Browse Source

graph algorithms for games can now produce player strategies even if they can pick any choice (if requested)

Former-commit-id: 98119f274d
tempestpy_adaptions
dehnert 9 years ago
parent
commit
7d50a6b839
  1. 28
      src/modelchecker/abstraction/GameBasedMdpModelChecker.cpp
  2. 2
      src/modelchecker/abstraction/GameBasedMdpModelChecker.h
  3. 32
      src/utility/graph.cpp
  4. 12
      src/utility/graph.h
  5. 96
      test/functional/utility/GraphTest.cpp

28
src/modelchecker/abstraction/GameBasedMdpModelChecker.cpp

@ -92,6 +92,15 @@ namespace storm {
}
}
template<storm::dd::DdType Type, typename ValueType>
void refineAfterQualitativeCheck(storm::abstraction::MenuGame<Type, ValueType> const& game, detail::GameProb01Result<Type> const& prob01, storm::dd::Bdd<Type> const& transitionMatrixBdd) {
// First, we have to find the pivot states.
storm::dd::Bdd<Type> playerPStates = transitionMatrixBdd.existsAbstract(game.getColumnVariables());
// playerPStates &= prob01.min.first.
}
template<storm::dd::DdType Type, typename ValueType>
std::unique_ptr<CheckResult> GameBasedMdpModelChecker<Type, ValueType>::performGameBasedAbstractionRefinement(CheckTask<storm::logic::Formula> const& checkTask, storm::expressions::Expression const& constraintExpression, storm::expressions::Expression const& targetStateExpression) {
STORM_LOG_THROW(checkTask.isOnlyInitialStatesRelevantSet(), storm::exceptions::InvalidPropertyException, "The game-based abstraction refinement model checker can only compute the result for the initial states.");
@ -114,8 +123,11 @@ namespace storm {
storm::abstraction::MenuGame<Type, ValueType> game = abstractor.abstract();
STORM_LOG_DEBUG("Initial abstraction has " << game.getNumberOfStates() << " (player 1) states and " << game.getNumberOfTransitions() << " transitions.");
// 1.5 build a BDD from the transition matrix for various later uses.
storm::dd::Bdd<Type> transitionMatrixBdd = game.getTransitionMatrix().toBdd();
// 2. compute all states with probability 0/1 wrt. to the two different player 2 goals (min/max).
detail::GameProb01Result<Type> prob01 = computeProb01States(player1Direction, game, constraintExpression, targetStateExpression);
detail::GameProb01Result<Type> prob01 = computeProb01States(player1Direction, game, transitionMatrixBdd, constraintExpression, targetStateExpression);
// 3. compute the states for which we know the result/for which we know there is more work to be done.
storm::dd::Bdd<Type> maybeMin = !(prob01.min.first.states || prob01.min.second.states) && game.getReachableStates();
@ -140,8 +152,7 @@ namespace storm {
// If we get here, the initial states were all identified as prob0/1 states, but the value (0 or 1)
// depends on whether player 2 is minimizing or maximizing. Therefore, we need to find a place to refine.
refineAfterQualitativeCheck(game, prob01, transitionMatrixBdd);
}
@ -158,8 +169,7 @@ namespace storm {
}
template<storm::dd::DdType Type, typename ValueType>
detail::GameProb01Result<Type> GameBasedMdpModelChecker<Type, ValueType>::computeProb01States(storm::OptimizationDirection player1Direction, storm::abstraction::MenuGame<Type, ValueType> const& game, storm::expressions::Expression const& constraintExpression, storm::expressions::Expression const& targetStateExpression) {
