|  |  | @ -369,6 +369,45 @@ namespace storm { | 
			
		
	
		
			
				
					|  |  |  |                 return finish[node]; | 
			
		
	
		
			
				
					|  |  |  |             } | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |             template<typename ValueType, typename std::enable_if<storm::NumberTraits<ValueType>::SupportsExponential, int>::type= 0> | 
			
		
	
		
			
				
					|  |  |  |             void SparseMarkovAutomatonCslHelper::identify( | 
			
		
	
		
			
				
					|  |  |  |                     storm::storage::SparseMatrix<ValueType> const &fullTransitionMatrix, | 
			
		
	
		
			
				
					|  |  |  |                     storm::storage::BitVector const &markovianStates, storm::storage::BitVector const& psiStates) { | 
			
		
	
		
			
				
					|  |  |  |                 auto indices = fullTransitionMatrix.getRowGroupIndices(); | 
			
		
	
		
			
				
					|  |  |  |                 bool realProb = false; | 
			
		
	
		
			
				
					|  |  |  |                 bool NDM = false; | 
			
		
	
		
			
				
					|  |  |  |                 bool Alternating = true; | 
			
		
	
		
			
				
					|  |  |  |                 bool probStates = false; | 
			
		
	
		
			
				
					|  |  |  |                 bool markStates = false; | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                 for (uint64_t i=0; i<fullTransitionMatrix.getRowGroupCount(); i++){ | 
			
		
	
		
			
				
					|  |  |  |                     auto from = indices[i]; | 
			
		
	
		
			
				
					|  |  |  |                     auto to = indices[i+1]; | 
			
		
	
		
			
				
					|  |  |  |                     if (from+1!=to){ | 
			
		
	
		
			
				
					|  |  |  |                         NDM = true; | 
			
		
	
		
			
				
					|  |  |  |                     } | 
			
		
	
		
			
				
					|  |  |  |                     if (!psiStates[i]){ | 
			
		
	
		
			
				
					|  |  |  |                         if (markovianStates[i]){ | 
			
		
	
		
			
				
					|  |  |  |                                 markStates=true; | 
			
		
	
		
			
				
					|  |  |  |                         } else { | 
			
		
	
		
			
				
					|  |  |  |                                probStates=true; | 
			
		
	
		
			
				
					|  |  |  |                         } | 
			
		
	
		
			
				
					|  |  |  |                     } | 
			
		
	
		
			
				
					|  |  |  |                     for (uint64_t j =from; j<to ; j++){ | 
			
		
	
		
			
				
					|  |  |  |                         for (auto& element: fullTransitionMatrix.getRow(j)){ | 
			
		
	
		
			
				
					|  |  |  |                             if (markovianStates[i]==markovianStates[element.getColumn()] && !psiStates[element.getColumn()]){ | 
			
		
	
		
			
				
					|  |  |  |                                 Alternating = false; | 
			
		
	
		
			
				
					|  |  |  |                             } | 
			
		
	
		
			
				
					|  |  |  |                             if (!markovianStates[i] && element.getValue()!=1){ | 
			
		
	
		
			
				
					|  |  |  |                                 realProb = true; | 
			
		
	
		
			
				
					|  |  |  |                             } | 
			
		
	
		
			
				
					|  |  |  |                         } | 
			
		
	
		
			
				
					|  |  |  |                     } | 
			
		
	
		
			
				
					|  |  |  |                 } | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                 std:: cout << "prob States :" << probStates <<" markovian States: " << markStates << " realProb: "<< realProb << " NDM: " << NDM << " Alternating: " << Alternating << "\n"; | 
			
		
	
		
			
				
					|  |  |  |             } | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |             template <typename ValueType, typename std::enable_if<storm::NumberTraits<ValueType>::SupportsExponential, int>::type=0> | 
			
		
	
		
			
				
					|  |  |  |             storm::storage::BitVector SparseMarkovAutomatonCslHelper::identifyProbCyclesGoalStates(storm::storage::SparseMatrix<ValueType> const& transitionMatrix,  storm::storage::BitVector const& cycleStates) { | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
	
		
			
				
					|  |  | @ -463,174 +502,181 @@ namespace storm { | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                 template <typename ValueType, typename std::enable_if<storm::NumberTraits<ValueType>::SupportsExponential, int>::type> | 
			
		
	
