Browse Source

introduced long-run average reward formula

Former-commit-id: 00fac9ad4b
main
dehnert 9 years ago
parent
commit
645f130a62
  1. 12
      src/logic/Formula.cpp
  2. 5
      src/logic/Formula.h
  3. 1
      src/logic/Formulas.h
  4. 21
      src/logic/LongRunAverageRewardFormula.cpp
  5. 29
      src/logic/LongRunAverageRewardFormula.h
  6. 16
      src/modelchecker/AbstractModelChecker.cpp
  7. 3
      src/modelchecker/AbstractModelChecker.h
  8. 4
      src/modelchecker/csl/HybridCtmcCslModelChecker.cpp
  9. 2
      src/modelchecker/csl/HybridCtmcCslModelChecker.h
  10. 4
      src/modelchecker/csl/SparseCtmcCslModelChecker.cpp
  11. 2
      src/modelchecker/csl/SparseCtmcCslModelChecker.h
  12. 4
      src/modelchecker/csl/SparseMarkovAutomatonCslModelChecker.cpp
  13. 2
      src/modelchecker/csl/SparseMarkovAutomatonCslModelChecker.h
  14. 4
      src/modelchecker/csl/helper/HybridCtmcCslHelper.cpp
  15. 2
      src/modelchecker/csl/helper/HybridCtmcCslHelper.h
  16. 2
      src/modelchecker/csl/helper/SparseCtmcCslHelper.cpp
  17. 2
      src/modelchecker/csl/helper/SparseCtmcCslHelper.h
  18. 2
      src/modelchecker/csl/helper/SparseMarkovAutomatonCslHelper.cpp
  19. 2
      src/modelchecker/csl/helper/SparseMarkovAutomatonCslHelper.h
  20. 4
      src/modelchecker/prctl/HybridDtmcPrctlModelChecker.cpp
  21. 2
      src/modelchecker/prctl/HybridDtmcPrctlModelChecker.h
  22. 4
      src/modelchecker/prctl/SparseDtmcPrctlModelChecker.cpp
  23. 2
      src/modelchecker/prctl/SparseDtmcPrctlModelChecker.h
  24. 4
      src/modelchecker/prctl/SparseMdpPrctlModelChecker.cpp
  25. 2
      src/modelchecker/prctl/SparseMdpPrctlModelChecker.h
  26. 4
      src/modelchecker/prctl/helper/SparseDtmcPrctlHelper.cpp
  27. 2
      src/modelchecker/prctl/helper/SparseDtmcPrctlHelper.h
  28. 2
      src/modelchecker/prctl/helper/SparseMdpPrctlHelper.cpp
  29. 2
      src/modelchecker/prctl/helper/SparseMdpPrctlHelper.h
  30. 29
      src/modelchecker/reachability/SparseDtmcEliminationModelChecker.cpp
  31. 10
      src/modelchecker/reachability/SparseDtmcEliminationModelChecker.h
  32. 23
      src/parser/FormulaParser.cpp

12
src/logic/Formula.cpp

@ -103,6 +103,10 @@ namespace storm {
return false;
}
bool Formula::isLongRunAverageRewardFormula() const {
return false;
}
bool Formula::isProbabilityOperatorFormula() const {
return false;
}
@ -351,6 +355,14 @@ namespace storm {
return dynamic_cast<ReachabilityRewardFormula const&>(*this);
}
LongRunAverageRewardFormula& Formula::asLongRunAverageRewardFormula() {
return dynamic_cast<LongRunAverageRewardFormula&>(*this);
}
LongRunAverageRewardFormula const& Formula::asLongRunAverageRewardFormula() const {
return dynamic_cast<LongRunAverageRewardFormula const&>(*this);
}
ProbabilityOperatorFormula& Formula::asProbabilityOperatorFormula() {
return dynamic_cast<ProbabilityOperatorFormula&>(*this);
}

5
src/logic/Formula.h

@ -35,6 +35,7 @@ namespace storm {
class CumulativeRewardFormula;
class InstantaneousRewardFormula;
class ReachabilityRewardFormula;
class LongRunAverageRewardFormula;
class ProbabilityOperatorFormula;
class RewardOperatorFormula;
@ -76,6 +77,7 @@ namespace storm {
virtual bool isCumulativeRewardFormula() const;
virtual bool isInstantaneousRewardFormula() const;
virtual bool isReachabilityRewardFormula() const;
virtual bool isLongRunAverageRewardFormula() const;
virtual bool isProbabilityOperatorFormula() const;
virtual bool isRewardOperatorFormula() const;
@ -163,6 +165,9 @@ namespace storm {
ReachabilityRewardFormula& asReachabilityRewardFormula();
ReachabilityRewardFormula const& asReachabilityRewardFormula() const;
LongRunAverageRewardFormula& asLongRunAverageRewardFormula();
LongRunAverageRewardFormula const& asLongRunAverageRewardFormula() const;
ProbabilityOperatorFormula& asProbabilityOperatorFormula();
ProbabilityOperatorFormula const& asProbabilityOperatorFormula() const;

