diff --git a/src/storm/modelchecker/prctl/helper/rewardbounded/MultiDimensionalRewardUnfolding.cpp b/src/storm/modelchecker/prctl/helper/rewardbounded/MultiDimensionalRewardUnfolding.cpp index c710d1a04..1d57dd2b7 100644 --- a/src/storm/modelchecker/prctl/helper/rewardbounded/MultiDimensionalRewardUnfolding.cpp +++ b/src/storm/modelchecker/prctl/helper/rewardbounded/MultiDimensionalRewardUnfolding.cpp @@ -230,10 +230,10 @@ namespace storm { } if (!bound.containsVariables()) { - ValueType discretizedBound = storm::utility::convertNumber(bound.evaluateAsRational()); // We always consider upper bounds to be non-strict and lower bounds to be strict. - // Thus, >=N would become >N-1. However, note that the case N=0 needs extra treatment + // Thus, >=N would become >N-1. However, note that the case N=0 is treated separately. if (dimensions[dim].isBounded) { + ValueType discretizedBound = storm::utility::convertNumber(bound.evaluateAsRational()); discretizedBound /= dimensions[dim].scalingFactor; if (storm::utility::isInteger(discretizedBound)) { if (isStrict == dimensions[dim].isUpperBounded) { diff --git a/src/storm/modelchecker/prctl/helper/rewardbounded/ProductModel.cpp b/src/storm/modelchecker/prctl/helper/rewardbounded/ProductModel.cpp index a2c12698b..57fbf4980 100644 --- a/src/storm/modelchecker/prctl/helper/rewardbounded/ProductModel.cpp +++ b/src/storm/modelchecker/prctl/helper/rewardbounded/ProductModel.cpp @@ -511,7 +511,7 @@ namespace storm { for (uint64_t dim = 0; dim < epochManager.getDimensionCount(); ++dim) { if (epochManager.isBottomDimensionEpochClass(epochClass, dim)) { bottomDimensions.set(dim, true); - if (dimensions[dim].isBounded) { + if (dimensions[dim].isBounded && dimensions[dim].maxValue) { considerInitialStates = false; } } diff --git a/src/storm/modelchecker/prctl/helper/rewardbounded/QuantileHelper.cpp b/src/storm/modelchecker/prctl/helper/rewardbounded/QuantileHelper.cpp index d20f4a7da..a06907e2f 100644 --- a/src/storm/modelchecker/prctl/helper/rewardbounded/QuantileHelper.cpp +++ b/src/storm/modelchecker/prctl/helper/rewardbounded/QuantileHelper.cpp @@ -4,7 +4,6 @@ #include #include #include -#include #include "storm/models/sparse/Mdp.h" #include "storm/modelchecker/prctl/helper/rewardbounded/MultiDimensionalRewardUnfolding.h" @@ -17,6 +16,8 @@ #include "storm/logic/ProbabilityOperatorFormula.h" #include "storm/logic/BoundedUntilFormula.h" +#include "storm/exceptions/NotSupportedException.h" + namespace storm { namespace modelchecker { namespace helper { @@ -25,10 +26,20 @@ namespace storm { template QuantileHelper::QuantileHelper(ModelType const& model, storm::logic::QuantileFormula const& quantileFormula) : model(model), quantileFormula(quantileFormula) { // Intentionally left empty - /* Todo: Current assumption: + STORM_LOG_THROW(quantileFormula.getSubformula().isProbabilityOperatorFormula(), storm::exceptions::NotSupportedException, "Quantile formula needs probability operator inside. The formula " << quantileFormula << " is not supported."); + auto const& probOpFormula = quantileFormula.getSubformula().asProbabilityOperatorFormula(); + STORM_LOG_THROW(probOpFormula.getBound().comparisonType == storm::logic::ComparisonType::Greater || probOpFormula.getBound().comparisonType == storm::logic::ComparisonType::LessEqual, storm::exceptions::NotSupportedException, "Probability operator inside quantile formula needs to have bound > or <=."); + STORM_LOG_THROW(probOpFormula.getSubformula().isBoundedUntilFormula(), storm::exceptions::NotSupportedException, "Quantile formula needs bounded until probability operator formula as subformula. The formula " << quantileFormula << " is not supported."); + auto const& boundedUntilFormula = quantileFormula.getSubformula().asProbabilityOperatorFormula().getSubformula().asBoundedUntilFormula(); + + // Only > and <= are supported for upper bounds. This is to make sure that Pr>0.7 [F "goal"] holds iff Pr>0.7 [F<=B "goal"] holds for some B. + // Only >= and < are supported for lower bounds. (EC construction..) + // TODO + + /* Todo: Current assumptions: * Subformula is always prob operator with bounded until * Each bound variable occurs at most once (change this?) - * cost bounds can either be <= or > (the epochs returned by the reward unfolding assume this. One could translate them, though) + * cost bounds are assumed to be always non-strict (the epochs returned by the reward unfolding assume strict lower and non-strict upper cost bounds, though...) * 'reasonable' quantile (e.g. not quantile(max B, Pmax>0.5 [F <=B G]) (we could also filter out these things early on) */ } @@ -141,10 +152,8 @@ namespace storm { result = {{storm::utility::convertNumber(quantileRes.first) * quantileRes.second}}; } else if (maxProbSatisfiesFormula) { // i.e., all bound values satisfy the formula - bool minimizingRewardBound = storm::solver::minimize(getOptimizationDirForDimension(dimension)); - bool upperCostBound = boundedUntilOperator.getSubformula().asBoundedUntilFormula().hasUpperBound(dimension); - if (minimizingRewardBound) { - result = {{ (upperCostBound ? storm::utility::zero() : -storm::utility::one())}}; + if (storm::solver::minimize(getOptimizationDirForDimension(dimension))) { + result = {{ storm::utility::zero() }}; } else { result = {{ storm::utility::infinity()}}; } @@ -153,52 +162,246 @@ namespace storm { result = {{}}; } } else if (getOpenDimensions().getNumberOfSetBits() == 2) { - + result = computeTwoDimensionalQuantile(env); } else { STORM_LOG_THROW(false, storm::exceptions::NotSupportedException, "The quantile formula considers " << getOpenDimensions().getNumberOfSetBits() << " open dimensions. Only one- or two-dimensional quantiles are supported."); } return result; - /* - return unboundedFormula->getBound().isSatisfied(numericResult); - - if (!checkUnboundedValue(env)) { - STORM_LOG_INFO("Bound is not satisfiable."); - result.emplace_back(); - for (auto const& bv : quantileFormula.getBoundVariables()) { - result.front().push_back(storm::solver::minimize(bv.first) ? storm::utility::infinity() : -storm::utility::infinity()); + } + + template + void filterDominatedPoints(std::vector>& points, std::vector const& dirs) { + std::vector> result; + // Note: this is slow and not inplace but also most likely not performance critical + for (auto const& p1 : points) { + bool p1Dominated = false; + for (auto const& p2 : points) { + assert(p1.size() == p2.size()); + bool p2DominatesP1 = false; + for (uint64_t i = 0; i < dirs.size(); ++i) { + if (storm::solver::minimize(dirs[i]) ? p2[i] <= p1[i] : p2[i] >= p1[i]) { + if (p2[i] != p1[i]) { + p2DominatesP1 = true; + } + } else { + p2DominatesP1 = false; + break; + } + } + if (p2DominatesP1) { + p1Dominated = true; + break; + } } - } else { - std::vector limitProbCheckResults; - for (uint64_t dim = 0; dim < getDimension(); ++dim) { - storm::storage::BitVector dimAsBitVector(getDimension(), false); - dimAsBitVector.set(dim, true); - limitProbCheckResults.push_back(checkLimitProbability(env, dimAsBitVector)); - auto quantileRes = computeQuantileForDimension(env, dim); - std::cout << "Quantile for dim " << dim << " is " << (storm::utility::convertNumber(quantileRes.first) * quantileRes.second) << std::endl; + if (!p1Dominated) { + result.push_back(p1); } - - result = {{27}}; } - return result;*/ + points = std::move(result); } + + template + std::vector> QuantileHelper::computeTwoDimensionalQuantile(Environment const& env) { + std::vector> result; + auto const& probOpFormula = quantileFormula.getSubformula().asProbabilityOperatorFormula(); + storm::logic::ComparisonType probabilityBound = probOpFormula.getBound().comparisonType; + auto const& boundedUntilFormula = probOpFormula.getSubformula().asBoundedUntilFormula(); + std::vector dimensionsAsBitVector; + std::vector dimensions; + std::vector optimizationDirections; + std::vector lowerCostBounds; + for (auto const& dirVar : quantileFormula.getBoundVariables()) { + dimensionsAsBitVector.push_back(getDimensionsForVariable(dirVar.second)); + STORM_LOG_THROW(dimensionsAsBitVector.back().getNumberOfSetBits() == 1, storm::exceptions::NotSupportedException, "There is not