@ -482,555 +482,6 @@ namespace storm {
return storm : : modelchecker : : helper : : SparseDtmcPrctlHelper < ValueType > : : computeTotalRewards ( env , std : : move ( goal ) , probabilityMatrix , backwardTransitions , dtmcRewardModel , qualitative ) ;
}
template < typename ValueType >
std : : vector < ValueType > SparseCtmcCslHelper : : computeLongRunAverageProbabilities ( Environment const & env , storm : : solver : : SolveGoal < ValueType > & & goal , storm : : storage : : SparseMatrix < ValueType > const & rateMatrix , storm : : storage : : BitVector const & psiStates , std : : vector < ValueType > const * exitRateVector ) {
// If there are no goal states, we avoid the computation and directly return zero.
uint_fast64_t numberOfStates = rateMatrix . getRowCount ( ) ;
if ( psiStates . empty ( ) ) {
return std : : vector < ValueType > ( numberOfStates , storm : : utility : : zero < ValueType > ( ) ) ;
}
// Likewise, if all bits are set, we can avoid the computation.
if ( psiStates . full ( ) ) {
return std : : vector < ValueType > ( numberOfStates , storm : : utility : : one < ValueType > ( ) ) ;
}
ValueType zero = storm : : utility : : zero < ValueType > ( ) ;
ValueType one = storm : : utility : : one < ValueType > ( ) ;
return computeLongRunAverages < ValueType > ( env , std : : move ( goal ) , rateMatrix ,
[ & zero , & one , & psiStates ] ( storm : : storage : : sparse : : state_type const & state ) - > ValueType {
if ( psiStates . get ( state ) ) {
return one ;
}
return zero ;
} ,
exitRateVector ) ;
}
template < typename ValueType , typename RewardModelType >
std : : vector < ValueType > SparseCtmcCslHelper : : computeLongRunAverageRewards ( Environment const & env , storm : : solver : : SolveGoal < ValueType > & & goal , storm : : storage : : SparseMatrix < ValueType > const & rateMatrix , RewardModelType const & rewardModel , std : : vector < ValueType > const * exitRateVector ) {
// Only compute the result if the model has a state-based reward model.
STORM_LOG_THROW ( ! rewardModel . empty ( ) , storm : : exceptions : : InvalidPropertyException , " Missing reward model for formula. Skipping formula. " ) ;
return computeLongRunAverages < ValueType > ( env , std : : move ( goal ) , rateMatrix ,
[ & ] ( storm : : storage : : sparse : : state_type const & state ) - > ValueType {
ValueType result = rewardModel . hasStateRewards ( ) ? rewardModel . getStateReward ( state ) : storm : : utility : : zero < ValueType > ( ) ;
if ( rewardModel . hasStateActionRewards ( ) ) {
// State action rewards are multiplied with the exit rate r(s). Then, multiplying the reward with the expected time we stay at s (i.e. 1/r(s)) yields the original state reward
if ( exitRateVector ) {
result + = rewardModel . getStateActionReward ( state ) * ( * exitRateVector ) [ state ] ;
} else {
result + = rewardModel . getStateActionReward ( state ) ;
}
}
if ( rewardModel . hasTransitionRewards ( ) ) {
// Transition rewards are already multiplied with the rates
result + = rateMatrix . getPointwiseProductRowSum ( rewardModel . getTransitionRewardMatrix ( ) , state ) ;
}
return result ;
} ,
exitRateVector ) ;
}
template < typename ValueType >
std : : vector < ValueType > SparseCtmcCslHelper : : computeLongRunAverageRewards ( Environment const & env , storm : : solver : : SolveGoal < ValueType > & & goal , storm : : storage : : SparseMatrix < ValueType > const & rateMatrix , std : : vector < ValueType > const & stateRewardVector , std : : vector < ValueType > const * exitRateVector ) {
return computeLongRunAverages < ValueType > ( env , std : : move ( goal ) , rateMatrix ,
[ & stateRewardVector ] ( storm : : storage : : sparse : : state_type const & state ) - > ValueType {
return stateRewardVector [ state ] ;
} ,
exitRateVector ) ;
}
template < typename ValueType >
std : : vector < ValueType > SparseCtmcCslHelper : : computeLongRunAverages ( Environment const & env , storm : : solver : : SolveGoal < ValueType > & & goal , storm : : storage : : SparseMatrix < ValueType > const & rateMatrix , std : : function < ValueType ( storm : : storage : : sparse : : state_type const & state ) > const & valueGetter , std : : vector < ValueType > const * exitRateVector ) {
storm : : storage : : SparseMatrix < ValueType > probabilityMatrix ;
if ( exitRateVector ) {
probabilityMatrix = computeProbabilityMatrix ( rateMatrix , * exitRateVector ) ;
} else {
probabilityMatrix = rateMatrix ;
}
uint_fast64_t numberOfStates = rateMatrix . getRowCount ( ) ;
// Start by decomposing the CTMC into its BSCCs.
storm : : storage : : StronglyConnectedComponentDecomposition < ValueType > bsccDecomposition ( rateMatrix , storm : : storage : : StronglyConnectedComponentDecompositionOptions ( ) . onlyBottomSccs ( ) ) ;
STORM_LOG_DEBUG ( " Found " < < bsccDecomposition . size ( ) < < " BSCCs. " ) ;
// Prepare the vector holding the LRA values for each of the BSCCs.