storm::dd::Bdd<Type> transitionMatrixBdd = game.getTransitionMatrix().toBdd();
detail::GameProb01Result<Type> GameBasedMdpModelChecker<Type, ValueType>::computeProb01States(storm::OptimizationDirection player1Direction, storm::abstraction::MenuGame<Type, ValueType> const& game, storm::dd::Bdd<Type> const& transitionMatrixBdd, storm::expressions::Expression const& constraintExpression, storm::expressions::Expression const& targetStateExpression) {
storm::dd::Bdd<Type> bottomStatesBdd = game.getBottomStates();
storm::dd::Bdd<Type> targetStates = game.getStates(targetStateExpression);
@ -168,12 +178,12 @@ namespace storm {
}
// Start by computing the states with probability 0/1 when player 2 minimizes.
storm::utility::graph::GameProb01Result<Type> prob0Min = storm::utility::graph::performProb0(game, transitionMatrixBdd, game.getStates(constraintExpression), targetStates, player1Direction, storm::OptimizationDirection::Minimize, true);
storm::utility::graph::GameProb01Result<Type> prob1Min = storm::utility::graph::performProb1(game, transitionMatrixBdd, game.getStates(constraintExpression), targetStates, player1Direction, storm::OptimizationDirection::Minimize, false);
storm::utility::graph::GameProb01Result<Type> prob0Min = storm::utility::graph::performProb0(game, transitionMatrixBdd, game.getStates(constraintExpression), targetStates, player1Direction, storm::OptimizationDirection::Minimize, true, true);
storm::utility::graph::GameProb01Result<Type> prob1Min = storm::utility::graph::performProb1(game, transitionMatrixBdd, game.getStates(constraintExpression), targetStates, player1Direction, storm::OptimizationDirection::Minimize, false, false);
// Now compute the states with probability 0/1 when player 2 maximizes.
storm::utility::graph::GameProb01Result<Type> prob0Max = storm::utility::graph::performProb0(game, transitionMatrixBdd, game.getStates(constraintExpression), targetStates, player1Direction, storm::OptimizationDirection::Maximize, false);
storm::utility::graph::GameProb01Result<Type> prob1Max = storm::utility::graph::performProb1(game, transitionMatrixBdd, game.getStates(constraintExpression), targetStates, player1Direction, storm::OptimizationDirection::Maximize, true);
storm::utility::graph::GameProb01Result<Type> prob0Max = storm::utility::graph::performProb0(game, transitionMatrixBdd, game.getStates(constraintExpression), targetStates, player1Direction, storm::OptimizationDirection::Maximize, false, false);
storm::utility::graph::GameProb01Result<Type> prob1Max = storm::utility::graph::performProb1(game, transitionMatrixBdd, game.getStates(constraintExpression), targetStates, player1Direction, storm::OptimizationDirection::Maximize, true, true);
STORM_LOG_DEBUG("Min: " << prob0Min.states.getNonZeroCount() << " no states, " << prob1Min.states.getNonZeroCount() << " yes states.");
STORM_LOG_DEBUG("Max: " << prob0Max.states.getNonZeroCount() << " no states, " << prob1Max.states.getNonZeroCount() << " yes states.");