exactly one reward bound referring to quantile variable '" << dirVar.second.getName() << "'."); + dimensions.push_back(*dimensionsAsBitVector.back().begin()); + lowerCostBounds.push_back(boundedUntilFormula.hasLowerBound(dimensions.back())); + optimizationDirections.push_back(dirVar.first); + } + STORM_LOG_ASSERT(dimensions.size() == 2, "Expected to have exactly two open dimensions."); + if (optimizationDirections[0] == optimizationDirections[1]) { + if (lowerCostBounds[0] == lowerCostBounds[1]) { + // TODO: Assert that we have a reasonable probability bound. STORM_LOG_THROW(storm::solver::minimize(optimizationDirections[0]) + + bool maxmaxProbSatisfiesFormula = probOpFormula.getBound().isSatisfied(computeExtremalValue(env, storm::storage::BitVector(getDimension(), false))); + bool minminProbSatisfiesFormula = probOpFormula.getBound().isSatisfied(computeExtremalValue(env, dimensionsAsBitVector[0] | dimensionsAsBitVector[1])); + if (maxmaxProbSatisfiesFormula != minminProbSatisfiesFormula) { + std::vector> singleQuantileValues; + std::vector> resultPoints; + const int64_t infinity = std::numeric_limits().max(); // use this value to represent infinity in a result point + for (uint64_t i = 0; i < 2; ++i) { + // find out whether the bounds B_i = 0 and B_1-i = infinity satisfy the formula + uint64_t indexToMinimizeProb = lowerCostBounds[i] ? (1-i) : i; + bool zeroInfSatisfiesFormula = probOpFormula.getBound().isSatisfied(computeExtremalValue(env, dimensionsAsBitVector[indexToMinimizeProb])); + std::cout << "Formula sat is " << zeroInfSatisfiesFormula << " and lower bound is " << storm::logic::isLowerBound(probabilityBound) << std::endl; + if (zeroInfSatisfiesFormula == storm::solver::minimize(optimizationDirections[0])) { + // There is bound value b such that the point B_i=0 and B_1-i = b is part of the result + singleQuantileValues.emplace_back(0, storm::utility::zero()); + } else { + // Compute quantile where 1-i approaches infinity + std::cout << "Computing quantile for single dimension " << dimensions[i] << std::endl; + singleQuantileValues.push_back(computeQuantileForDimension(env, dimensions[i])); + std::cout << ".. Result is " << singleQuantileValues.back().first << std::endl; + // When maximizing bounds, the computed quantile value is sat for all values of the other bound. + if (!storm::solver::minimize(optimizationDirections[i])) { + std::vector newResultPoint(2); + newResultPoint[i] = singleQuantileValues.back().first; + newResultPoint[1-i] = infinity; + resultPoints.push_back(newResultPoint); + // Increase the computed value so that there is at least one unsat assignment of bounds with B[i] = singleQuantileValues[i] + ++singleQuantileValues.back().first; + } + } + // Decrease the value for lower cost bounds to convert >= to > + if (lowerCostBounds[i]) { + --singleQuantileValues[i].first; + } + } + std::cout << "Found starting point. Beginning 2D exploration" << std::endl; + + MultiDimensionalRewardUnfolding rewardUnfolding(model, transformBoundedUntilOperator(quantileFormula.getSubformula().asProbabilityOperatorFormula(), std::vector(getDimension(), BoundTransformation::None))); + + // initialize data that will be needed for each epoch + auto lowerBound = rewardUnfolding.getLowerObjectiveBound(); + auto upperBound = rewardUnfolding.getUpperObjectiveBound(); + std::vector x, b; + std::unique_ptr> minMaxSolver; + + std::vector epochValues = {(int64_t) singleQuantileValues[0].first, (int64_t) singleQuantileValues[1].first}; // signed int is needed to allow lower bounds >-1 (aka >=0). + std::cout << "Starting quantile exploration with: (" << epochValues[0] << ", " << epochValues[1] << ")." << std::endl; + std::set exploredEpochs; + while (true) { + auto currEpoch = rewardUnfolding.getStartEpoch(true); + for (uint64_t i = 0; i < 2; ++i) { + if (epochValues[i] >= 0) { + rewardUnfolding.getEpochManager().setDimensionOfEpoch(currEpoch, dimensions[i], (uint64_t) epochValues[i]); + } else { + rewardUnfolding.getEpochManager().setBottomDimension(currEpoch, dimensions[i]); + } + } + auto epochOrder = rewardUnfolding.getEpochComputationOrder(currEpoch); + for (auto const& epoch : epochOrder) { + if (exploredEpochs.count(epoch) == 0) { + auto& epochModel = rewardUnfolding.setCurrentEpoch(epoch); + rewardUnfolding.setSolutionForCurrentEpoch(epochModel.analyzeSingleObjective(env, quantileFormula.getSubformula().asProbabilityOperatorFormula().getOptimalityType(), x, b, minMaxSolver, lowerBound, upperBound)); + exploredEpochs.insert(epoch); + } + } + ValueType currValue = rewardUnfolding.getInitialStateResult(currEpoch); + std::cout << "Numeric result for epoch " << rewardUnfolding.getEpochManager().toString(currEpoch) << " is " << currValue << std::endl; + bool propertySatisfied = probOpFormula.getBound().isSatisfied(currValue); + // If the reward bounds should be as small as possible, we should stop as soon as the property is satisfied. + // If the reward bounds should be as large as possible, we should stop as soon as the property is violated and then go a step backwards + if (storm::solver::minimize(optimizationDirections[0]) == propertySatisfied) { + // We found another point for the result! + resultPoints.push_back(epochValues); + std::cout << "Found another result point: (" << epochValues[0] << ", " << epochValues[1] << ")." << std::endl; + if (epochValues[1] == singleQuantileValues[1].first) { + break; + } else { + ++epochValues[0]; + epochValues[1] = singleQuantileValues[1].first; + } + } else { + ++epochValues[1]; + } + } + + // Translate the result points to the 'original' domain + for (auto& p : resultPoints) { + std::vector convertedP; + for (uint64_t i = 0; i < 2; ++i) { + if (p[i] == infinity) { + convertedP.push_back(storm::utility::infinity()); + } else { + if (lowerCostBounds[i]) { + // Translate > to >= + ++p[i]; + } + if (i == 1 && storm::solver::maximize(optimizationDirections[i])) { + // When maximizing, we actually searched for each x-value the smallest y-value that leads to a property violation. Hence, decreasing y by one means property satisfaction + --p[i]; + } + if (p[i] < 0) { + // Skip this point + convertedP.clear(); + continue; + } + convertedP.push_back(storm::utility::convertNumber(p[i]) * rewardUnfolding.getDimension(dimensions[i]).scalingFactor); + } + } + if (!convertedP.empty()) { + result.push_back(convertedP); + } + } + filterDominatedPoints(result, optimizationDirections); + } else if (maxmaxProbSatisfiesFormula) { + // i.e., all bound values satisfy the formula + if (storm::solver::minimize(optimizationDirections[0])) { + result = {{storm::utility::zero(), storm::utility::zero()}}; + } else { + result = {{ storm::utility::infinity(), storm::utility::infinity()}}; + } + } else { + // i.e., no bound value satisfies the formula + result = {{}}; + } + } else { + // TODO: this is an "unreasonable" case + } + } else { + // TODO: find reasonable min/max cases + } + return result; + } + template std::pair QuantileHelper::computeQuantileForDimension(Environment const& env, uint64_t dimension) const { - // We assume that their is one bound value that violates the quantile and one bound value that satisfies it. + // We assume that there is one bound value that violates the quantile and one bound value that satisfies it. - // 'Drop' all other open bounds + // Let all other open bounds approach infinity std::vector bts(getDimension(), BoundTransformation::None); + storm::storage::BitVector otherLowerBoundedDimensions(getDimension(), false); for (auto const& d : getOpenDimensions()) { if (d != dimension) { - bts[d] = BoundTransformation::GreaterEqualZero; + if (quantileFormula.getSubformula().asProbabilityOperatorFormula().getSubformula().asBoundedUntilFormula().hasLowerBound(d)) { + bts[d] = BoundTransformation::GreaterZero; + otherLowerBoundedDimensions.set(d, true); + } else { + bts[d] = BoundTransformation::GreaterEqualZero; + } } } + + bool upperCostBound = quantileFormula.getSubformula().asProbabilityOperatorFormula().getSubformula().asBoundedUntilFormula().hasUpperBound(dimension); + bool minimizingRewardBound = storm::solver::minimize(getOptimizationDirForDimension(dimension)); + + storm::storage::BitVector