std : : vector < ValueType > bsccLra ;
bsccLra . reserve ( bsccDecomposition . size ( ) ) ;
auto underlyingSolverEnvironment = env ;
auto precision = env . solver ( ) . lra ( ) . getPrecision ( ) ;
if ( env . solver ( ) . isForceSoundness ( ) ) {
// For sound computations, the error in the MECS plus the error in the remaining system should be less then the user defined precision.
precision / = storm : : utility : : convertNumber < storm : : RationalNumber > ( 2 ) ;
underlyingSolverEnvironment . solver ( ) . lra ( ) . setPrecision ( precision ) ;
}
underlyingSolverEnvironment . solver ( ) . setLinearEquationSolverPrecision ( precision , env . solver ( ) . lra ( ) . getRelativeTerminationCriterion ( ) ) ;
// Keep track of the maximal and minimal value occuring in one of the BSCCs
ValueType maxValue , minValue ;
storm : : storage : : BitVector statesInBsccs ( numberOfStates ) ;
for ( auto const & bscc : bsccDecomposition ) {
for ( auto const & state : bscc ) {
statesInBsccs . set ( state ) ;
}
bsccLra . push_back ( computeLongRunAveragesForBscc < ValueType > ( underlyingSolverEnvironment , bscc , rateMatrix , valueGetter , exitRateVector ) ) ;
if ( bsccLra . size ( ) = = 1 ) {
maxValue = bsccLra . back ( ) ;
minValue = bsccLra . back ( ) ;
} else {
maxValue = std : : max ( bsccLra . back ( ) , maxValue ) ;
minValue = std : : min ( bsccLra . back ( ) , minValue ) ;
}
}
storm : : storage : : BitVector statesNotInBsccs = ~ statesInBsccs ;
STORM_LOG_DEBUG ( " Found " < < statesInBsccs . getNumberOfSetBits ( ) < < " states in BSCCs. " ) ;
std : : vector < uint64_t > stateToBsccMap ( statesInBsccs . size ( ) , - 1 ) ;
for ( uint64_t bsccIndex = 0 ; bsccIndex < bsccDecomposition . size ( ) ; + + bsccIndex ) {
for ( auto const & state : bsccDecomposition [ bsccIndex ] ) {
stateToBsccMap [ state ] = bsccIndex ;
}
}
std : : vector < ValueType > rewardSolution ;
if ( ! statesNotInBsccs . empty ( ) ) {
// Calculate LRA for states not in bsccs as expected reachability rewards.
// Target states are states in bsccs, transition reward is the lra of the bscc for each transition into a
// bscc and 0 otherwise. This corresponds to the sum of LRAs in BSCC weighted by the reachability probability
// of the BSCC.
std : : vector < ValueType > rewardRightSide ;
rewardRightSide . reserve ( statesNotInBsccs . getNumberOfSetBits ( ) ) ;
for ( auto state : statesNotInBsccs ) {
ValueType reward = storm : : utility : : zero < ValueType > ( ) ;
for ( auto entry : rateMatrix . getRow ( state ) ) {
if ( statesInBsccs . get ( entry . getColumn ( ) ) ) {
if ( exitRateVector ) {
reward + = ( entry . getValue ( ) / ( * exitRateVector ) [ state ] ) * bsccLra [ stateToBsccMap [ entry . getColumn ( ) ] ] ;
} else {
reward + = entry . getValue ( ) * bsccLra [ stateToBsccMap [ entry . getColumn ( ) ] ] ;
}
}
}
rewardRightSide . push_back ( reward ) ;
}
// Compute reachability rewards
storm : : solver : : GeneralLinearEquationSolverFactory < ValueType > linearEquationSolverFactory ;
bool isEqSysFormat = linearEquationSolverFactory . getEquationProblemFormat ( underlyingSolverEnvironment ) = = storm : : solver : : LinearEquationSolverProblemFormat : : EquationSystem ;
storm : : storage : : SparseMatrix < ValueType > rewardEquationSystemMatrix = rateMatrix . getSubmatrix ( false , statesNotInBsccs , statesNotInBsccs , isEqSysFormat ) ;
if ( exitRateVector ) {
uint64_t localRow = 0 ;
for ( auto const & globalRow : statesNotInBsccs ) {
for ( auto & entry : rewardEquationSystemMatrix . getRow ( localRow ) ) {
entry . setValue ( entry . getValue ( ) / ( * exitRateVector ) [ globalRow ] ) ;
}
+ + localRow ;
}
}
if ( isEqSysFormat ) {
rewardEquationSystemMatrix . convertToEquationSystem ( ) ;
}
rewardSolution = std : : vector < ValueType > ( rewardEquationSystemMatrix . getColumnCount ( ) , ( maxValue + minValue ) / storm : : utility : : convertNumber < ValueType , uint64_t > ( 2 ) ) ;
std : : unique_ptr < storm : : solver : : LinearEquationSolver < ValueType > > solver = linearEquationSolverFactory . create ( underlyingSolverEnvironment , std : : move ( rewardEquationSystemMatrix ) ) ;
solver - > setBounds ( minValue , maxValue ) ;
// Check solver requirements
auto requirements = solver - > getRequirements ( underlyingSolverEnvironment ) ;
STORM_LOG_THROW ( ! requirements . hasEnabledCriticalRequirement ( ) , storm : : exceptions : : UncheckedRequirementException , " Solver requirements " + requirements . getEnabledRequirementsAsString ( ) + " not checked. " ) ;
solver - > solveEquations ( underlyingSolverEnvironment , rewardSolution , rewardRightSide ) ;
}
// Fill the result vector.
