Type>
storm::dd::Bdd<Type> performProb1A(storm::models::symbolic::NondeterministicModel<Type> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates, storm::dd::Bdd<Type> const& statesWithProbabilityGreater0A) {
// Initialize environment for backward search.
storm::dd::DdManager<Type> const& manager = model.getManager();
storm::dd::Bdd<Type> lastIterationStates = manager.getBddZero();
storm::dd::Bdd<Type> statesWithProbability1A = psiStates || statesWithProbabilityGreater0A;
uint_fast64_t iterations = 0;
while (lastIterationStates != statesWithProbability1A) {
lastIterationStates = statesWithProbability1A;
statesWithProbability1A = statesWithProbability1A.swapVariables(model.getRowColumnMetaVariablePairs());
statesWithProbability1A = transitionMatrix.implies(statesWithProbability1A).universalAbstract(model.getColumnVariables());
statesWithProbability1A |= model.getIllegalMask();
statesWithProbability1A = statesWithProbability1A.universalAbstract(model.getNondeterminismVariables());
statesWithProbability1A &= statesWithProbabilityGreater0A;
statesWithProbability1A |= psiStates;
++iterations;
}
return statesWithProbability1A;
}
storm::dd::Bdd<Type> performProb1A(storm::models::symbolic::NondeterministicModel<Type> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates, storm::dd::Bdd<Type> const& statesWithProbabilityGreater0A);
/*!
* Computes the set of states for which there exists a scheduler that achieves probability one of satisfying
@ -928,63 +422,13 @@ namespace storm {
* @return A BDD representing all such states.
*/
template <storm::dd::DdType Type>
storm::dd::Bdd<Type> performProb1E(storm::models::symbolic::NondeterministicModel<Type> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates, storm::dd::Bdd<Type> const& statesWithProbabilityGreater0E) {
// Initialize environment for backward search.
storm::dd::DdManager<Type> const& manager = model.getManager();
storm::dd::Bdd<Type> statesWithProbability1E = statesWithProbabilityGreater0E;
uint_fast64_t iterations = 0;
bool outerLoopDone = false;
while (!outerLoopDone) {
storm::dd::Bdd<Type> innerStates = manager.getBddZero();
bool innerLoopDone = false;
while (!innerLoopDone) {
storm::dd::Bdd<Type> temporary = statesWithProbability1E.swapVariables(model.getRowColumnMetaVariablePairs());
temporary = transitionMatrix.implies(temporary).universalAbstract(model.getColumnVariables());
storm::dd::Bdd<Type> temporary2 = innerStates.swapVariables(model.getRowColumnMetaVariablePairs());
temporary2 = transitionMatrix.andExists(temporary2, model.getColumnVariables());
temporary = temporary.andExists(temporary2, model.getNondeterminismVariables());
temporary &= phiStates;
temporary |= psiStates;
if (innerStates == temporary) {
innerLoopDone = true;
} else {
innerStates = temporary;
}
}
if (statesWithProbability1E == innerStates) {
outerLoopDone = true;
} else {
statesWithProbability1E = innerStates;
}
++iterations;
}
return statesWithProbability1E;
}
storm::dd::Bdd<Type> performProb1E(storm::models::symbolic::NondeterministicModel<Type> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates, storm::dd::Bdd<Type> const& statesWithProbabilityGreater0E) ;
template <storm::dd::DdType Type>
std::pair<storm::dd::Bdd<Type>, storm::dd::Bdd<Type>> performProb01Max(storm::models::symbolic::NondeterministicModel<Type> const& model, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates) {
std::pair<storm::dd::Bdd<Type>, storm::dd::Bdd<Type>> result;
storm::dd::Bdd<Type> transitionMatrix = model.getTransitionMatrix().notZero();
result.first = performProb0A(model, transitionMatrix, phiStates, psiStates);
result.second = performProb1E(model, transitionMatrix, phiStates, psiStates, !result.first && model.getReachableStates());
return result;
}
std::pair<storm::dd::Bdd<Type>, storm::dd::Bdd<Type>> performProb01Max(storm::models::symbolic::NondeterministicModel<Type> const& model, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates) ;
template <storm::dd::DdType Type>
std::pair<storm::dd::Bdd<Type>, storm::dd::Bdd<Type>> performProb01Min(storm::models::symbolic::NondeterministicModel<Type> const& model, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates) {
std::pair<storm::dd::Bdd<Type>, storm::dd::Bdd<Type>> result;
storm::dd::Bdd<Type> transitionMatrix = model.getTransitionMatrix().notZero();
result.first = performProb0E(model, transitionMatrix, phiStates, psiStates);
result.second = performProb1A(model, transitionMatrix, phiStates, psiStates, !result.first && model.getReachableStates());
return result;
}
std::pair<storm::dd::Bdd<Type>, storm::dd::Bdd<Type>> performProb01Min(storm::models::symbolic::NondeterministicModel<Type> const& model, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates) ;
/*!
* Performs a topological sort of the states of the system according to the given transitions.
@ -993,73 +437,7 @@ namespace storm {
* @return A vector of indices that is a topological sort of the states.