2
src/modelchecker/abstraction/GameBasedMdpModelChecker.h

@ -50,7 +50,7 @@ namespace storm {
private:
std::unique_ptr<CheckResult> performGameBasedAbstractionRefinement(CheckTask<storm::logic::Formula> const& checkTask, storm::expressions::Expression const& constraintExpression, storm::expressions::Expression const& targetStateExpression);
detail::GameProb01Result<Type> computeProb01States(storm::OptimizationDirection player1Direction, storm::abstraction::MenuGame<Type, ValueType> const& game, storm::expressions::Expression const& constraintExpression, storm::expressions::Expression const& targetStateExpression);
detail::GameProb01Result<Type> computeProb01States(storm::OptimizationDirection player1Direction, storm::abstraction::MenuGame<Type, ValueType> const& game, storm::dd::Bdd<Type> const& transitionMatrixBdd, storm::expressions::Expression const& constraintExpression, storm::expressions::Expression const& targetStateExpression);
storm::expressions::Expression getExpression(storm::logic::Formula const& formula);

32
src/utility/graph.cpp

@ -924,7 +924,7 @@ namespace storm {
}
template <storm::dd::DdType Type, typename ValueType>
GameProb01Result<Type> performProb0(storm::models::symbolic::StochasticTwoPlayerGame<Type, ValueType> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates, storm::OptimizationDirection const& player1Strategy, storm::OptimizationDirection const& player2Strategy, bool produceStrategies) {
GameProb01Result<Type> performProb0(storm::models::symbolic::StochasticTwoPlayerGame<Type, ValueType> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates, storm::OptimizationDirection const& player1Strategy, storm::OptimizationDirection const& player2Strategy, bool producePlayer1Strategy, bool producePlayer2Strategy) {
// The solution set.
storm::dd::Bdd<Type> solution = psiStates;
@ -966,13 +966,13 @@ namespace storm {
storm::dd::Bdd<Type> onlyProb0Successors = (transitionsBetweenProb0States || model.getIllegalSuccessorMask()).universalAbstract(model.getColumnVariables());
boost::optional<storm::dd::Bdd<Type>> player2StrategyBdd;
if (produceStrategies && player2Strategy == OptimizationDirection::Minimize) {
if (producePlayer2Strategy) {
// Pick a distribution that has only prob0 successors.
player2StrategyBdd = onlyProb0Successors.existsAbstractRepresentative(model.getPlayer2Variables());
}
boost::optional<storm::dd::Bdd<Type>> player1StrategyBdd;
if (produceStrategies && player1Strategy == OptimizationDirection::Minimize) {
if (producePlayer1Strategy) {
// Move from player 2 choices with only prob0 successors to player 1 choices with only prob 0 successors.
onlyProb0Successors = onlyProb0Successors.existsAbstract(model.getPlayer2Variables());
@ -984,7 +984,7 @@ namespace storm {
}
template <storm::dd::DdType Type, typename ValueType>
GameProb01Result<Type> performProb1(storm::models::symbolic::StochasticTwoPlayerGame<Type, ValueType> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates, storm::OptimizationDirection const& player1Strategy, storm::OptimizationDirection const& player2Strategy, bool produceStrategies) {
GameProb01Result<Type> performProb1(storm::models::symbolic::StochasticTwoPlayerGame<Type, ValueType> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates, storm::OptimizationDirection const& player1Strategy, storm::OptimizationDirection const& player2Strategy, bool producePlayer1Strategy, bool producePlayer2Strategy) {
// Create two sets of states. Those states for which we definitely know that their probability is 1 and
// those states that potentially have a probability of 1.
@ -1079,7 +1079,7 @@ namespace storm {
// If we were asked to produce strategies, we propagate that by triggering another iteration.
// We only do this if at least one strategy will be produced.
produceStrategiesInIteration = !produceStrategiesInIteration && produceStrategies && (player1Strategy == OptimizationDirection::Maximize || player2Strategy == OptimizationDirection::Maximize);
produceStrategiesInIteration = !produceStrategiesInIteration && ((producePlayer1Strategy && player1Strategy == OptimizationDirection::Maximize) || (producePlayer2Strategy && player2Strategy == OptimizationDirection::Maximize));
} else {
// Otherwise, we use the current hypothesis for the states with probability 1 as the new maybe
// state set.
@ -1088,6 +1088,20 @@ namespace storm {
++maybeStateIterations;
}
// If we were asked to produce strategies that do not need to pick a certain successor but are
// 'arbitrary', do so now.
bool strategiesToCompute = (producePlayer1Strategy && !player1StrategyBdd) || (producePlayer2Strategy && !player2StrategyBdd);
if (strategiesToCompute) {
storm::dd::Bdd<Type> relevantStates = (transitionMatrix && solution).existsAbstract(model.getColumnVariables());