1
src/logic/Formulas.h

@ -15,6 +15,7 @@
#include "src/logic/RewardPathFormula.h"
#include "src/logic/ProbabilityOperatorFormula.h"
#include "src/logic/ReachabilityRewardFormula.h"
#include "src/logic/LongRunAverageRewardFormula.h"
#include "src/logic/RewardOperatorFormula.h"
#include "src/logic/StateFormula.h"
#include "src/logic/LongRunAverageOperatorFormula.h"

21
src/logic/LongRunAverageRewardFormula.cpp

@ -0,0 +1,21 @@
#include "src/logic/LongRunAverageRewardFormula.h"
namespace storm {
namespace logic {
LongRunAverageRewardFormula::LongRunAverageRewardFormula() {
// Intentionally left empty.
}
bool LongRunAverageRewardFormula::isLongRunAverageRewardFormula() const {
return true;
}
std::shared_ptr<Formula> LongRunAverageRewardFormula::substitute(std::map<storm::expressions::Variable, storm::expressions::Expression> const& substitution) const {
return std::shared_ptr<Formula>(new LongRunAverageRewardFormula());
}
std::ostream& LongRunAverageRewardFormula::writeToStream(std::ostream& out) const {
return out << "LRA";
}
}
}

29
src/logic/LongRunAverageRewardFormula.h

@ -0,0 +1,29 @@
#ifndef STORM_LOGIC_LONGRUNAVERAGEREWARDFORMULA_H_
#define STORM_LOGIC_LONGRUNAVERAGEREWARDFORMULA_H_
#include <memory>
#include "src/logic/RewardPathFormula.h"
namespace storm {
namespace logic {
class LongRunAverageRewardFormula : public RewardPathFormula {
public:
LongRunAverageRewardFormula();
virtual ~LongRunAverageRewardFormula() {
// Intentionally left empty.
}
virtual bool isLongRunAverageRewardFormula() const override;
virtual std::shared_ptr<Formula> substitute(std::map<storm::expressions::Variable, storm::expressions::Expression> const& substitution) const override;
virtual std::ostream& writeToStream(std::ostream& out) const override;
};
}
}
#endif /* STORM_LOGIC_LONGRUNAVERAGEREWARDFORMULA_H_ */

16
src/modelchecker/AbstractModelChecker.cpp

@ -72,6 +72,8 @@ namespace storm {
return this->computeInstantaneousRewards(rewardPathFormula.asInstantaneousRewardFormula(), rewardModelName, qualitative, optimalityType);
} else if (rewardPathFormula.isReachabilityRewardFormula()) {
return this->computeReachabilityRewards(rewardPathFormula.asReachabilityRewardFormula(), rewardModelName, qualitative, optimalityType);
} else if (rewardPathFormula.isLongRunAverageOperatorFormula()) {
return this->computeLongRunAverageRewards(rewardPathFormula.asLongRunAverageRewardFormula(), rewardModelName, qualitative, optimalityType);
}
STORM_LOG_THROW(false, storm::exceptions::InvalidArgumentException, "The given formula '" << rewardPathFormula << "' is invalid.");
}
@ -88,7 +90,11 @@ namespace storm {
STORM_LOG_THROW(false, storm::exceptions::NotImplementedException, "This model checker does not support the formula: " << rewardPathFormula << ".");
}
std::unique_ptr<CheckResult> AbstractModelChecker::computeLongRunAverage(storm::logic::StateFormula const& eventuallyFormula, bool qualitative, boost::optional<OptimizationDirection> const& optimalityType) {
std::unique_ptr<CheckResult> AbstractModelChecker::computeLongRunAverageRewards(storm::logic::LongRunAverageRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName, bool qualitative, boost::optional<OptimizationDirection> const& optimalityType) {
STORM_LOG_THROW(false, storm::exceptions::NotImplementedException, "This model checker does not support the formula: " << rewardPathFormula << ".");
}
std::unique_ptr<CheckResult> AbstractModelChecker::computeLongRunAverageProbabilities(storm::logic::StateFormula const& eventuallyFormula, bool qualitative, boost::optional<OptimizationDirection> const& optimalityType) {
STORM_LOG_THROW(false, storm::exceptions::NotImplementedException, "This model checker does not support the computation of long-run averages.");
}
@ -255,15 +261,15 @@ namespace storm {
std::unique_ptr<CheckResult> result;
if (stateFormula.hasOptimalityType()) {
result = this->computeLongRunAverage(stateFormula.getSubformula().asStateFormula(), false, stateFormula.getOptimalityType());
result = this->computeLongRunAverageProbabilities(stateFormula.getSubformula().asStateFormula(), false, stateFormula.getOptimalityType());
} else if (stateFormula.hasBound()) {
if (stateFormula.getComparisonType() == storm::logic::ComparisonType::Less || stateFormula.getComparisonType() == storm::logic::ComparisonType::LessEqual) {
result = this->computeLongRunAverage(stateFormula.getSubformula().asStateFormula(), false, OptimizationDirection::Maximize);
result = this->computeLongRunAverageProbabilities(stateFormula.getSubformula().asStateFormula(), false, OptimizationDirection::Maximize);
} else {
result = this->computeLongRunAverage(stateFormula.getSubformula().asStateFormula(), false, OptimizationDirection::Minimize);
result = this->computeLongRunAverageProbabilities(stateFormula.getSubformula().asStateFormula(), false, OptimizationDirection::Minimize);
}
} else {
result = this->computeLongRunAverage(stateFormula.getSubformula().asStateFormula(), false);
result = this->computeLongRunAverageProbabilities(stateFormula.getSubformula().asStateFormula(), false);
}
if (stateFormula.hasBound()) {