*/
template <typename T>
std::vector<uint_fast64_t> getTopologicalSort(storm::storage::SparseMatrix<T> const& matrix) {
if (matrix.getRowCount() != matrix.getColumnCount()) {
LOG4CPLUS_ERROR(logger, "Provided matrix is required to be square.");
throw storm::exceptions::InvalidArgumentException() << "Provided matrix is required to be square.";
}
uint_fast64_t numberOfStates = matrix.getRowCount();
// Prepare the result. This relies on the matrix being square.
std::vector<uint_fast64_t> topologicalSort;
topologicalSort.reserve(numberOfStates);
// Prepare the stacks needed for recursion.
std::vector<uint_fast64_t> recursionStack;
recursionStack.reserve(matrix.getRowCount());
std::vector<typename storm::storage::SparseMatrix<T>::const_iterator> iteratorRecursionStack;
iteratorRecursionStack.reserve(numberOfStates);
// Perform a depth-first search over the given transitions and record states in the reverse order they were visited.
storm::storage::BitVector visitedStates(numberOfStates);
for (uint_fast64_t state = 0; state < numberOfStates; ++state) {
if (!visitedStates.get(state)) {
recursionStack.push_back(state);
iteratorRecursionStack.push_back(matrix.begin(state));
recursionStepForward:
while (!recursionStack.empty()) {
uint_fast64_t currentState = recursionStack.back();
typename storm::storage::SparseMatrix<T>::const_iterator successorIterator = iteratorRecursionStack.back();
visitedStates.set(currentState, true);
recursionStepBackward:
for (; successorIterator != matrix.end(currentState); ++successorIterator) {
if (!visitedStates.get(successorIterator->getColumn())) {
// Put unvisited successor on top of our recursion stack and remember that.
recursionStack.push_back(successorIterator->getColumn());
// Also, put initial value for iterator on corresponding recursion stack.
iteratorRecursionStack.push_back(matrix.begin(successorIterator->getColumn()));
goto recursionStepForward;
}
}
topologicalSort.push_back(currentState);
// If we reach this point, we have completed the recursive descent for the current state.
// That is, we need to pop it from the recursion stacks.
recursionStack.pop_back();
iteratorRecursionStack.pop_back();
// If there is at least one state under the current one in our recursion stack, we need
// to restore the topmost state as the current state and jump to the part after the
// original recursive call.
if (recursionStack.size() > 0) {
currentState = recursionStack.back();
successorIterator = iteratorRecursionStack.back();
goto recursionStepBackward;
}
}
}
}
return topologicalSort;
}
std::vector<uint_fast64_t> getTopologicalSort(storm::storage::SparseMatrix<T> const& matrix) ;
/*!
* A class needed to compare the distances for two states in the Dijkstra search.
@ -1084,59 +462,7 @@ namespace storm {
std::pair<std::vector<T>, std::vector<uint_fast64_t>> performDijkstra(storm::models::sparse::Model<T> const& model,
storm::storage::SparseMatrix<T> const& transitions,
storm::storage::BitVector const& startingStates,
storm::storage::BitVector const* filterStates = nullptr) {
LOG4CPLUS_INFO(logger, "Performing Dijkstra search.");
const uint_fast64_t noPredecessorValue = storm::utility::zero<uint_fast64_t>();
std::vector<T> probabilities(model.getNumberOfStates(), storm::utility::zero<T>());
std::vector<uint_fast64_t> predecessors(model.getNumberOfStates(), noPredecessorValue);
// Set the probability to 1 for all starting states.
std::set<std::pair<T, uint_fast64_t>, DistanceCompare<T>> probabilityStateSet;
for (auto state : startingStates) {
probabilityStateSet.emplace(storm::utility::one<T>(), state);
probabilities[state] = storm::utility::one<T>();
}
// As long as there is one reachable state, we need to consider it.
while (!probabilityStateSet.empty()) {
// Get the state with the least distance from the set and remove it.
std::pair<T, uint_fast64_t> probabilityStatePair = *probabilityStateSet.begin();
probabilityStateSet.erase(probabilityStateSet.begin());
// Now check the new distances for all successors of the current state.
typename storm::storage::SparseMatrix<T>::Rows row = transitions.getRow(probabilityStatePair.second);
for (auto const& transition : row) {
// Only follow the transition if it lies within the filtered states.
if (filterStates != nullptr && filterStates->get(transition.first)) {
// Calculate the distance we achieve when we take the path to the successor via the current state.
T newDistance = probabilityStatePair.first * transition.second;
// We found a cheaper way to get to the target state of the transition.
if (newDistance > probabilities[transition.first]) {
// Remove the old distance.
if (probabilities[transition.first] != noPredecessorValue) {
probabilityStateSet.erase(std::make_pair(probabilities[transition.first], transition.first));
}
// Set and add the new distance.
probabilities[transition.first] = newDistance;
predecessors[transition.first] = probabilityStatePair.second;
probabilityStateSet.insert(std::make_pair(newDistance, transition.first));
}
}
}
}
// Move the values into the result and return it.
std::pair<std::vector<T>, std::vector<uint_fast64_t>> result;
result.first = std::move(probabilities);
result.second = std::move(predecessors);
LOG4CPLUS_INFO(logger, "Done performing Dijkstra search.");
return result;
}
storm::storage::BitVector const* filterStates = nullptr);
} // namespace graph
} // namespace utility

Loading…
Cancel
Save