		
			
				
					|  |  |  |             std::vector<ValueType> SparseMarkovAutomatonCslHelper::unifPlus(OptimizationDirection dir, std::pair<double, double> const& boundsPair, std::vector<ValueType> const& exitRateVector, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& markovStates, storm::storage::BitVector const& psiStates, storm::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory){ | 
			
		
	
		
			
				
					|  |  |  |                 STORM_LOG_TRACE("Using UnifPlus to compute bounded until probabilities."); | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                 std::ofstream logfile("U+logfile.txt", std::ios::app); | 
			
		
	
		
			
				
					|  |  |  |                 ValueType maxNorm = storm::utility::zero<ValueType>(); | 
			
		
	
		
			
				
					|  |  |  |                 ValueType oldDiff = -storm::utility::zero<ValueType>(); | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                 //bitvectors to identify different kind of states
 | 
			
		
	
		
			
				
					|  |  |  |                 storm::storage::BitVector markovianStates = markovStates; | 
			
		
	
		
			
				
					|  |  |  |                 storm::storage::BitVector allStates(markovianStates.size(), true); | 
			
		
	
		
			
				
					|  |  |  |                 storm::storage::BitVector probabilisticStates = ~markovianStates; | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                 //vectors to save calculation
 | 
			
		
	
		
			
				
					|  |  |  |                 std::vector<std::vector<ValueType>> vd,vu,wu; | 
			
		
	
		
			
				
					|  |  |  |                 std::vector<std::vector<std::vector<ValueType>>> unifVectors{}; | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                 //transitions from goalStates will be ignored. still: they are not allowed to be probabilistic!
 | 
			
		
	
		
			
				
					|  |  |  |                     for (uint64_t i =0 ; i<psiStates.size(); i++){ | 
			
		
	
		
			
				
					|  |  |  |                         if (psiStates[i]){ | 
			
		
	
		
			
				
					|  |  |  |                             markovianStates.set(i,true); | 
			
		
	
		
			
				
					|  |  |  |                             probabilisticStates.set(i,false); | 
			
		
	
		
			
				
					|  |  |  |                         } | 
			
		
	
		
			
				
					|  |  |  |                     } | 
			
		
	
		
			
				
					|  |  |  |                     STORM_LOG_TRACE("Using UnifPlus to compute bounded until probabilities."); | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                 //transition matrix with diagonal entries. The values can be changed during uniformisation
 | 
			
		
	
		
			
				
					|  |  |  |                 std::vector<ValueType> exitRate{exitRateVector}; | 
			
		
	
		
			
				
					|  |  |  |                 typename storm::storage::SparseMatrix<ValueType> fullTransitionMatrix = transitionMatrix.getSubmatrix(true, allStates , allStates , true); | 
			
		
	
		
			
				
					|  |  |  |                     // delete diagonals
 | 
			
		
	
		
			
				
					|  |  |  |                     deleteProbDiagonals(fullTransitionMatrix, markovianStates); | 
			
		
	
		
			
				
					|  |  |  |                 typename storm::storage::SparseMatrix<ValueType> probMatrix{}; | 
			
		
	
		
			
				
					|  |  |  |                 uint64_t  probSize =0; | 
			
		
	
		
			
				
					|  |  |  |                 if (probabilisticStates.getNumberOfSetBits()!=0){ //work around in case there are no prob states
 | 
			
		
	
		
			
				
					|  |  |  |                     probMatrix = fullTransitionMatrix.getSubmatrix(true, probabilisticStates , probabilisticStates, true); | 
			
		
	
		
			
				
					|  |  |  |                     probSize = probMatrix.getRowCount(); | 
			
		
	
		
			
				
					|  |  |  |                 } | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                 auto& rowGroupIndices = fullTransitionMatrix.getRowGroupIndices(); | 
			
		
	
		
			
				
					|  |  |  |                     std::ofstream logfile("U+logfile.txt", std::ios::app); | 
			
		
	
		
			
				
					|  |  |  |                     ValueType maxNorm = storm::utility::zero<ValueType>(); | 
			
		
	
		
			
				
					|  |  |  |                     ValueType oldDiff = -storm::utility::zero<ValueType>(); | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                     //bitvectors to identify different kind of states
 | 
			
		
	
		
			
				
					|  |  |  |                     storm::storage::BitVector markovianStates = markovStates; | 
			
		
	