std : : vector < ValueType > result ( numberOfStates ) ;
auto rewardSolutionIter = rewardSolution . begin ( ) ;
for ( uint_fast64_t bsccIndex = 0 ; bsccIndex < bsccDecomposition . size ( ) ; + + bsccIndex ) {
storm : : storage : : StronglyConnectedComponent const & bscc = bsccDecomposition [ bsccIndex ] ;
for ( auto const & state : bscc ) {
result [ state ] = bsccLra [ bsccIndex ] ;
}
}
for ( auto state : statesNotInBsccs ) {
STORM_LOG_ASSERT ( rewardSolutionIter ! = rewardSolution . end ( ) , " Too few elements in solution. " ) ;
// Take the value from the reward computation. Since the n-th state not in any bscc is the n-th
// entry in rewardSolution we can just take the next value from the iterator.
result [ state ] = * rewardSolutionIter ;
+ + rewardSolutionIter ;
}
return result ;
}
template < typename ValueType >
ValueType SparseCtmcCslHelper : : computeLongRunAveragesForBscc ( Environment const & env , storm : : storage : : StronglyConnectedComponent const & bscc , storm : : storage : : SparseMatrix < ValueType > const & rateMatrix , std : : function < ValueType ( storm : : storage : : sparse : : state_type const & state ) > const & valueGetter , std : : vector < ValueType > const * exitRateVector ) {
// Catch the case where all values are the same (this includes the special case where the bscc is of size 1)
auto it = bscc . begin ( ) ;
ValueType val = valueGetter ( * it ) ;
for ( + + it ; it ! = bscc . end ( ) ; + + it ) {
if ( valueGetter ( * it ) ! = val ) {
break ;
}
}
if ( it = = bscc . end ( ) ) {
// All entries have the same LRA
return val ;
}
storm : : solver : : LraMethod method = env . solver ( ) . lra ( ) . getDetLraMethod ( ) ;
if ( ( storm : : NumberTraits < ValueType > : : IsExact | | env . solver ( ) . isForceExact ( ) ) & & env . solver ( ) . lra ( ) . isDetLraMethodSetFromDefault ( ) & & method = = storm : : solver : : LraMethod : : ValueIteration ) {
method = storm : : solver : : LraMethod : : GainBiasEquations ;
STORM_LOG_INFO ( " Selecting " < < storm : : solver : : toString ( method ) < < " as the solution technique for long-run properties to guarantee exact results. If you want to override this, please explicitly specify a different LRA method. " ) ;
} else if ( env . solver ( ) . isForceSoundness ( ) & & env . solver ( ) . lra ( ) . isDetLraMethodSetFromDefault ( ) & & method ! = storm : : solver : : LraMethod : : ValueIteration ) {
method = storm : : solver : : LraMethod : : ValueIteration ;
STORM_LOG_INFO ( " Selecting " < < storm : : solver : : toString ( method ) < < " as the solution technique for long-run properties to guarantee sound results. If you want to override this, please explicitly specify a different LRA method. " ) ;
}
STORM_LOG_TRACE ( " Computing LRA for BSCC of size " < < bscc . size ( ) < < " using ' " < < storm : : solver : : toString ( method ) < < " '. " ) ;
if ( method = = storm : : solver : : LraMethod : : ValueIteration ) {
return computeLongRunAveragesForBsccVi < ValueType > ( env , bscc , rateMatrix , valueGetter , exitRateVector ) ;
} else if ( method = = storm : : solver : : LraMethod : : LraDistributionEquations ) {
// We only need the first element of the pair as the lra distribution is not relevant at this point.
return computeLongRunAveragesForBsccLraDistr < ValueType > ( env , bscc , rateMatrix , valueGetter , exitRateVector ) . first ;
}
STORM_LOG_WARN_COND ( method = = storm : : solver : : LraMethod : : GainBiasEquations , " Unsupported lra method selected. Defaulting to " < < storm : : solver : : toString ( storm : : solver : : LraMethod : : GainBiasEquations ) < < " . " ) ;
// We don't need the bias values
return computeLongRunAveragesForBsccGainBias < ValueType > ( env , bscc , rateMatrix , valueGetter , exitRateVector ) . first ;
}
template < >
storm : : RationalFunction SparseCtmcCslHelper : : computeLongRunAveragesForBsccVi < storm : : RationalFunction > ( Environment const & , storm : : storage : : StronglyConnectedComponent const & , storm : : storage : : SparseMatrix < storm : : RationalFunction > const & , std : : function < storm : : RationalFunction ( storm : : storage : : sparse : : state_type const & state ) > const & , std : : vector < storm : : RationalFunction > const * ) {
STORM_LOG_THROW ( false , storm : : exceptions : : NotSupportedException , " The requested Method for LRA computation is not supported for parametric models. " ) ;
}
template < typename ValueType >
ValueType SparseCtmcCslHelper : : computeLongRunAveragesForBsccVi ( Environment const & env , storm : : storage : : StronglyConnectedComponent const & bscc , storm : : storage : : SparseMatrix < ValueType > const & rateMatrix , std : : function < ValueType ( storm : : storage : : sparse : : state_type const & state ) > const & valueGetter , std : : vector < ValueType > const * exitRateVector ) {
// Initialize data about the bscc
storm : : storage : : BitVector bsccStates ( rateMatrix . getRowGroupCount ( ) , false ) ;
for ( auto const & state : bscc ) {
bsccStates . set ( state ) ;
}
// Get the uniformization rate
ValueType uniformizationRate = storm : : utility : : one < ValueType > ( ) ;
if ( exitRateVector ) {
uniformizationRate = storm : : utility : : vector : : max_if ( * exitRateVector , bsccStates ) ;
}
// To ensure that the model is aperiodic, we need to make sure that every Markovian state gets a self loop.