if (producePlayer2Strategy && !player2StrategyBdd) {
player2StrategyBdd = relevantStates.existsAbstractRepresentative(model.getPlayer2Variables());
}
if (producePlayer1Strategy && !player1StrategyBdd) {
relevantStates = relevantStates.existsAbstract(model.getPlayer2Variables());
player1StrategyBdd = relevantStates.existsAbstractRepresentative(model.getPlayer1Variables());
}
}
return GameProb01Result<Type>(solution, player1StrategyBdd, player2StrategyBdd);
}
@ -1488,9 +1502,9 @@ namespace storm {
template std::pair<storm::dd::Bdd<storm::dd::DdType::CUDD>, storm::dd::Bdd<storm::dd::DdType::CUDD>> performProb01Min(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::CUDD, double> const& model, storm::dd::Bdd<storm::dd::DdType::CUDD> const& phiStates, storm::dd::Bdd<storm::dd::DdType::CUDD> const& psiStates);
template GameProb01Result<storm::dd::DdType::CUDD> performProb0(storm::models::symbolic::StochasticTwoPlayerGame<storm::dd::DdType::CUDD, double> const& model, storm::dd::Bdd<storm::dd::DdType::CUDD> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::CUDD> const& phiStates, storm::dd::Bdd<storm::dd::DdType::CUDD> const& psiStates, storm::OptimizationDirection const& player1Strategy, storm::OptimizationDirection const& player2Strategy, bool produceStrategies);
template GameProb01Result<storm::dd::DdType::CUDD> performProb0(storm::models::symbolic::StochasticTwoPlayerGame<storm::dd::DdType::CUDD, double> const& model, storm::dd::Bdd<storm::dd::DdType::CUDD> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::CUDD> const& phiStates, storm::dd::Bdd<storm::dd::DdType::CUDD> const& psiStates, storm::OptimizationDirection const& player1Strategy, storm::OptimizationDirection const& player2Strategy, bool producePlayer1Strategy, bool producePlayer2Strategy);
template GameProb01Result<storm::dd::DdType::CUDD> performProb1(storm::models::symbolic::StochasticTwoPlayerGame<storm::dd::DdType::CUDD, double> const& model, storm::dd::Bdd<storm::dd::DdType::CUDD> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::CUDD> const& phiStates, storm::dd::Bdd<storm::dd::DdType::CUDD> const& psiStates, storm::OptimizationDirection const& player1Strategy, storm::OptimizationDirection const& player2Strategy, bool produceStrategies);
template GameProb01Result<storm::dd::DdType::CUDD> performProb1(storm::models::symbolic::StochasticTwoPlayerGame<storm::dd::DdType::CUDD, double> const& model, storm::dd::Bdd<storm::dd::DdType::CUDD> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::CUDD> const& phiStates, storm::dd::Bdd<storm::dd::DdType::CUDD> const& psiStates, storm::OptimizationDirection const& player1Strategy, storm::OptimizationDirection const& player2Strategy, bool producePlayer1Strategy, bool producePlayer2Strategy);
// Instantiations for Sylvan.
@ -1520,9 +1534,9 @@ namespace storm {
template std::pair<storm::dd::Bdd<storm::dd::DdType::Sylvan>, storm::dd::Bdd<storm::dd::DdType::Sylvan>> performProb01Min(storm::models::symbolic::NondeterministicModel<storm::dd::DdType::Sylvan, double> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates);
template GameProb01Result<storm::dd::DdType::Sylvan> performProb0(storm::models::symbolic::StochasticTwoPlayerGame<storm::dd::DdType::Sylvan> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates, storm::OptimizationDirection const& player1Strategy, storm::OptimizationDirection const& player2Strategy, bool produceStrategies);
template GameProb01Result<storm::dd::DdType::Sylvan> performProb0(storm::models::symbolic::StochasticTwoPlayerGame<storm::dd::DdType::Sylvan> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates, storm::OptimizationDirection const& player1Strategy, storm::OptimizationDirection const& player2Strategy, bool producePlayer1Strategy, bool producePlayer2Strategy);
template GameProb01Result<storm::dd::DdType::Sylvan> performProb1(storm::models::symbolic::StochasticTwoPlayerGame<storm::dd::DdType::Sylvan> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates, storm::OptimizationDirection const& player1Strategy, storm::OptimizationDirection const& player2Strategy, bool produceStrategies);
template GameProb01Result<storm::dd::DdType::Sylvan> performProb1(storm::models::symbolic::StochasticTwoPlayerGame<storm::dd::DdType::Sylvan> const& model, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& transitionMatrix, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& phiStates, storm::dd::Bdd<storm::dd::DdType::Sylvan> const& psiStates, storm::OptimizationDirection const& player1Strategy, storm::OptimizationDirection const& player2Strategy, bool producePlayer1Strategy, bool producePlayer2Strategy);
} // namespace graph
} // namespace utility