		
			
				
					|  |  |  |                     storm::storage::BitVector allStates(markovianStates.size(), true); | 
			
		
	
		
			
				
					|  |  |  |                     storm::storage::BitVector probabilisticStates = ~markovianStates; | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                 //(1) define horizon, epsilon, kappa , N, lambda,
 | 
			
		
	
		
			
				
					|  |  |  |                 uint64_t numberOfStates = fullTransitionMatrix.getRowGroupCount(); | 
			
		
	
		
			
				
					|  |  |  |                 double T = boundsPair.second; | 
			
		
	
		
			
				
					|  |  |  |                 ValueType kappa = storm::utility::one<ValueType>() /10; // would be better as option-parameter
 | 
			
		
	
		
			
				
					|  |  |  |                 ValueType epsilon = storm::settings::getModule<storm::settings::modules::GeneralSettings>().getPrecision(); | 
			
		
	
		
			
				
					|  |  |  |                 ValueType lambda = exitRateVector[0]; | 
			
		
	
		
			
				
					|  |  |  |                 for (ValueType act: exitRateVector) { | 
			
		
	
		
			
				
					|  |  |  |                     lambda = std::max(act, lambda); | 
			
		
	
		
			
				
					|  |  |  |                 } | 
			
		
	
		
			
				
					|  |  |  |                 uint64_t N; | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                     //vectors to save calculation
 | 
			
		
	
		
			
				
					|  |  |  |                     std::vector<std::vector<ValueType>> vd,vu,wu; | 
			
		
	
		
			
				
					|  |  |  |                     std::vector<std::vector<std::vector<ValueType>>> unifVectors{}; | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                 //calculate relative ReachabilityVectors
 | 
			
		
	
		
			
				
					|  |  |  |                 std::vector<ValueType> in(numberOfStates, 0); | 
			
		
	
		
			
				
					|  |  |  |                 std::vector<std::vector<ValueType>> relReachability(fullTransitionMatrix.getRowCount(),in); | 
			
		
	
		
			
				
					|  |  |  |                     //transitions from goalStates will be ignored. still: they are not allowed to be probabilistic!
 | 
			
		
	
		
			
				
					|  |  |  |                         for (uint64_t i =0 ; i<psiStates.size(); i++){ | 
			
		
	
		
			
				
					|  |  |  |                             if (psiStates[i]){ | 
			
		
	
		
			
				
					|  |  |  |                                 markovianStates.set(i,true); | 
			
		
	
		
			
				
					|  |  |  |                                 probabilisticStates.set(i,false); | 
			
		
	
		
			
				
					|  |  |  |                             } | 
			
		
	
		
			
				
					|  |  |  |                         } | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                     //transition matrix with diagonal entries. The values can be changed during uniformisation
 | 
			
		
	
		
			
				
					|  |  |  |                     std::vector<ValueType> exitRate{exitRateVector}; | 
			
		
	
		
			
				
					|  |  |  |                     typename storm::storage::SparseMatrix<ValueType> fullTransitionMatrix = transitionMatrix.getSubmatrix(true, allStates , allStates , true); | 
			
		
	
		
			
				
					|  |  |  |                         // delete diagonals
 | 
			
		
	
		
			
				
					|  |  |  |                         deleteProbDiagonals(fullTransitionMatrix, markovianStates); | 
			
		
	
		
			
				
					|  |  |  |                     typename storm::storage::SparseMatrix<ValueType> probMatrix{}; | 
			
		
	
		
			
				
					|  |  |  |                     uint64_t  probSize =0; | 
			
		
	
		
			
				
					|  |  |  |                     if (probabilisticStates.getNumberOfSetBits()!=0){ //work around in case there are no prob states
 | 
			
		
	
		
			
				
					|  |  |  |                         probMatrix = fullTransitionMatrix.getSubmatrix(true, probabilisticStates , probabilisticStates, true); | 
			
		
	
		
			
				
					|  |  |  |                         probSize = probMatrix.getRowCount(); | 
			
		
	
		
			
				
					|  |  |  |                     } | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                     auto& rowGroupIndices = fullTransitionMatrix.getRowGroupIndices(); | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                 //calculate relative reachability
 | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                 for(uint64_t i=0 ; i<numberOfStates; i++){ | 
			
		
	
		
			
				
					|  |  |  |                     if (markovianStates[i]){ | 
			
		
	