// Hence, we increase the uniformization rate a little.
uniformizationRate * = ( storm : : utility : : one < ValueType > ( ) + storm : : utility : : convertNumber < ValueType > ( env . solver ( ) . lra ( ) . getAperiodicFactor ( ) ) ) ;
// Get the transitions of the submodel
typename storm : : storage : : SparseMatrix < ValueType > bsccMatrix = rateMatrix . getSubmatrix ( true , bsccStates , bsccStates , true ) ;
// Uniformize the transitions
uint64_t subState = 0 ;
for ( auto state : bsccStates ) {
for ( auto & entry : bsccMatrix . getRow ( subState ) ) {
if ( entry . getColumn ( ) = = subState ) {
if ( exitRateVector ) {
entry . setValue ( storm : : utility : : one < ValueType > ( ) + ( entry . getValue ( ) - ( * exitRateVector ) [ state ] ) / uniformizationRate ) ;
} else {
entry . setValue ( storm : : utility : : one < ValueType > ( ) + ( entry . getValue ( ) - storm : : utility : : one < ValueType > ( ) ) / uniformizationRate ) ;
}
} else {
entry . setValue ( entry . getValue ( ) / uniformizationRate ) ;
}
}
+ + subState ;
}
// Compute the rewards obtained in a single uniformization step
std : : vector < ValueType > markovianRewards ;
markovianRewards . reserve ( bsccMatrix . getRowCount ( ) ) ;
for ( auto const & state : bsccStates ) {
markovianRewards . push_back ( valueGetter ( state ) / uniformizationRate ) ;
}
// start the iterations
ValueType precision = storm : : utility : : convertNumber < ValueType > ( env . solver ( ) . lra ( ) . getPrecision ( ) ) / uniformizationRate ;
bool relative = env . solver ( ) . lra ( ) . getRelativeTerminationCriterion ( ) ;
if ( ! relative ) {
precision / = uniformizationRate ;
}
std : : vector < ValueType > x ( bsccMatrix . getRowCount ( ) , storm : : utility : : zero < ValueType > ( ) ) ;
std : : vector < ValueType > xPrime ( x . size ( ) ) ;
auto multiplier = storm : : solver : : MultiplierFactory < ValueType > ( ) . create ( env , bsccMatrix ) ;
ValueType maxDiff , minDiff ;
uint64_t iter = 0 ;
boost : : optional < uint64_t > maxIter ;
if ( env . solver ( ) . lra ( ) . isMaximalIterationCountSet ( ) ) {
maxIter = env . solver ( ) . lra ( ) . getMaximalIterationCount ( ) ;
}
while ( ! maxIter . is_initialized ( ) | | iter < maxIter . get ( ) ) {
+ + iter ;
// Compute the values for the markovian states. We also keep track of the maximal and minimal difference between two values (for convergence checking)
multiplier - > multiply ( env , x , & markovianRewards , xPrime ) ;
// update xPrime and check for convergence
// to avoid large (and numerically unstable) x-values, we substract a reference value.
auto xIt = x . begin ( ) ;
auto xPrimeIt = xPrime . begin ( ) ;
ValueType refVal = * xPrimeIt ;
maxDiff = * xPrimeIt - * xIt ;
minDiff = maxDiff ;
* xPrimeIt - = refVal ;
* xIt = * xPrimeIt ;
for ( + + xIt , + + xPrimeIt ; xIt ! = x . end ( ) ; + + xIt , + + xPrimeIt ) {
ValueType diff = * xPrimeIt - * xIt ;
maxDiff = std : : max ( maxDiff , diff ) ;
minDiff = std : : min ( minDiff , diff ) ;
* xPrimeIt - = refVal ;
* xIt = * xPrimeIt ;
}
// Check for convergence. The uniformization rate is already incorporated into the precision parameter
if ( ( maxDiff - minDiff ) < = ( relative ? ( precision * minDiff ) : precision ) ) {
break ;
}
if ( storm : : utility : : resources : : isTerminate ( ) ) {
break ;
}
}
if ( maxIter . is_initialized ( ) & & iter = = maxIter . get ( ) ) {
STORM_LOG_WARN ( " LRA computation did not converge within " < < iter < < " iterations. " ) ;
} else {
STORM_LOG_TRACE ( " LRA computation converged after " < < iter < < " iterations. " ) ;
}
return ( maxDiff + minDiff ) * uniformizationRate / ( storm : : utility : : convertNumber < ValueType > ( 2.0 ) ) ;
}
template < typename ValueType >
std : : pair < ValueType , std : : vector < ValueType > > SparseCtmcCslHelper : : computeLongRunAveragesForBsccGainBias ( Environment const & env , storm : : storage : : StronglyConnectedComponent const & bscc , storm : : storage : : SparseMatrix < ValueType > const & rateMatrix , std : : function < ValueType ( storm : : storage : : sparse : : state_type const & state ) > const & valueGetter , std : : vector < ValueType > const * exitRateVector ) {
// We build the equation system as in Line 3 of Algorithm 3 from
// Kretinsky, Meggendorfer: Efficient Strategy Iteration for Mean Payoff in Markov Decision Processes (ATVA 2017)
// The first variable corresponds to the gain of the bscc whereas the subsequent variables yield the bias for each state s_1, s_2, ....