3
src/modelchecker/AbstractModelChecker.h

@ -47,9 +47,10 @@ namespace storm {
virtual std::unique_ptr<CheckResult> computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>());
virtual std::unique_ptr<CheckResult> computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>());
virtual std::unique_ptr<CheckResult> computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>());
virtual std::unique_ptr<CheckResult> computeLongRunAverageRewards(storm::logic::LongRunAverageRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>());
// The methods to compute the long-run average and expected time.
virtual std::unique_ptr<CheckResult> computeLongRunAverage(storm::logic::StateFormula const& stateFormula, bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>());
virtual std::unique_ptr<CheckResult> computeLongRunAverageProbabilities(storm::logic::StateFormula const& stateFormula, bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>());
virtual std::unique_ptr<CheckResult> computeExpectedTimes(storm::logic::EventuallyFormula const& eventuallyFormula, bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>());
// The methods to check state formulas.

4
src/modelchecker/csl/HybridCtmcCslModelChecker.cpp

@ -88,11 +88,11 @@ namespace storm {
}
template<storm::dd::DdType DdType, class ValueType>
std::unique_ptr<CheckResult> HybridCtmcCslModelChecker<DdType, ValueType>::computeLongRunAverage(storm::logic::StateFormula const& stateFormula, bool qualitative, boost::optional<OptimizationDirection> const& optimalityType) {
std::unique_ptr<CheckResult> HybridCtmcCslModelChecker<DdType, ValueType>::computeLongRunAverageProbabilities(storm::logic::StateFormula const& stateFormula, bool qualitative, boost::optional<OptimizationDirection> const& optimalityType) {
std::unique_ptr<CheckResult> subResultPointer = this->check(stateFormula);
SymbolicQualitativeCheckResult<DdType> const& subResult = subResultPointer->asSymbolicQualitativeCheckResult<DdType>();
return storm::modelchecker::helper::HybridCtmcCslHelper<DdType, ValueType>::computeLongRunAverage(this->getModel(), this->getModel().getTransitionMatrix(), this->getModel().getExitRateVector(), subResult.getTruthValuesVector(), qualitative, *linearEquationSolverFactory);
return storm::modelchecker::helper::HybridCtmcCslHelper<DdType, ValueType>::computeLongRunAverageProbabilities(this->getModel(), this->getModel().getTransitionMatrix(), this->getModel().getExitRateVector(), subResult.getTruthValuesVector(), qualitative, *linearEquationSolverFactory);
}
// Explicitly instantiate the model checker.

