@ -214,33 +214,33 @@ TEST(GraphTest, SymbolicProb01StochasticGameDieSmall) {
// The target states are those states where !(s < 3).
storm : : dd : : Bdd < storm : : dd : : DdType : : CUDD > targetStates = game . getStates ( initialPredicates [ 0 ] , true ) ;
storm : : utility : : graph : : GameProb01Result < storm : : dd : : DdType : : CUDD > result = storm : : utility : : graph : : performProb0 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Minimize , storm : : OptimizationDirection : : Minimize , true ) ;
storm : : utility : : graph : : GameProb01Result < storm : : dd : : DdType : : CUDD > result = storm : : utility : : graph : : performProb0 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Minimize , storm : : OptimizationDirection : : Minimize , true , true ) ;
EXPECT_EQ ( 2 , result . states . getNonZeroCount ( ) ) ;
EXPECT_TRUE ( static_cast < bool > ( result . player1Strategy ) ) ;
EXPECT_TRUE ( static_cast < bool > ( result . player2Strategy ) ) ;
EXPECT_TRUE ( result . hasPlayer1Strategy ( ) ) ;
EXPECT_TRUE ( result . hasPlayer2Strategy ( ) ) ;
result = storm : : utility : : graph : : performProb1 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Minimize , storm : : OptimizationDirection : : Minimize , true ) ;
result = storm : : utility : : graph : : performProb1 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Minimize , storm : : OptimizationDirection : : Minimize ) ;
EXPECT_EQ ( 2 , result . states . getNonZeroCount ( ) ) ;
result = storm : : utility : : graph : : performProb0 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Minimize , storm : : OptimizationDirection : : Maximize , true ) ;
result = storm : : utility : : graph : : performProb0 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Minimize , storm : : OptimizationDirection : : Maximize ) ;
EXPECT_EQ ( 2 , result . states . getNonZeroCount ( ) ) ;
result = storm : : utility : : graph : : performProb0 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Minimize , storm : : OptimizationDirection : : Maximize , true ) ;
result = storm : : utility : : graph : : performProb0 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Minimize , storm : : OptimizationDirection : : Maximize ) ;
EXPECT_EQ ( 2 , result . states . getNonZeroCount ( ) ) ;
result = storm : : utility : : graph : : performProb0 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Maximize , storm : : OptimizationDirection : : Minimize , true ) ;
result = storm : : utility : : graph : : performProb0 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Maximize , storm : : OptimizationDirection : : Minimize ) ;
EXPECT_EQ ( 2 , result . states . getNonZeroCount ( ) ) ;
result = storm : : utility : : graph : : performProb1 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Maximize , storm : : OptimizationDirection : : Minimize , true ) ;
result = storm : : utility : : graph : : performProb1 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Maximize , storm : : OptimizationDirection : : Minimize ) ;
EXPECT_EQ ( 2 , result . states . getNonZeroCount ( ) ) ;
result = storm : : utility : : graph : : performProb0 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Maximize , storm : : OptimizationDirection : : Maximize , true ) ;
result = storm : : utility : : graph : : performProb0 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Maximize , storm : : OptimizationDirection : : Maximize ) ;
EXPECT_EQ ( 1 , result . states . getNonZeroCount ( ) ) ;
result = storm : : utility : : graph : : performProb1 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Maximize , storm : : OptimizationDirection : : Maximize , true ) ;
result = storm : : utility : : graph : : performProb1 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Maximize , storm : : OptimizationDirection : : Maximize , true , true ) ;
EXPECT_EQ ( 3 , result . states . getNonZeroCount ( ) ) ;
EXPECT_TRUE ( static_cast < bool > ( result . player1Strategy ) ) ;
EXPECT_TRUE ( static_cast < bool > ( result . player2Strategy ) ) ;
EXPECT_TRUE ( result . hasPlayer1Strategy ( ) ) ;
EXPECT_TRUE ( result . hasPlayer2Strategy ( ) ) ;
abstractProgram . refine ( { manager . getVariableExpression ( " s " ) < manager . integer ( 2 ) } ) ;
game = abstractProgram . getAbstractGame ( ) ;
@ -248,10 +248,10 @@ TEST(GraphTest, SymbolicProb01StochasticGameDieSmall) {
// We need to create a new BDD for the target states since the reachable states might have changed.