// No bias variable for s_0 is needed since it is always set to zero, yielding an nxn equation system matrix
// To make this work for CTMC, we could uniformize the model. This preserves LRA and ensures that we can compute the
// LRA as for a DTMC (the soujourn time in each state is the same). If we then multiply the equations with the uniformization rate,
// the uniformization rate cancels out. Hence, we obtain the equation system below.
// Get a mapping from global state indices to local ones.
std : : unordered_map < uint64_t , uint64_t > toLocalIndexMap ;
uint64_t localIndex = 0 ;
for ( auto const & globalIndex : bscc ) {
toLocalIndexMap [ globalIndex ] = localIndex ;
+ + localIndex ;
}
// Prepare an environment for the underlying equation solver
auto subEnv = env ;
if ( subEnv . solver ( ) . getLinearEquationSolverType ( ) = = storm : : solver : : EquationSolverType : : Topological ) {
// Topological solver does not make any sense since the BSCC is connected.
subEnv . solver ( ) . setLinearEquationSolverType ( subEnv . solver ( ) . topological ( ) . getUnderlyingEquationSolverType ( ) , subEnv . solver ( ) . topological ( ) . isUnderlyingEquationSolverTypeSetFromDefault ( ) ) ;
}
subEnv . solver ( ) . setLinearEquationSolverPrecision ( env . solver ( ) . lra ( ) . getPrecision ( ) , env . solver ( ) . lra ( ) . getRelativeTerminationCriterion ( ) ) ;
// Build the equation system matrix and vector.
storm : : solver : : GeneralLinearEquationSolverFactory < ValueType > linearEquationSolverFactory ;
bool isEquationSystemFormat = linearEquationSolverFactory . getEquationProblemFormat ( subEnv ) = = storm : : solver : : LinearEquationSolverProblemFormat : : EquationSystem ;
storm : : storage : : SparseMatrixBuilder < ValueType > builder ( bscc . size ( ) , bscc . size ( ) ) ;
std : : vector < ValueType > eqSysVector ;
eqSysVector . reserve ( bscc . size ( ) ) ;
// The first row asserts that the weighted bias variables and the reward at s_0 sum up to the gain
uint64_t row = 0 ;
ValueType entryValue ;
for ( auto const & globalState : bscc ) {
// Coefficient for the gain variable
if ( isEquationSystemFormat ) {
// '1-0' in row 0 and -(-1) in other rows
builder . addNextValue ( row , 0 , storm : : utility : : one < ValueType > ( ) ) ;
} else if ( row > 0 ) {
// No coeficient in row 0, othwerise substract the gain
builder . addNextValue ( row , 0 , - storm : : utility : : one < ValueType > ( ) ) ;
}
// Compute weighted sum over successor state. As this is a BSCC, each successor state will again be in the BSCC.
auto diagonalValue = storm : : utility : : zero < ValueType > ( ) ;
if ( row > 0 ) {
if ( isEquationSystemFormat ) {
diagonalValue = exitRateVector ? ( * exitRateVector ) [ globalState ] : storm : : utility : : one < ValueType > ( ) ;
} else {
diagonalValue = storm : : utility : : one < ValueType > ( ) - ( exitRateVector ? ( * exitRateVector ) [ globalState ] : storm : : utility : : one < ValueType > ( ) ) ;
}
}
bool needDiagonalEntry = ! storm : : utility : : isZero ( diagonalValue ) ;
for ( auto const & entry : rateMatrix . getRow ( globalState ) ) {
uint64_t col = toLocalIndexMap [ entry . getColumn ( ) ] ;
if ( col = = 0 ) {
//Skip transition to state_0. This corresponds to setting the bias of state_0 to zero
continue ;
}
entryValue = entry . getValue ( ) ;
if ( isEquationSystemFormat ) {
entryValue = - entryValue ;
}
if ( needDiagonalEntry & & col > = row ) {
if ( col = = row ) {
entryValue + = diagonalValue ;
} else { // col > row
builder . addNextValue ( row , row , diagonalValue ) ;
}
needDiagonalEntry = false ;
}
builder . addNextValue ( row , col , entryValue ) ;
}
if ( needDiagonalEntry ) {
builder . addNextValue ( row , row , diagonalValue ) ;
}
eqSysVector . push_back ( valueGetter ( globalState ) ) ;
+ + row ;
}
// Create a linear equation solver
auto solver = linearEquationSolverFactory . create ( subEnv , builder . build ( ) ) ;
// Check solver requirements.