		
			
				
					|  |  |  |                         continue; | 
			
		
	
		
			
				
					|  |  |  |                     //(1) define horizon, epsilon, kappa , N, lambda,
 | 
			
		
	
		
			
				
					|  |  |  |                     uint64_t numberOfStates = fullTransitionMatrix.getRowGroupCount(); | 
			
		
	
		
			
				
					|  |  |  |                     double T = boundsPair.second; | 
			
		
	
		
			
				
					|  |  |  |                     ValueType kappa = storm::utility::one<ValueType>() /10; // would be better as option-parameter
 | 
			
		
	
		
			
				
					|  |  |  |                     ValueType epsilon = storm::settings::getModule<storm::settings::modules::GeneralSettings>().getPrecision(); | 
			
		
	
		
			
				
					|  |  |  |                     ValueType lambda = exitRateVector[0]; | 
			
		
	
		
			
				
					|  |  |  |                     for (ValueType act: exitRateVector) { | 
			
		
	
		
			
				
					|  |  |  |                         lambda = std::max(act, lambda); | 
			
		
	
		
			
				
					|  |  |  |                     } | 
			
		
	
		
			
				
					|  |  |  |                      auto from = rowGroupIndices[i]; | 
			
		
	
		
			
				
					|  |  |  |                      auto to = rowGroupIndices[i+1]; | 
			
		
	
		
			
				
					|  |  |  |                      for (auto j=from ; j<to; j++){ | 
			
		
	
		
			
				
					|  |  |  |                          std::vector<ValueType>& act = relReachability[j]; | 
			
		
	
		
			
				
					|  |  |  |                          for(auto element: fullTransitionMatrix.getRow(j)){ | 
			
		
	
		
			
				
					|  |  |  |                              if (markovianStates[element.getColumn()]){ | 
			
		
	
		
			
				
					|  |  |  |                                  act[element.getColumn()]=element.getValue(); | 
			
		
	
		
			
				
					|  |  |  |                              } | 
			
		
	
		
			
				
					|  |  |  |                          } | 
			
		
	
		
			
				
					|  |  |  |                      } | 
			
		
	
		
			
				
					|  |  |  |                 } | 
			
		
	
		
			
				
					|  |  |  |                     uint64_t N; | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                     //create equitation solver
 | 
			
		
	
		
			
				
					|  |  |  |                 storm::solver::MinMaxLinearEquationSolverRequirements requirements = minMaxLinearEquationSolverFactory.getRequirements(true, dir); | 
			
		
	
		
			
				
					|  |  |  |                 requirements.clearBounds(); | 
			
		
	
		
			
				
					|  |  |  |                 STORM_LOG_THROW(requirements.empty(), storm::exceptions::UncheckedRequirementException, "Cannot establish requirements for solver."); | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                 std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver; | 
			
		
	
		
			
				
					|  |  |  |                 if (probSize!=0){ | 
			
		
	
		
			
				
					|  |  |  |                     solver = minMaxLinearEquationSolverFactory.create(probMatrix); | 
			
		
	
		
			
				
					|  |  |  |                     solver->setHasUniqueSolution(); | 
			
		
	
		
			
				
					|  |  |  |                     solver->setBounds(storm::utility::zero<ValueType>(), storm::utility::one<ValueType>()); | 
			
		
	
		
			
				
					|  |  |  |                     solver->setRequirementsChecked(); | 
			
		
	
		
			
				
					|  |  |  |                     solver->setCachingEnabled(true); | 
			
		
	
		
			
				
					|  |  |  |                 } | 
			
		
	
		
			
				
					|  |  |  |                     // while not close enough to precision:
 | 
			
		
	
		
			
				
					|  |  |  |                 do { | 
			
		
	
		
			
				
					|  |  |  |                     maxNorm = storm::utility::zero<ValueType>(); | 
			
		
	
		
			
				
					|  |  |  |                     // (2) update parameter
 | 
			
		
	
		
			
				
					|  |  |  |                     N = ceil(lambda*T*exp(2)-log(kappa*epsilon)); | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                     // (3) uniform  - just applied to markovian states
 | 
			
		
	
		
			
				
					|  |  |  |                     for (uint_fast64_t i = 0; i < fullTransitionMatrix.getRowGroupCount(); i++) { | 
			
		
	