targetStates = game . getStates ( initialPredicates [ 0 ] , true ) ;
result = storm : : utility : : graph : : performProb0 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Minimize , storm : : OptimizationDirection : : Minimize , true ) ;
result = storm : : utility : : graph : : performProb0 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Minimize , storm : : OptimizationDirection : : Minimize , true , true ) ;
EXPECT_EQ ( 2 , result . states . getNonZeroCount ( ) ) ;
EXPECT_TRUE ( static_cast < bool > ( result . player1Strategy ) ) ;
EXPECT_TRUE ( static_cast < bool > ( result . player2Strategy ) ) ;
ASSERT_TRUE ( result . hasPlayer1Strategy ( ) ) ;
ASSERT_TRUE ( result . hasPlayer2Strategy ( ) ) ;
// Check the validity of the strategies. Start by checking whether only prob0 states have a strategy.
storm : : dd : : Bdd < storm : : dd : : DdType : : CUDD > nonProb0StatesWithStrategy = ! result . states & & result . player1Strategy . get ( ) ;
@ -265,28 +265,28 @@ TEST(GraphTest, SymbolicProb01StochasticGameDieSmall) {
storm : : dd : : Add < storm : : dd : : DdType : : CUDD > stateDistributionCount = stateDistributionsUnderStrategies . sumAbstract ( game . getNondeterminismVariables ( ) ) ;
EXPECT_EQ ( 1 , stateDistributionCount . getMax ( ) ) ;
result = storm : : utility : : graph : : performProb1 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Minimize , storm : : OptimizationDirection : : Minimize , true ) ;
result = storm : : utility : : graph : : performProb1 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Minimize , storm : : OptimizationDirection : : Minimize ) ;
EXPECT_EQ ( 3 , result . states . getNonZeroCount ( ) ) ;
result = storm : : utility : : graph : : performProb0 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Minimize , storm : : OptimizationDirection : : Maximize , true ) ;
result = storm : : utility : : graph : : performProb0 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Minimize , storm : : OptimizationDirection : : Maximize ) ;
EXPECT_EQ ( 1 , result . states . getNonZeroCount ( ) ) ;
result = storm : : utility : : graph : : performProb1 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Minimize , storm : : OptimizationDirection : : Maximize , true ) ;
result = storm : : utility : : graph : : performProb1 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Minimize , storm : : OptimizationDirection : : Maximize ) ;
EXPECT_EQ ( 4 , result . states . getNonZeroCount ( ) ) ;
result = storm : : utility : : graph : : performProb0 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Maximize , storm : : OptimizationDirection : : Minimize , true ) ;
result = storm : : utility : : graph : : performProb0 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Maximize , storm : : OptimizationDirection : : Minimize ) ;
EXPECT_EQ ( 2 , result . states . getNonZeroCount ( ) ) ;
result = storm : : utility : : graph : : performProb1 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Maximize , storm : : OptimizationDirection : : Minimize , true ) ;
result = storm : : utility : : graph : : performProb1 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Maximize , storm : : OptimizationDirection : : Minimize ) ;
EXPECT_EQ ( 3 , result . states . getNonZeroCount ( ) ) ;
result = storm : : utility : : graph : : performProb0 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Maximize , storm : : OptimizationDirection : : Maximize , true ) ;
result = storm : : utility : : graph : : performProb0 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Maximize , storm : : OptimizationDirection : : Maximize ) ;
EXPECT_EQ ( 1 , result . states . getNonZeroCount ( ) ) ;
result = storm : : utility : : graph : : performProb1 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Maximize , storm : : OptimizationDirection : : Maximize , true ) ;
result = storm : : utility : : graph : : performProb1 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Maximize , storm : : OptimizationDirection : : Maximize , true , true ) ;
EXPECT_EQ ( 4 , result . states . getNonZeroCount ( ) ) ;
EXPECT_TRUE ( static_cast < bool > ( result . player1Strategy ) ) ;
EXPECT_TRUE ( static_cast < bool > ( result . player2Strategy ) ) ;
EXPECT_TRUE ( result . hasPlayer1Strategy ( ) ) ;
EXPECT_TRUE ( result . hasPlayer2Strategy ( ) ) ;
// Check the validity of the strategies. Start by checking whether only prob1 states have a strategy.
storm : : dd : : Bdd < storm : : dd : : DdType : : CUDD > nonProb1StatesWithStrategy = ! result . states & & result . player1Strategy . get ( ) ;
@ -350,10 +350,10 @@ TEST(GraphTest, SymbolicProb01StochasticGameTwoDice) {
// The target states are those states where s1 == 7 & s2 == 7 & d1 + d2 == 1.