auto requirements = solver - > getRequirements ( subEnv ) ;
STORM_LOG_THROW ( ! requirements . hasEnabledCriticalRequirement ( ) , storm : : exceptions : : UncheckedRequirementException , " Solver requirements " + requirements . getEnabledRequirementsAsString ( ) + " not checked. " ) ;
// Todo: Find bounds on the bias variables. Just inserting the maximal value from the vector probably does not work.
std : : vector < ValueType > eqSysSol ( bscc . size ( ) , storm : : utility : : zero < ValueType > ( ) ) ;
// Take the mean of the rewards as an initial guess for the gain
//eqSysSol.front() = std::accumulate(eqSysVector.begin(), eqSysVector.end(), storm::utility::zero<ValueType>()) / storm::utility::convertNumber<ValueType, uint64_t>(bscc.size());
solver - > solveEquations ( subEnv , eqSysSol , eqSysVector ) ;
ValueType gain = eqSysSol . front ( ) ;
// insert bias value for state 0
eqSysSol . front ( ) = storm : : utility : : zero < ValueType > ( ) ;
// Return the gain and the bias values
return std : : pair < ValueType , std : : vector < ValueType > > ( std : : move ( gain ) , std : : move ( eqSysSol ) ) ;
}
template < typename ValueType >
std : : pair < ValueType , std : : vector < ValueType > > SparseCtmcCslHelper : : computeLongRunAveragesForBsccLraDistr ( Environment const & env , storm : : storage : : StronglyConnectedComponent const & bscc , storm : : storage : : SparseMatrix < ValueType > const & rateMatrix , std : : function < ValueType ( storm : : storage : : sparse : : state_type const & state ) > const & valueGetter , std : : vector < ValueType > const * exitRateVector ) {
// Let A be ab auxiliary Matrix with A[s,s] = R(s,s) - r(s) & A[s,s'] = R(s,s') for s,s' in BSCC and s!=s'.
// We build and solve the equation system for
// x*A=0 & x_0+...+x_n=1 <=> A^t*x=0=x-x & x_0+...+x_n=1 <=> (1+A^t)*x = x & 1-x_0-...-x_n-1=x_n
// Then, x[i] will be the fraction of the time we are in state i.
// This method assumes that this BSCC consist of more than one state
if ( bscc . size ( ) = = 1 ) {
return { valueGetter ( * bscc . begin ( ) ) , { storm : : utility : : one < ValueType > ( ) } } ;
}
// Prepare an environment for the underlying linear equation solver
auto subEnv = env ;
if ( subEnv . solver ( ) . getLinearEquationSolverType ( ) = = storm : : solver : : EquationSolverType : : Topological ) {
// Topological solver does not make any sense since the BSCC is connected.
subEnv . solver ( ) . setLinearEquationSolverType ( subEnv . solver ( ) . topological ( ) . getUnderlyingEquationSolverType ( ) , subEnv . solver ( ) . topological ( ) . isUnderlyingEquationSolverTypeSetFromDefault ( ) ) ;
}
subEnv . solver ( ) . setLinearEquationSolverPrecision ( env . solver ( ) . lra ( ) . getPrecision ( ) , env . solver ( ) . lra ( ) . getRelativeTerminationCriterion ( ) ) ;
// Get a mapping from global state indices to local ones as well as a bitvector containing states within the BSCC.
std : : unordered_map < uint64_t , uint64_t > toLocalIndexMap ;
storm : : storage : : BitVector bsccStates ( rateMatrix . getRowCount ( ) , false ) ;
uint64_t localIndex = 0 ;
for ( auto const & globalIndex : bscc ) {
bsccStates . set ( globalIndex , true ) ;
toLocalIndexMap [ globalIndex ] = localIndex ;
+ + localIndex ;
}
// Build the auxiliary Matrix A.
auto auxMatrix = rateMatrix . getSubmatrix ( false , bsccStates , bsccStates , true ) ; // add diagonal entries!
uint64_t row = 0 ;
for ( auto const & globalIndex : bscc ) {
for ( auto & entry : auxMatrix . getRow ( row ) ) {
if ( entry . getColumn ( ) = = row ) {
// This value is non-zero since we have a BSCC with more than one state
if ( exitRateVector ) {
entry . setValue ( entry . getValue ( ) - ( * exitRateVector ) [ globalIndex ] ) ;
} else {
entry . setValue ( entry . getValue ( ) - storm : : utility : : one < ValueType > ( ) ) ;
}
}
}
+ + row ;
}
assert ( row = = auxMatrix . getRowCount ( ) ) ;
// We need to consider A^t. This will not delete diagonal entries since they are non-zero.
auxMatrix = auxMatrix . transpose ( ) ;
// Check whether we need the fixpoint characterization
storm : : solver : : GeneralLinearEquationSolverFactory < ValueType > linearEquationSolverFactory ;
bool isFixpointFormat = linearEquationSolverFactory . getEquationProblemFormat ( subEnv ) = = storm : : solver : : LinearEquationSolverProblemFormat : : FixedPointSystem ;
if ( isFixpointFormat ) {
// Add a 1 on the diagonal
for ( row = 0 ; row < auxMatrix . getRowCount ( ) ; + + row ) {
for ( auto & entry : auxMatrix . getRow ( row ) ) {
if ( entry . getColumn ( ) = = row ) {
entry . setValue ( storm : : utility : : one < ValueType > ( ) + entry . getValue ( ) ) ;
}
}
}
}
// We now build the equation system matrix.