12
src/utility/graph.h

@ -568,11 +568,11 @@ namespace storm {
* @param transitionMatrix The transition matrix of the model as a BDD.
* @param phiStates The BDD containing all phi states of the model.
* @param psiStates The BDD containing all psi states of the model.
* @param produceStrategies A flag indicating whether strategies should be produced. Note that the strategies
* are only produced in case the choices of the player are not irrelevant.
* @param producePlayer1Strategy A flag indicating whether the strategy of player 1 shall be produced.
* @param producePlayer2Strategy A flag indicating whether the strategy of player 2 shall be produced.
*/
template <storm::dd::DdType Type, typename ValueType>
GameProb01Result<Type> performProb0(storm::models::symbolic::StochasticTwoPlayerGame<Type, ValueType> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates, storm::OptimizationDirection const& player1Strategy, storm::OptimizationDirection const& player2Strategy, bool produceStrategies = false);
GameProb01Result<Type> performProb0(storm::models::symbolic::StochasticTwoPlayerGame<Type, ValueType> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates, storm::OptimizationDirection const& player1Strategy, storm::OptimizationDirection const& player2Strategy, bool producePlayer1Strategy = false, bool producePlayer2Strategy = false);
/*!
* Computes the set of states that have probability 1 given the strategies of the two players.
@ -581,11 +581,11 @@ namespace storm {
* @param transitionMatrix The transition matrix of the model as a BDD.
* @param phiStates The BDD containing all phi states of the model.
* @param psiStates The BDD containing all psi states of the model.
* @param produceStrategies A flag indicating whether strategies should be produced. Note that the strategies
* are only produced in case the choices of the player are not irrelevant.
* @param producePlayer1Strategy A flag indicating whether the strategy of player 1 shall be produced.
* @param producePlayer2Strategy A flag indicating whether the strategy of player 2 shall be produced.
*/
template <storm::dd::DdType Type, typename ValueType>
GameProb01Result<Type> performProb1(storm::models::symbolic::StochasticTwoPlayerGame<Type, ValueType> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates, storm::OptimizationDirection const& player1Strategy, storm::OptimizationDirection const& player2Strategybool, bool produceStrategies = false);
GameProb01Result<Type> performProb1(storm::models::symbolic::StochasticTwoPlayerGame<Type, ValueType> const& model, storm::dd::Bdd<Type> const& transitionMatrix, storm::dd::Bdd<Type> const& phiStates, storm::dd::Bdd<Type> const& psiStates, storm::OptimizationDirection const& player1Strategy, storm::OptimizationDirection const& player2Strategy, bool producePlayer1Strategy = false, bool producePlayer2Strategy = false);
/*!
* Performs a topological sort of the states of the system according to the given transitions.