nonMecChoices; + if (!otherLowerBoundedDimensions.empty()) { + STORM_LOG_ASSERT(!upperCostBound, "It is not possible to let other open dimensions approach infinity if this is an upper cost bound and others are lower cost bounds."); + // Get the choices that do not lie on a mec + nonMecChoices.resize(model.getNumberOfChoices(), true); + auto mecDecomposition = storm::storage::MaximalEndComponentDecomposition(model); + for (auto const& mec : mecDecomposition) { + for (auto const& stateChoicesPair : mec) { + for (auto const& choice : stateChoicesPair.second) { + nonMecChoices.set(choice, false); + } + } + } + } + auto transformedFormula = transformBoundedUntilOperator(quantileFormula.getSubformula().asProbabilityOperatorFormula(), bts); - MultiDimensionalRewardUnfolding rewardUnfolding(model, transformedFormula); + MultiDimensionalRewardUnfolding rewardUnfolding(model, transformedFormula, [&](std::vector& epochSteps, EpochManager const& epochManager) { + if (!otherLowerBoundedDimensions.empty()) { + for (auto const& choice : nonMecChoices) { + for (auto const& dim : otherLowerBoundedDimensions) { + epochManager.setDimensionOfEpoch(epochSteps[choice], dim, 0); + } + } + } + }); - bool upperCostBound = transformedFormula->getSubformula().asBoundedUntilFormula().hasUpperBound(dimension); - // bool lowerProbabilityBound = storm::logic::isLowerBound(transformedFormula->getBound().comparisonType); - bool minimizingRewardBound = storm::solver::minimize(getOptimizationDirForDimension(dimension)); // initialize data that will be needed for each epoch auto lowerBound = rewardUnfolding.getLowerObjectiveBound(); @@ -206,7 +409,7 @@ namespace storm { std::vector x, b; std::unique_ptr> minMaxSolver; - int64_t epochValue = 0; // -1 is actally allowed since we express >=0 as >-1 + uint64_t epochValue = 0; std::set exploredEpochs; while (true) { auto currEpoch = rewardUnfolding.getStartEpoch(true); @@ -225,10 +428,20 @@ namespace storm { // If the reward bound should be as small as possible, we should stop as soon as the property is satisfied. // If the reward bound should be as large as possible, we should stop as soon as sthe property is violated and then go a step backwards if (minimizingRewardBound && propertySatisfied) { + // We found a satisfying value! + if (!upperCostBound) { + // The rewardunfolding assumes strict lower cost bounds while we assume non-strict ones. Hence, >B becomes >=(B+1). + ++epochValue; + } break; } else if (!minimizingRewardBound && !propertySatisfied) { - STORM_LOG_ASSERT(epochValue > 0 || !upperCostBound, "The property does not seem to be satisfiable. This case should have been treated earlier."); - --epochValue; + // We found a non-satisfying value. Go one step back to get the largest satisfying value. + // ... however, lower cost bounds need to be converted from strict bounds >B to non strict bounds >=(B+1). + // Hence, no operation is necessary in this case. + if (upperCostBound) { + STORM_LOG_ASSERT(epochValue > 0, "The property does not seem to be satisfiable. This case should have been excluded earlier."); + --epochValue; + } break; } ++epochValue; @@ -278,6 +491,7 @@ namespace storm { } } } + std::cout << "nonmec choices are " << nonMecChoices << std::endl; MultiDimensionalRewardUnfolding rewardUnfolding(model, transformedFormula, [&](std::vector& epochSteps, EpochManager const& epochManager) { if (!minimizingLowerBoundedDimensions.empty()) { diff --git a/src/storm/modelchecker/prctl/helper/rewardbounded/QuantileHelper.h b/src/storm/modelchecker/prctl/helper/rewardbounded/QuantileHelper.h index 789e1d727..a0cd22fdb 100644 --- a/src/storm/modelchecker/prctl/helper/rewardbounded/QuantileHelper.h +++ b/src/storm/modelchecker/prctl/helper/rewardbounded/QuantileHelper.h @@ -22,6 +22,7 @@ namespace storm { std::vector> computeQuantile(Environment const& env); private: + std::vector> computeTwoDimensionalQuantile(Environment const& env); /*! * Computes the infimum over bound values in minimizing dimensions / the supremum over bound values in maximizing dimensions