		
			
				
					|  |  |  |                         if (!markovianStates[i]) { | 
			
		
	
		
			
				
					|  |  |  |                             continue; | 
			
		
	
		
			
				
					|  |  |  |                         } | 
			
		
	
		
			
				
					|  |  |  |                         uint64_t from = rowGroupIndices[i]; //markovian state -> no Nondeterminism -> only one row
 | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                         if (exitRate[i] == lambda) { | 
			
		
	
		
			
				
					|  |  |  |                             continue; //already unified
 | 
			
		
	
		
			
				
					|  |  |  |                         } | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                         auto line = fullTransitionMatrix.getRow(from); | 
			
		
	
		
			
				
					|  |  |  |                         ValueType exitOld = exitRate[i]; | 
			
		
	
		
			
				
					|  |  |  |                         ValueType exitNew = lambda; | 
			
		
	
		
			
				
					|  |  |  |                         for (auto &v : line) { | 
			
		
	
		
			
				
					|  |  |  |                             if (v.getColumn() == i) { //diagonal element
 | 
			
		
	
		
			
				
					|  |  |  |                                 ValueType newSelfLoop = exitNew - exitOld + v.getValue(); | 
			
		
	
		
			
				
					|  |  |  |                                 ValueType newRate = newSelfLoop / exitNew; | 
			
		
	
		
			
				
					|  |  |  |                                 v.setValue(newRate); | 
			
		
	
		
			
				
					|  |  |  |                             } else { //modify probability
 | 
			
		
	
		
			
				
					|  |  |  |                                 ValueType propOld = v.getValue(); | 
			
		
	
		
			
				
					|  |  |  |                                 ValueType propNew = propOld * exitOld / exitNew; | 
			
		
	
		
			
				
					|  |  |  |                                 v.setValue(propNew); | 
			
		
	
		
			
				
					|  |  |  |                             } | 
			
		
	
		
			
				
					|  |  |  |                         } | 
			
		
	
		
			
				
					|  |  |  |                         exitRate[i] = exitNew; | 
			
		
	
		
			
				
					|  |  |  |                     } | 
			
		
	
		
			
				
					|  |  |  |                                     //calculate relative ReachabilityVectors
 | 
			
		
	
		
			
				
					|  |  |  |                                     std::vector<ValueType> in(numberOfStates, 0); | 
			
		
	
		
			
				
					|  |  |  |                                     std::vector<std::vector<ValueType>> relReachability(fullTransitionMatrix.getRowCount(),in); | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                     // calculate poisson distribution
 | 
			
		
	
		
			
				
					|  |  |  |                     std::vector<double> poisson = foxGlynnProb(lambda*T, N, epsilon*kappa); | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                     // (4) define vectors/matrices
 | 
			
		
	
		
			
				
					|  |  |  |                     std::vector<ValueType> init(numberOfStates, -1); | 
			
		
	
		
			
				
					|  |  |  |                     vd = std::vector<std::vector<ValueType>> (N + 1, init); | 
			
		
	
		
			
				
					|  |  |  |                     vu = std::vector<std::vector<ValueType>> (N + 1, init); | 
			
		
	
		
			
				
					|  |  |  |                     wu = std::vector<std::vector<ValueType>> (N + 1, init); | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                     unifVectors.clear(); | 
			
		
	
		
			
				
					|  |  |  |                     unifVectors.push_back(vd); | 
			
		
	
		
			
				
					|  |  |  |                     unifVectors.push_back(vd); | 
			
		
	
		
			
				
					|  |  |  |                     unifVectors.push_back(vd); | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                     //define 0=vd 1=vu 2=wu
 | 
			
		
	
		
			
				
					|  |  |  |                     // (5) calculate vectors and maxNorm
 | 
			
		
	
		
			
				
					|  |  |  |                     for (uint64_t i = 0; i < numberOfStates; i++) { | 
			
		
	
		
			
				
					|  |  |  |                         for (uint64_t k = N; k <= N; k--) { | 
			
		
	
		
			
				
					|  |  |  |                                 calculateUnifPlusVector(k,i,0,lambda,probSize,relReachability,dir,unifVectors,fullTransitionMatrix,markovianStates,psiStates,solver, logfile, poisson); | 
			
		
	
		
			
				
					|  |  |  |                                 calculateUnifPlusVector(k,i,2,lambda,probSize,relReachability,dir,unifVectors,fullTransitionMatrix,markovianStates,psiStates,solver, logfile, poisson); | 
			