2
src/modelchecker/csl/HybridCtmcCslModelChecker.h

@ -24,7 +24,7 @@ namespace storm {
virtual std::unique_ptr<CheckResult> computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
virtual std::unique_ptr<CheckResult> computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
virtual std::unique_ptr<CheckResult> computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
virtual std::unique_ptr<CheckResult> computeLongRunAverage(storm::logic::StateFormula const& stateFormula, bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
virtual std::unique_ptr<CheckResult> computeLongRunAverageProbabilities(storm::logic::StateFormula const& stateFormula, bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
protected:
storm::models::symbolic::Ctmc<DdType, ValueType> const& getModel() const override;

4
src/modelchecker/csl/SparseCtmcCslModelChecker.cpp

@ -94,12 +94,12 @@ namespace storm {
}
template <typename SparseCtmcModelType>
std::unique_ptr<CheckResult> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeLongRunAverage(storm::logic::StateFormula const& stateFormula, bool qualitative, boost::optional<OptimizationDirection> const& optimalityType) {
std::unique_ptr<CheckResult> SparseCtmcCslModelChecker<SparseCtmcModelType>::computeLongRunAverageProbabilities(storm::logic::StateFormula const& stateFormula, bool qualitative, boost::optional<OptimizationDirection> const& optimalityType) {
std::unique_ptr<CheckResult> subResultPointer = this->check(stateFormula);
ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult();
storm::storage::SparseMatrix<ValueType> probabilityMatrix = storm::modelchecker::helper::SparseCtmcCslHelper<ValueType>::computeProbabilityMatrix(this->getModel().getTransitionMatrix(), this->getModel().getExitRateVector());
std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseCtmcCslHelper<ValueType>::computeLongRunAverage(probabilityMatrix, subResult.getTruthValuesVector(), &this->getModel().getExitRateVector(), qualitative, *linearEquationSolverFactory);
std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseCtmcCslHelper<ValueType>::computeLongRunAverageProbabilities(probabilityMatrix, subResult.getTruthValuesVector(), &this->getModel().getExitRateVector(), qualitative, *linearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
}

2
src/modelchecker/csl/SparseCtmcCslModelChecker.h

@ -27,7 +27,7 @@ namespace storm {
virtual std::unique_ptr<CheckResult> computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
virtual std::unique_ptr<CheckResult> computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
virtual std::unique_ptr<CheckResult> computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
virtual std::unique_ptr<CheckResult> computeLongRunAverage(storm::logic::StateFormula const& stateFormula, bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
virtual std::unique_ptr<CheckResult> computeLongRunAverageProbabilities(storm::logic::StateFormula const& stateFormula, bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
private:
// An object that is used for solving linear equations and performing matrix-vector multiplication.

4
src/modelchecker/csl/SparseMarkovAutomatonCslModelChecker.cpp

@ -68,13 +68,13 @@ namespace storm {
}
template<typename SparseMarkovAutomatonModelType>
std::unique_ptr<CheckResult> SparseMarkovAutomatonCslModelChecker<SparseMarkovAutomatonModelType>::computeLongRunAverage(storm::logic::StateFormula const& stateFormula, bool qualitative, boost::optional<OptimizationDirection> const& optimalityType) {
std::unique_ptr<CheckResult> SparseMarkovAutomatonCslModelChecker<SparseMarkovAutomatonModelType>::computeLongRunAverageProbabilities(storm::logic::StateFormula const& stateFormula, bool qualitative, boost::optional<OptimizationDirection> const& optimalityType) {
STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidPropertyException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
STORM_LOG_THROW(this->getModel().isClosed(), storm::exceptions::InvalidPropertyException, "Unable to compute long-run average in non-closed Markov automaton.");
std::unique_ptr<CheckResult> subResultPointer = this->check(stateFormula);
ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult();
std::vector<ValueType> result = storm::modelchecker::helper::SparseMarkovAutomatonCslHelper<ValueType>::computeLongRunAverage(optimalityType.get(), this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), this->getModel().getExitRates(), this->getModel().getMarkovianStates(), subResult.getTruthValuesVector(), qualitative, *minMaxLinearEquationSolverFactory);
std::vector<ValueType> result = storm::modelchecker::helper::SparseMarkovAutomatonCslHelper<ValueType>::computeLongRunAverageProbabilities(optimalityType.get(), this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), this->getModel().getExitRates(), this->getModel().getMarkovianStates(), subResult.getTruthValuesVector(), qualitative, *minMaxLinearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(result)));
}