storm : : dd : : Bdd < storm : : dd : : DdType : : CUDD > targetStates = game . getStates ( initialPredicates [ 7 ] , false ) & & game . getStates ( initialPredicates [ 22 ] , false ) & & game . getStates ( initialPredicates [ 9 ] , false ) & & game . getStates ( initialPredicates [ 24 ] , false ) ;
storm : : utility : : graph : : GameProb01Result < storm : : dd : : DdType : : CUDD > result = storm : : utility : : graph : : performProb0 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Minimize , storm : : OptimizationDirection : : Minimize , true ) ;
storm : : utility : : graph : : GameProb01Result < storm : : dd : : DdType : : CUDD > result = storm : : utility : : graph : : performProb0 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Minimize , storm : : OptimizationDirection : : Minimize , true , true ) ;
EXPECT_EQ ( 153 , result . states . getNonZeroCount ( ) ) ;
EXPECT_TRUE ( static_cast < bool > ( result . player1Strategy ) ) ;
EXPECT_TRUE ( static_cast < bool > ( result . player2Strategy ) ) ;
ASSERT_TRUE ( result . hasPlayer1Strategy ( ) ) ;
ASSERT_TRUE ( result . hasPlayer2Strategy ( ) ) ;
// Check the validity of the strategies. Start by checking whether only prob0 states have a strategy.
storm : : dd : : Bdd < storm : : dd : : DdType : : CUDD > nonProb0StatesWithStrategy = ! result . states & & result . player1Strategy . get ( ) ;
@ -366,28 +366,28 @@ TEST(GraphTest, SymbolicProb01StochasticGameTwoDice) {
storm : : dd : : Add < storm : : dd : : DdType : : CUDD > stateDistributionCount = stateDistributionsUnderStrategies . sumAbstract ( game . getNondeterminismVariables ( ) ) ;
EXPECT_EQ ( 1 , stateDistributionCount . getMax ( ) ) ;
result = storm : : utility : : graph : : performProb1 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Minimize , storm : : OptimizationDirection : : Minimize , true ) ;
result = storm : : utility : : graph : : performProb1 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Minimize , storm : : OptimizationDirection : : Minimize ) ;
EXPECT_EQ ( 1 , result . states . getNonZeroCount ( ) ) ;
result = storm : : utility : : graph : : performProb0 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Minimize , storm : : OptimizationDirection : : Maximize , true ) ;
result = storm : : utility : : graph : : performProb0 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Minimize , storm : : OptimizationDirection : : Maximize ) ;
EXPECT_EQ ( 153 , result . states . getNonZeroCount ( ) ) ;
result = storm : : utility : : graph : : performProb1 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Minimize , storm : : OptimizationDirection : : Maximize , true ) ;
result = storm : : utility : : graph : : performProb1 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Minimize , storm : : OptimizationDirection : : Maximize ) ;
EXPECT_EQ ( 1 , result . states . getNonZeroCount ( ) ) ;
result = storm : : utility : : graph : : performProb0 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Maximize , storm : : OptimizationDirection : : Minimize , true ) ;
result = storm : : utility : : graph : : performProb0 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Maximize , storm : : OptimizationDirection : : Minimize ) ;
EXPECT_EQ ( 153 , result . states . getNonZeroCount ( ) ) ;
result = storm : : utility : : graph : : performProb1 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Maximize , storm : : OptimizationDirection : : Minimize , true ) ;
result = storm : : utility : : graph : : performProb1 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Maximize , storm : : OptimizationDirection : : Minimize ) ;
EXPECT_EQ ( 1 , result . states . getNonZeroCount ( ) ) ;
result = storm : : utility : : graph : : performProb0 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Maximize , storm : : OptimizationDirection : : Maximize , true ) ;
result = storm : : utility : : graph : : performProb0 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Maximize , storm : : OptimizationDirection : : Maximize ) ;
EXPECT_EQ ( 153 , result . states . getNonZeroCount ( ) ) ;
result = storm : : utility : : graph : : performProb1 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Maximize , storm : : OptimizationDirection : : Maximize , true ) ;
result = storm : : utility : : graph : : performProb1 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Maximize , storm : : OptimizationDirection : : Maximize , true , true ) ;
EXPECT_EQ ( 1 , result . states . getNonZeroCount ( ) ) ;
EXPECT_TRUE ( static_cast < bool > ( result . player1Strategy ) ) ;
EXPECT_TRUE ( static_cast < bool > ( result . player2Strategy ) ) ;
EXPECT_TRUE ( result . hasPlayer1Strategy ( ) ) ;
EXPECT_TRUE ( result . hasPlayer2Strategy ( ) ) ;
// Check the validity of the strategies. Start by checking whether only prob1 states have a strategy.
storm : : dd : : Bdd < storm : : dd : : DdType : : CUDD > nonProb1StatesWithStrategy = ! result . states & & result . player1Strategy . get ( ) ;
@ -519,10 +519,10 @@ TEST(GraphTest, SymbolicProb01StochasticGameWlan) {
// The target states are those states where col == 2.