		
	
		
			
				
					|  |  |  |                                 calculateVu(relReachability,dir,k,i,1,lambda,probSize,unifVectors,fullTransitionMatrix,markovianStates,psiStates,solver, logfile, poisson); | 
			
		
	
		
			
				
					|  |  |  |                                 //also use iteration to keep maxNorm of vd and vup to date, so the loop-condition is easy to prove
 | 
			
		
	
		
			
				
					|  |  |  |                                 ValueType diff = std::abs(unifVectors[0][k][i]-unifVectors[1][k][i]); | 
			
		
	
		
			
				
					|  |  |  |                                 maxNorm  = std::max(maxNorm, diff); | 
			
		
	
		
			
				
					|  |  |  |                             } | 
			
		
	
		
			
				
					|  |  |  |                     } | 
			
		
	
		
			
				
					|  |  |  |                     printTransitions(N, maxNorm, fullTransitionMatrix,exitRate,markovianStates,psiStates,relReachability,psiStates, psiStates,unifVectors, logfile); //TODO remove
 | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                     // (6) double lambda
 | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                     lambda=2*lambda; | 
			
		
	
		
			
				
					|  |  |  |                                     //calculate relative reachability
 | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                     // (7) escape if not coming closer to solution
 | 
			
		
	
		
			
				
					|  |  |  |                      if (oldDiff!=-1){ | 
			
		
	
		
			
				
					|  |  |  |                          if (oldDiff==maxNorm){ | 
			
		
	
		
			
				
					|  |  |  |                              std::cout << "Not coming closer to solution as " << maxNorm << "/n"; | 
			
		
	
		
			
				
					|  |  |  |                              break; | 
			
		
	
		
			
				
					|  |  |  |                          } | 
			
		
	
		
			
				
					|  |  |  |                      } | 
			
		
	
		
			
				
					|  |  |  |                     oldDiff = maxNorm; | 
			
		
	
		
			
				
					|  |  |  |                 } while (maxNorm>epsilon*(1-kappa)); | 
			
		
	
		
			
				
					|  |  |  |                                     for(uint64_t i=0 ; i<numberOfStates; i++){ | 
			
		
	
		
			
				
					|  |  |  |                                         if (markovianStates[i]){ | 
			
		
	
		
			
				
					|  |  |  |                                             continue; | 
			
		
	
		
			
				
					|  |  |  |                                         } | 
			
		
	
		
			
				
					|  |  |  |                                          auto from = rowGroupIndices[i]; | 
			
		
	
		
			
				
					|  |  |  |                                          auto to = rowGroupIndices[i+1]; | 
			
		
	
		
			
				
					|  |  |  |                                          for (auto j=from ; j<to; j++){ | 
			
		
	
		
			
				
					|  |  |  |                                              std::vector<ValueType>& act = relReachability[j]; | 
			
		
	
		
			
				
					|  |  |  |                                              for(auto element: fullTransitionMatrix.getRow(j)){ | 
			
		
	
		
			
				
					|  |  |  |                                                  if (markovianStates[element.getColumn()]){ | 
			
		
	
		
			
				
					|  |  |  |                                                      act[element.getColumn()]=element.getValue(); | 
			
		
	
		
			
				
					|  |  |  |                                                  } | 
			
		
	
		
			
				
					|  |  |  |                                              } | 
			
		
	
		
			
				
					|  |  |  |                                          } | 
			
		
	
		
			
				
					|  |  |  |                                     } | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                                         //create equitation solver
 | 
			
		
	
		
			
				
					|  |  |  |                                     storm::solver::MinMaxLinearEquationSolverRequirements requirements = minMaxLinearEquationSolverFactory.getRequirements(true, dir); | 
			
		
	
		
			
				
					|  |  |  |                                     requirements.clearBounds(); | 
			
		
	
		
			
				
					|  |  |  |                                     STORM_LOG_THROW(requirements.empty(), storm::exceptions::UncheckedRequirementException, "Cannot establish requirements for solver."); | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                                     std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver; | 
			
		
	
		
			
				
					|  |  |  |                                     if (probSize!=0){ | 
			
		
	
		
			
				
					|  |  |  |                                         solver = minMaxLinearEquationSolverFactory.create(probMatrix); | 
			