// We can drop the last row of A and add ones in this row instead to assert that the variables sum up to one
// Phase 1: replace the existing entries of the last row with ones
uint64_t col = 0 ;
uint64_t lastRow = auxMatrix . getRowCount ( ) - 1 ;
for ( auto & entry : auxMatrix . getRow ( lastRow ) ) {
entry . setColumn ( col ) ;
if ( isFixpointFormat ) {
if ( col = = lastRow ) {
entry . setValue ( storm : : utility : : zero < ValueType > ( ) ) ;
} else {
entry . setValue ( - storm : : utility : : one < ValueType > ( ) ) ;
}
} else {
entry . setValue ( storm : : utility : : one < ValueType > ( ) ) ;
}
+ + col ;
}
storm : : storage : : SparseMatrixBuilder < ValueType > builder ( std : : move ( auxMatrix ) ) ;
for ( ; col < = lastRow ; + + col ) {
if ( isFixpointFormat ) {
if ( col ! = lastRow ) {
builder . addNextValue ( lastRow , col , - storm : : utility : : one < ValueType > ( ) ) ;
}
} else {
builder . addNextValue ( lastRow , col , storm : : utility : : one < ValueType > ( ) ) ;
}
}
std : : vector < ValueType > bsccEquationSystemRightSide ( bscc . size ( ) , storm : : utility : : zero < ValueType > ( ) ) ;
bsccEquationSystemRightSide . back ( ) = storm : : utility : : one < ValueType > ( ) ;
// Create a linear equation solver
auto solver = linearEquationSolverFactory . create ( subEnv , builder . build ( ) ) ;
solver - > setBounds ( storm : : utility : : zero < ValueType > ( ) , storm : : utility : : one < ValueType > ( ) ) ;
// Check solver requirements.
auto requirements = solver - > getRequirements ( subEnv ) ;
requirements . clearLowerBounds ( ) ;
requirements . clearUpperBounds ( ) ;
STORM_LOG_THROW ( ! requirements . hasEnabledCriticalRequirement ( ) , storm : : exceptions : : UncheckedRequirementException , " Solver requirements " + requirements . getEnabledRequirementsAsString ( ) + " not checked. " ) ;
std : : vector < ValueType > lraDistr ( bscc . size ( ) , storm : : utility : : one < ValueType > ( ) / storm : : utility : : convertNumber < ValueType , uint64_t > ( bscc . size ( ) ) ) ;
solver - > solveEquations ( subEnv , lraDistr , bsccEquationSystemRightSide ) ;
// Calculate final LRA Value
ValueType result = storm : : utility : : zero < ValueType > ( ) ;
auto solIt = lraDistr . begin ( ) ;
for ( auto const & globalState : bscc ) {
result + = valueGetter ( globalState ) * ( * solIt ) ;
+ + solIt ;
}
assert ( solIt = = lraDistr . end ( ) ) ;
return std : : pair < ValueType , std : : vector < ValueType > > ( std : : move ( result ) , std : : move ( lraDistr ) ) ;
}
template < typename ValueType , typename std : : enable_if < storm : : NumberTraits < ValueType > : : SupportsExponential , int > : : type >
std : : vector < ValueType > SparseCtmcCslHelper : : computeAllTransientProbabilities ( Environment const & env , storm : : storage : : SparseMatrix < ValueType > const & rateMatrix , storm : : storage : : BitVector const & initialStates , storm : : storage : : BitVector const & phiStates , storm : : storage : : BitVector const & psiStates , std : : vector < ValueType > const & exitRates , double timeBound ) {
@ -1253,10 +704,6 @@ namespace storm {
template std : : vector < double > SparseCtmcCslHelper : : computeTotalRewards ( Environment const & env , storm : : solver : : SolveGoal < double > & & goal , storm : : storage : : SparseMatrix < double > const & rateMatrix , storm : : storage : : SparseMatrix < double > const & backwardTransitions , std : : vector < double > const & exitRateVector , storm : : models : : sparse : : StandardRewardModel < double > const & rewardModel , bool qualitative ) ;
template std : : vector < double > SparseCtmcCslHelper : : computeLongRunAverageProbabilities ( Environment const & env , storm : : solver : : SolveGoal < double > & & goal , storm : : storage : : SparseMatrix < double > const & rateMatrix , storm : : storage : : BitVector const & psiStates , std : : vector < double > const * exitRateVector ) ;
template std : : vector < double > SparseCtmcCslHelper : : computeLongRunAverageRewards ( Environment const & env , storm : : solver : : SolveGoal < double > & & goal , storm : : storage : : SparseMatrix < double > const & rateMatrix , storm : : models : : sparse : : StandardRewardModel < double > const & rewardModel , std : : vector < double > const * exitRateVector ) ;
template std : : vector < double > SparseCtmcCslHelper : : computeLongRunAverageRewards ( Environment const & env , storm : : solver : : SolveGoal < double > & & goal , storm : : storage : : SparseMatrix < double > const & rateMatrix , std : : vector < double > const & stateRewardVector , std : : vector < double > const * exitRateVector ) ;
template std : : vector < double > SparseCtmcCslHelper : : computeCumulativeRewards ( Environment const & env , storm : : solver : : SolveGoal < double > & & goal , storm : : storage : : SparseMatrix < double > const & rateMatrix , std : : vector < double > const & exitRateVector , storm : : models : : sparse : : StandardRewardModel < double > const & rewardModel , double timeBound ) ;