storm : : dd : : Bdd < storm : : dd : : DdType : : CUDD > targetStates = game . getStates ( initialPredicates [ 2 ] , false ) ;
storm : : utility : : graph : : GameProb01Result < storm : : dd : : DdType : : CUDD > result = storm : : utility : : graph : : performProb0 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Minimize , storm : : OptimizationDirection : : Minimize , true ) ;
storm : : utility : : graph : : GameProb01Result < storm : : dd : : DdType : : CUDD > result = storm : : utility : : graph : : performProb0 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Minimize , storm : : OptimizationDirection : : Minimize , true , true ) ;
EXPECT_EQ ( 2831 , result . states . getNonZeroCount ( ) ) ;
ASSERT_TRUE ( static_cast < bool > ( result . player1Strategy ) ) ;
ASSERT_TRUE ( static_cast < bool > ( result . player2Strategy ) ) ;
EXPECT_TRUE ( result . hasPlayer1Strategy ( ) ) ;
EXPECT_TRUE ( result . hasPlayer2Strategy ( ) ) ;
// Check the validity of the strategies. Start by checking whether only prob0 states have a strategy.
storm : : dd : : Bdd < storm : : dd : : DdType : : CUDD > nonProb0StatesWithStrategy = ! result . states & & result . player1Strategy . get ( ) ;
@ -536,28 +536,28 @@ TEST(GraphTest, SymbolicProb01StochasticGameWlan) {
storm : : dd : : Add < storm : : dd : : DdType : : CUDD > stateDistributionCount = stateDistributionsUnderStrategies . sumAbstract ( game . getNondeterminismVariables ( ) ) ;
EXPECT_EQ ( 1 , stateDistributionCount . getMax ( ) ) ;
result = storm : : utility : : graph : : performProb1 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Minimize , storm : : OptimizationDirection : : Minimize , true ) ;
result = storm : : utility : : graph : : performProb1 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Minimize , storm : : OptimizationDirection : : Minimize ) ;
EXPECT_EQ ( 2692 , result . states . getNonZeroCount ( ) ) ;
result = storm : : utility : : graph : : performProb0 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Minimize , storm : : OptimizationDirection : : Maximize , true ) ;
result = storm : : utility : : graph : : performProb0 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Minimize , storm : : OptimizationDirection : : Maximize ) ;
EXPECT_EQ ( 2831 , result . states . getNonZeroCount ( ) ) ;
result = storm : : utility : : graph : : performProb1 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Minimize , storm : : OptimizationDirection : : Maximize , true ) ;
result = storm : : utility : : graph : : performProb1 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Minimize , storm : : OptimizationDirection : : Maximize ) ;
EXPECT_EQ ( 2692 , result . states . getNonZeroCount ( ) ) ;
result = storm : : utility : : graph : : performProb0 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Maximize , storm : : OptimizationDirection : : Minimize , true ) ;
result = storm : : utility : : graph : : performProb0 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Maximize , storm : : OptimizationDirection : : Minimize ) ;
EXPECT_EQ ( 2064 , result . states . getNonZeroCount ( ) ) ;
result = storm : : utility : : graph : : performProb1 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Maximize , storm : : OptimizationDirection : : Minimize , true ) ;
result = storm : : utility : : graph : : performProb1 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Maximize , storm : : OptimizationDirection : : Minimize ) ;
EXPECT_EQ ( 2884 , result . states . getNonZeroCount ( ) ) ;
result = storm : : utility : : graph : : performProb0 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Maximize , storm : : OptimizationDirection : : Maximize , true ) ;
result = storm : : utility : : graph : : performProb0 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Maximize , storm : : OptimizationDirection : : Maximize ) ;
EXPECT_EQ ( 2064 , result . states . getNonZeroCount ( ) ) ;
result = storm : : utility : : graph : : performProb1 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Maximize , storm : : OptimizationDirection : : Maximize , true ) ;
result = storm : : utility : : graph : : performProb1 ( game , game . getQualitativeTransitionMatrix ( ) , game . getReachableStates ( ) , targetStates , storm : : OptimizationDirection : : Maximize , storm : : OptimizationDirection : : Maximize , true , true ) ;
EXPECT_EQ ( 2884 , result . states . getNonZeroCount ( ) ) ;
EXPECT_TRUE ( static_cast < bool > ( result . player1Strategy ) ) ;
EXPECT_TRUE ( static_cast < bool > ( result . player2Strategy ) ) ;
EXPECT_TRUE ( result . hasPlayer1Strategy ( ) ) ;
EXPECT_TRUE ( result . hasPlayer2Strategy ( ) ) ;
// Check the validity of the strategies. Start by checking whether only prob1 states have a strategy.
storm : : dd : : Bdd < storm : : dd : : DdType : : CUDD > nonProb1StatesWithStrategy = ! result . states & & result . player1Strategy . get ( ) ;