		
	
		
			
				
					|  |  |  |                                         solver->setHasUniqueSolution(); | 
			
		
	
		
			
				
					|  |  |  |                                         solver->setBounds(storm::utility::zero<ValueType>(), storm::utility::one<ValueType>()); | 
			
		
	
		
			
				
					|  |  |  |                                         solver->setRequirementsChecked(); | 
			
		
	
		
			
				
					|  |  |  |                                         solver->setCachingEnabled(true); | 
			
		
	
		
			
				
					|  |  |  |                                     } | 
			
		
	
		
			
				
					|  |  |  |                                         // while not close enough to precision:
 | 
			
		
	
		
			
				
					|  |  |  |                                     do { | 
			
		
	
		
			
				
					|  |  |  |                                         maxNorm = storm::utility::zero<ValueType>(); | 
			
		
	
		
			
				
					|  |  |  |                                         // (2) update parameter
 | 
			
		
	
		
			
				
					|  |  |  |                                         N = ceil(lambda*T*exp(2)-log(kappa*epsilon)); | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                                         // (3) uniform  - just applied to markovian states
 | 
			
		
	
		
			
				
					|  |  |  |                                         for (uint_fast64_t i = 0; i < fullTransitionMatrix.getRowGroupCount(); i++) { | 
			
		
	
		
			
				
					|  |  |  |                                             if (!markovianStates[i]) { | 
			
		
	
		
			
				
					|  |  |  |                                                 continue; | 
			
		
	
		
			
				
					|  |  |  |                                             } | 
			
		
	
		
			
				
					|  |  |  |                                             uint64_t from = rowGroupIndices[i]; //markovian state -> no Nondeterminism -> only one row
 | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                                             if (exitRate[i] == lambda) { | 
			
		
	
		
			
				
					|  |  |  |                                                 continue; //already unified
 | 
			
		
	
		
			
				
					|  |  |  |                                             } | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                                             auto line = fullTransitionMatrix.getRow(from); | 
			
		
	
		
			
				
					|  |  |  |                                             ValueType exitOld = exitRate[i]; | 
			
		
	
		
			
				
					|  |  |  |                                             ValueType exitNew = lambda; | 
			
		
	
		
			
				
					|  |  |  |                                             for (auto &v : line) { | 
			
		
	
		
			
				
					|  |  |  |                                                 if (v.getColumn() == i) { //diagonal element
 | 
			
		
	
		
			
				
					|  |  |  |                                                     ValueType newSelfLoop = exitNew - exitOld + v.getValue(); | 
			
		
	
		
			
				
					|  |  |  |                                                     ValueType newRate = newSelfLoop / exitNew; | 
			
		
	
		
			
				
					|  |  |  |                                                     v.setValue(newRate); | 
			
		
	
		
			
				
					|  |  |  |                                                 } else { //modify probability
 | 
			
		
	
		
			
				
					|  |  |  |                                                     ValueType propOld = v.getValue(); | 
			
		
	
		
			
				
					|  |  |  |                                                     ValueType propNew = propOld * exitOld / exitNew; | 
			
		
	
		
			
				
					|  |  |  |                                                     v.setValue(propNew); | 
			
		
	
		
			
				
					|  |  |  |                                                 } | 
			
		
	
		
			
				
					|  |  |  |                                             } | 
			
		
	
		
			
				
					|  |  |  |                                             exitRate[i] = exitNew; | 
			
		
	
		
			
				
					|  |  |  |                                         } | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                                         // calculate poisson distribution
 | 
			
		
	
		
			
				
					|  |  |  |                                         std::tuple<uint_fast64_t, uint_fast64_t, ValueType, std::vector<ValueType>> foxGlynnResult = storm::utility::numerical::getFoxGlynnCutoff(T*lambda, 1e+300, epsilon*kappa/ 8.0); | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                                         // Scale the weights so they add up to one.
 | 
			
		
	
		
			
				
					|  |  |  |                                         for (auto& element : std::get<3>(foxGlynnResult)) { | 
			
		
	
		
			
				
					|  |  |  |                                             element /= std::get<2>(foxGlynnResult); | 
			
		
	
		
			
				
					|  |  |  |                                         } | 
			
		
	
		
			
				
					|  |  |  |                                         // (4) define vectors/matrices
 | 
			
		
	