template std : : vector < double > SparseCtmcCslHelper : : computeAllTransientProbabilities ( Environment const & env , storm : : storage : : SparseMatrix < double > const & rateMatrix , storm : : storage : : BitVector const & initialStates , storm : : storage : : BitVector const & phiStates , storm : : storage : : BitVector const & psiStates , std : : vector < double > const & exitRates , double timeBound ) ;
@ -1290,15 +737,6 @@ namespace storm {
template std : : vector < storm : : RationalNumber > SparseCtmcCslHelper : : computeTotalRewards ( Environment const & env , storm : : solver : : SolveGoal < storm : : RationalNumber > & & goal , storm : : storage : : SparseMatrix < storm : : RationalNumber > const & rateMatrix , storm : : storage : : SparseMatrix < storm : : RationalNumber > const & backwardTransitions , std : : vector < storm : : RationalNumber > const & exitRateVector , storm : : models : : sparse : : StandardRewardModel < storm : : RationalNumber > const & rewardModel , bool qualitative ) ;
template std : : vector < storm : : RationalFunction > SparseCtmcCslHelper : : computeTotalRewards ( Environment const & env , storm : : solver : : SolveGoal < storm : : RationalFunction > & & goal , storm : : storage : : SparseMatrix < storm : : RationalFunction > const & rateMatrix , storm : : storage : : SparseMatrix < storm : : RationalFunction > const & backwardTransitions , std : : vector < storm : : RationalFunction > const & exitRateVector , storm : : models : : sparse : : StandardRewardModel < storm : : RationalFunction > const & rewardModel , bool qualitative ) ;
template std : : vector < storm : : RationalNumber > SparseCtmcCslHelper : : computeLongRunAverageProbabilities ( Environment const & env , storm : : solver : : SolveGoal < storm : : RationalNumber > & & goal , storm : : storage : : SparseMatrix < storm : : RationalNumber > const & rateMatrix , storm : : storage : : BitVector const & psiStates , std : : vector < storm : : RationalNumber > const * exitRateVector ) ;
template std : : vector < storm : : RationalFunction > SparseCtmcCslHelper : : computeLongRunAverageProbabilities ( Environment const & env , storm : : solver : : SolveGoal < storm : : RationalFunction > & & goal , storm : : storage : : SparseMatrix < storm : : RationalFunction > const & rateMatrix , storm : : storage : : BitVector const & psiStates , std : : vector < storm : : RationalFunction > const * exitRateVector ) ;
template std : : vector < storm : : RationalNumber > SparseCtmcCslHelper : : computeLongRunAverageRewards ( Environment const & env , storm : : solver : : SolveGoal < storm : : RationalNumber > & & goal , storm : : storage : : SparseMatrix < storm : : RationalNumber > const & rateMatrix , storm : : models : : sparse : : StandardRewardModel < RationalNumber > const & rewardModel , std : : vector < storm : : RationalNumber > const * exitRateVector ) ;
template std : : vector < storm : : RationalFunction > SparseCtmcCslHelper : : computeLongRunAverageRewards ( Environment const & env , storm : : solver : : SolveGoal < storm : : RationalFunction > & & goal , storm : : storage : : SparseMatrix < storm : : RationalFunction > const & rateMatrix , storm : : models : : sparse : : StandardRewardModel < RationalFunction > const & rewardModel , std : : vector < storm : : RationalFunction > const * exitRateVector ) ;
template std : : vector < storm : : RationalNumber > SparseCtmcCslHelper : : computeLongRunAverageRewards ( Environment const & env , storm : : solver : : SolveGoal < storm : : RationalNumber > & & goal , storm : : storage : : SparseMatrix < storm : : RationalNumber > const & rateMatrix , std : : vector < storm : : RationalNumber > const & stateRewardVector , std : : vector < storm : : RationalNumber > const * exitRateVector ) ;
template std : : vector < storm : : RationalFunction > SparseCtmcCslHelper : : computeLongRunAverageRewards ( Environment const & env , storm : : solver : : SolveGoal < storm : : RationalFunction > & & goal , storm : : storage : : SparseMatrix < storm : : RationalFunction > const & rateMatrix , std : : vector < storm : : RationalFunction > const & stateRewardVector , std : : vector < storm : : RationalFunction > const * exitRateVector ) ;
template std : : vector < storm : : RationalNumber > SparseCtmcCslHelper : : computeCumulativeRewards ( Environment const & env , storm : : solver : : SolveGoal < storm : : RationalNumber > & & goal , storm : : storage : : SparseMatrix < storm : : RationalNumber > const & rateMatrix , std : : vector < storm : : RationalNumber > const & exitRateVector , storm : : models : : sparse : : StandardRewardModel < storm : : RationalNumber > const & rewardModel , double timeBound ) ;
template std : : vector < storm : : RationalFunction > SparseCtmcCslHelper : : computeCumulativeRewards ( Environment const & env , storm : : solver : : SolveGoal < storm : : RationalFunction > & & goal , storm : : storage : : SparseMatrix < storm : : RationalFunction > const & rateMatrix , std : : vector < storm : : RationalFunction > const & exitRateVector , storm : : models : : sparse : : StandardRewardModel < storm : : RationalFunction > const & rewardModel , double timeBound ) ;