96
test/functional/utility/GraphTest.cpp

@ -214,33 +214,33 @@ TEST(GraphTest, SymbolicProb01StochasticGameDieSmall) {
// The target states are those states where !(s < 3).
storm::dd::Bdd<storm::dd::DdType::CUDD> targetStates = game.getStates(initialPredicates[0], true);
storm::utility::graph::GameProb01Result<storm::dd::DdType::CUDD> result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Minimize, true);
storm::utility::graph::GameProb01Result<storm::dd::DdType::CUDD> result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Minimize, true, true);
EXPECT_EQ(2, result.states.getNonZeroCount());
EXPECT_TRUE(static_cast<bool>(result.player1Strategy));
EXPECT_TRUE(static_cast<bool>(result.player2Strategy));
EXPECT_TRUE(result.hasPlayer1Strategy());
EXPECT_TRUE(result.hasPlayer2Strategy());
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Minimize, true);
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Minimize);
EXPECT_EQ(2, result.states.getNonZeroCount());
result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Maximize, true);
result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Maximize);
EXPECT_EQ(2, result.states.getNonZeroCount());
result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Maximize, true);
result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Maximize);
EXPECT_EQ(2, result.states.getNonZeroCount());
result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Minimize, true);
result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Minimize);
EXPECT_EQ(2, result.states.getNonZeroCount());
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Minimize, true);
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Minimize);
EXPECT_EQ(2, result.states.getNonZeroCount());
result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Maximize, true);
result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Maximize);
EXPECT_EQ(1, result.states.getNonZeroCount());
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Maximize, true);
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Maximize, true, true);
EXPECT_EQ(3, result.states.getNonZeroCount());
EXPECT_TRUE(static_cast<bool>(result.player1Strategy));
EXPECT_TRUE(static_cast<bool>(result.player2Strategy));
EXPECT_TRUE(result.hasPlayer1Strategy());
EXPECT_TRUE(result.hasPlayer2Strategy());
abstractProgram.refine({manager.getVariableExpression("s") < manager.integer(2)});
game = abstractProgram.getAbstractGame();
@ -248,10 +248,10 @@ TEST(GraphTest, SymbolicProb01StochasticGameDieSmall) {
// We need to create a new BDD for the target states since the reachable states might have changed.
targetStates = game.getStates(initialPredicates[0], true);
result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Minimize, true);
result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Minimize, true, true);
EXPECT_EQ(2, result.states.getNonZeroCount());
EXPECT_TRUE(static_cast<bool>(result.player1Strategy));
EXPECT_TRUE(static_cast<bool>(result.player2Strategy));
ASSERT_TRUE(result.hasPlayer1Strategy());
ASSERT_TRUE(result.hasPlayer2Strategy());
// Check the validity of the strategies. Start by checking whether only prob0 states have a strategy.
storm::dd::Bdd<storm::dd::DdType::CUDD> nonProb0StatesWithStrategy = !result.states && result.player1Strategy.get();
@ -265,28 +265,28 @@ TEST(GraphTest, SymbolicProb01StochasticGameDieSmall) {
storm::dd::Add<storm::dd::DdType::CUDD> stateDistributionCount = stateDistributionsUnderStrategies.sumAbstract(game.getNondeterminismVariables());
EXPECT_EQ(1, stateDistributionCount.getMax());
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Minimize, true);
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Minimize);
EXPECT_EQ(3, result.states.getNonZeroCount());
result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Maximize, true);
result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Maximize);
EXPECT_EQ(1, result.states.getNonZeroCount());
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Maximize, true);
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Maximize);
EXPECT_EQ(4, result.states.getNonZeroCount());
result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Minimize, true);
result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Minimize);
EXPECT_EQ(2, result.states.getNonZeroCount());
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Minimize, true);
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Minimize);
EXPECT_EQ(3, result.states.getNonZeroCount());
result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Maximize, true);
result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Maximize);
EXPECT_EQ(1, result.states.getNonZeroCount());
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Maximize, true);
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Maximize, true, true);
EXPECT_EQ(4, result.states.getNonZeroCount());
EXPECT_TRUE(static_cast<bool>(result.player1Strategy));
EXPECT_TRUE(static_cast<bool>(result.player2Strategy));
EXPECT_TRUE(result.hasPlayer1Strategy());
EXPECT_TRUE(result.hasPlayer2Strategy());
// Check the validity of the strategies. Start by checking whether only prob1 states have a strategy.
storm::dd::Bdd<storm::dd::DdType::CUDD> nonProb1StatesWithStrategy = !result.states && result.player1Strategy.get();
@ -350,10 +350,10 @@ TEST(GraphTest, SymbolicProb01StochasticGameTwoDice) {
// The target states are those states where s1 == 7 & s2 == 7 & d1 + d2 == 1.
storm::dd::Bdd<storm::dd::DdType::CUDD> targetStates = game.getStates(initialPredicates[7], false) && game.getStates(initialPredicates[22], false) && game.getStates(initialPredicates[9], false) && game.getStates(initialPredicates[24], false);
storm::utility::graph::GameProb01Result<storm::dd::DdType::CUDD> result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Minimize, true);