		
			
				
					|  |  |  |                                         std::vector<ValueType> init(numberOfStates, -1); | 
			
		
	
		
			
				
					|  |  |  |                                         vd = std::vector<std::vector<ValueType>> (N + 1, init); | 
			
		
	
		
			
				
					|  |  |  |                                         vu = std::vector<std::vector<ValueType>> (N + 1, init); | 
			
		
	
		
			
				
					|  |  |  |                                         wu = std::vector<std::vector<ValueType>> (N + 1, init); | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                                         unifVectors.clear(); | 
			
		
	
		
			
				
					|  |  |  |                                         unifVectors.push_back(vd); | 
			
		
	
		
			
				
					|  |  |  |                                         unifVectors.push_back(vd); | 
			
		
	
		
			
				
					|  |  |  |                                         unifVectors.push_back(vd); | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                                         //define 0=vd 1=vu 2=wu
 | 
			
		
	
		
			
				
					|  |  |  |                                         // (5) calculate vectors and maxNorm
 | 
			
		
	
		
			
				
					|  |  |  |                                         for (uint64_t i = 0; i < numberOfStates; i++) { | 
			
		
	
		
			
				
					|  |  |  |                                             for (uint64_t k = N; k <= N; k--) { | 
			
		
	
		
			
				
					|  |  |  |                                                     calculateUnifPlusVector(k,i,0,lambda,probSize,relReachability,dir,unifVectors,fullTransitionMatrix,markovianStates,psiStates,solver, logfile, std::get<3>(foxGlynnResult)); | 
			
		
	
		
			
				
					|  |  |  |                                                     calculateUnifPlusVector(k,i,2,lambda,probSize,relReachability,dir,unifVectors,fullTransitionMatrix,markovianStates,psiStates,solver, logfile, std::get<3>(foxGlynnResult)); | 
			
		
	
		
			
				
					|  |  |  |                                                     calculateVu(relReachability,dir,k,i,1,lambda,probSize,unifVectors,fullTransitionMatrix,markovianStates,psiStates,solver, logfile, std::get<3>(foxGlynnResult)); | 
			
		
	
		
			
				
					|  |  |  |                                                     //also use iteration to keep maxNorm of vd and vup to date, so the loop-condition is easy to prove
 | 
			
		
	
		
			
				
					|  |  |  |                                                     ValueType diff = std::abs(unifVectors[0][k][i]-unifVectors[1][k][i]); | 
			
		
	
		
			
				
					|  |  |  |                                                     maxNorm  = std::max(maxNorm, diff); | 
			
		
	
		
			
				
					|  |  |  |                                                 } | 
			
		
	
		
			
				
					|  |  |  |                                         } | 
			
		
	
		
			
				
					|  |  |  |                                         printTransitions(N, maxNorm, fullTransitionMatrix,exitRate,markovianStates,psiStates,relReachability,psiStates, psiStates,unifVectors, logfile); //TODO remove
 | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                                         // (6) double lambda
 | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                                         lambda=2*lambda; | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                                         // (7) escape if not coming closer to solution
 | 
			
		
	
		
			
				
					|  |  |  |                                          if (oldDiff!=-1){ | 
			
		
	
		
			
				
					|  |  |  |                                              if (oldDiff==maxNorm){ | 
			
		
	
		
			
				
					|  |  |  |                                                  std::cout << "Not coming closer to solution as " << maxNorm << "/n"; | 
			
		
	
		
			
				
					|  |  |  |                                                  break; | 
			
		
	
		
			
				
					|  |  |  |                                              } | 
			
		
	
		
			
				
					|  |  |  |                                          } | 
			
		
	
		
			
				
					|  |  |  |                                         oldDiff = maxNorm; | 
			
		
	
		
			
				
					|  |  |  |                                     } while (maxNorm>epsilon*(1-kappa)); | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                                     logfile.close(); | 
			
		
	
		
			
				
					|  |  |  |                                     return unifVectors[0][0]; | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |                 logfile.close(); | 
			
		
	
		
			
				
					|  |  |  |                 return unifVectors[0][0]; | 
			
		
	
		
			
				
					|  |  |  |             } | 
			
		
	
		
			
				
					|  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |             template <typename ValueType, typename std::enable_if<storm::NumberTraits<ValueType>::SupportsExponential, int>::type> | 
			
		
	
	
		
			
				
					|  |  | 
 |