storm::utility::graph::GameProb01Result<storm::dd::DdType::CUDD> result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Minimize, true, true);
EXPECT_EQ(153, result.states.getNonZeroCount());
EXPECT_TRUE(static_cast<bool>(result.player1Strategy));
EXPECT_TRUE(static_cast<bool>(result.player2Strategy));
ASSERT_TRUE(result.hasPlayer1Strategy());
ASSERT_TRUE(result.hasPlayer2Strategy());
// Check the validity of the strategies. Start by checking whether only prob0 states have a strategy.
storm::dd::Bdd<storm::dd::DdType::CUDD> nonProb0StatesWithStrategy = !result.states && result.player1Strategy.get();
@ -366,28 +366,28 @@ TEST(GraphTest, SymbolicProb01StochasticGameTwoDice) {
storm::dd::Add<storm::dd::DdType::CUDD> stateDistributionCount = stateDistributionsUnderStrategies.sumAbstract(game.getNondeterminismVariables());
EXPECT_EQ(1, stateDistributionCount.getMax());
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Minimize, true);
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Minimize);
EXPECT_EQ(1, result.states.getNonZeroCount());
result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Maximize, true);
result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Maximize);
EXPECT_EQ(153, result.states.getNonZeroCount());
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Maximize, true);
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Maximize);
EXPECT_EQ(1, result.states.getNonZeroCount());
result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Minimize, true);
result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Minimize);
EXPECT_EQ(153, result.states.getNonZeroCount());
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Minimize, true);
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Minimize);
EXPECT_EQ(1, result.states.getNonZeroCount());
result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Maximize, true);
result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Maximize);
EXPECT_EQ(153, result.states.getNonZeroCount());
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Maximize, true);
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Maximize, true, true);
EXPECT_EQ(1, result.states.getNonZeroCount());
EXPECT_TRUE(static_cast<bool>(result.player1Strategy));
EXPECT_TRUE(static_cast<bool>(result.player2Strategy));
EXPECT_TRUE(result.hasPlayer1Strategy());
EXPECT_TRUE(result.hasPlayer2Strategy());
// Check the validity of the strategies. Start by checking whether only prob1 states have a strategy.
storm::dd::Bdd<storm::dd::DdType::CUDD> nonProb1StatesWithStrategy = !result.states && result.player1Strategy.get();
@ -519,10 +519,10 @@ TEST(GraphTest, SymbolicProb01StochasticGameWlan) {
// The target states are those states where col == 2.
storm::dd::Bdd<storm::dd::DdType::CUDD> targetStates = game.getStates(initialPredicates[2], false);
storm::utility::graph::GameProb01Result<storm::dd::DdType::CUDD> result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Minimize, true);
storm::utility::graph::GameProb01Result<storm::dd::DdType::CUDD> result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Minimize, true, true);
EXPECT_EQ(2831, result.states.getNonZeroCount());
ASSERT_TRUE(static_cast<bool>(result.player1Strategy));
ASSERT_TRUE(static_cast<bool>(result.player2Strategy));
EXPECT_TRUE(result.hasPlayer1Strategy());
EXPECT_TRUE(result.hasPlayer2Strategy());
// Check the validity of the strategies. Start by checking whether only prob0 states have a strategy.
storm::dd::Bdd<storm::dd::DdType::CUDD> nonProb0StatesWithStrategy = !result.states && result.player1Strategy.get();
@ -536,28 +536,28 @@ TEST(GraphTest, SymbolicProb01StochasticGameWlan) {
storm::dd::Add<storm::dd::DdType::CUDD> stateDistributionCount = stateDistributionsUnderStrategies.sumAbstract(game.getNondeterminismVariables());
EXPECT_EQ(1, stateDistributionCount.getMax());
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Minimize, true);
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Minimize);
EXPECT_EQ(2692, result.states.getNonZeroCount());
result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Maximize, true);
result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Maximize);
EXPECT_EQ(2831, result.states.getNonZeroCount());
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Maximize, true);
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Maximize);
EXPECT_EQ(2692, result.states.getNonZeroCount());
result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Minimize, true);
result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Minimize);
EXPECT_EQ(2064, result.states.getNonZeroCount());
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Minimize, true);
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Minimize);
EXPECT_EQ(2884, result.states.getNonZeroCount());
result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Maximize, true);
result = storm::utility::graph::performProb0(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Maximize);
EXPECT_EQ(2064, result.states.getNonZeroCount());
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Maximize, true);
result = storm::utility::graph::performProb1(game, game.getQualitativeTransitionMatrix(), game.getReachableStates(), targetStates, storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Maximize, true, true);
EXPECT_EQ(2884, result.states.getNonZeroCount());
EXPECT_TRUE(static_cast<bool>(result.player1Strategy));
EXPECT_TRUE(static_cast<bool>(result.player2Strategy));
EXPECT_TRUE(result.hasPlayer1Strategy());
EXPECT_TRUE(result.hasPlayer2Strategy());
// Check the validity of the strategies. Start by checking whether only prob1 states have a strategy.
storm::dd::Bdd<storm::dd::DdType::CUDD> nonProb1StatesWithStrategy = !result.states && result.player1Strategy.get();

Loading…
Cancel
Save