2
src/modelchecker/csl/SparseMarkovAutomatonCslModelChecker.h

@ -24,7 +24,7 @@ namespace storm {
virtual std::unique_ptr<CheckResult> computeBoundedUntilProbabilities(storm::logic::BoundedUntilFormula const& pathFormula, bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
virtual std::unique_ptr<CheckResult> computeUntilProbabilities(storm::logic::UntilFormula const& pathFormula, bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
virtual std::unique_ptr<CheckResult> computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
virtual std::unique_ptr<CheckResult> computeLongRunAverage(storm::logic::StateFormula const& stateFormula, bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
virtual std::unique_ptr<CheckResult> computeLongRunAverageProbabilities(storm::logic::StateFormula const& stateFormula, bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
virtual std::unique_ptr<CheckResult> computeExpectedTimes(storm::logic::EventuallyFormula const& eventuallyFormula, bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
private:

4
src/modelchecker/csl/helper/HybridCtmcCslHelper.cpp

@ -276,7 +276,7 @@ namespace storm {
}
template<storm::dd::DdType DdType, class ValueType>
std::unique_ptr<CheckResult> HybridCtmcCslHelper<DdType, ValueType>::computeLongRunAverage(storm::models::symbolic::Ctmc<DdType, ValueType> const& model, storm::dd::Add<DdType, ValueType> const& rateMatrix, storm::dd::Add<DdType, ValueType> const& exitRateVector, storm::dd::Bdd<DdType> const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
std::unique_ptr<CheckResult> HybridCtmcCslHelper<DdType, ValueType>::computeLongRunAverageProbabilities(storm::models::symbolic::Ctmc<DdType, ValueType> const& model, storm::dd::Add<DdType, ValueType> const& rateMatrix, storm::dd::Add<DdType, ValueType> const& exitRateVector, storm::dd::Bdd<DdType> const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
storm::dd::Add<DdType, ValueType> probabilityMatrix = computeProbabilityMatrix(model, rateMatrix, exitRateVector);
// Create ODD for the translation.
@ -285,7 +285,7 @@ namespace storm {
storm::storage::SparseMatrix<ValueType> explicitProbabilityMatrix = probabilityMatrix.toMatrix(odd, odd);
std::vector<ValueType> explicitExitRateVector = exitRateVector.toVector(odd);
std::vector<ValueType> result = storm::modelchecker::helper::SparseCtmcCslHelper<ValueType>::computeLongRunAverage(explicitProbabilityMatrix, psiStates.toVector(odd), &explicitExitRateVector, qualitative, linearEquationSolverFactory);
std::vector<ValueType> result = storm::modelchecker::helper::SparseCtmcCslHelper<ValueType>::computeLongRunAverageProbabilities(explicitProbabilityMatrix, psiStates.toVector(odd), &explicitExitRateVector, qualitative, linearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new HybridQuantitativeCheckResult<DdType>(model.getReachableStates(), model.getManager().getBddZero(), model.getManager().template getAddZero<ValueType>(), model.getReachableStates(), std::move(odd), std::move(result)));
}

2
src/modelchecker/csl/helper/HybridCtmcCslHelper.h

@ -28,7 +28,7 @@ namespace storm {
static std::unique_ptr<CheckResult> computeReachabilityRewards(storm::models::symbolic::Ctmc<DdType, ValueType> const& model, storm::dd::Add<DdType, ValueType> const& rateMatrix, storm::dd::Add<DdType, ValueType> const& exitRateVector, RewardModelType const& rewardModel, storm::dd::Bdd<DdType> const& targetStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static std::unique_ptr<CheckResult> computeLongRunAverage(storm::models::symbolic::Ctmc<DdType, ValueType> const& model, storm::dd::Add<DdType, ValueType> const& rateMatrix, storm::dd::Add<DdType, ValueType> const& exitRateVector, storm::dd::Bdd<DdType> const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static std::unique_ptr<CheckResult> computeLongRunAverageProbabilities(storm::models::symbolic::Ctmc<DdType, ValueType> const& model, storm::dd::Add<DdType, ValueType> const& rateMatrix, storm::dd::Add<DdType, ValueType> const& exitRateVector, storm::dd::Bdd<DdType> const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static std::unique_ptr<CheckResult> computeNextProbabilities(storm::models::symbolic::Ctmc<DdType, ValueType> const& model, storm::dd::Add<DdType, ValueType> const& rateMatrix, storm::dd::Add<DdType, ValueType> const& exitRateVector, storm::dd::Bdd<DdType> const& nextStates);

2
src/modelchecker/csl/helper/SparseCtmcCslHelper.cpp

@ -427,7 +427,7 @@ namespace storm {
}
template <typename ValueType>
std::vector<ValueType> SparseCtmcCslHelper<ValueType>::computeLongRunAverage(storm::storage::SparseMatrix<ValueType> const& probabilityMatrix, storm::storage::BitVector const& psiStates, std::vector<ValueType> const* exitRateVector, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
std::vector<ValueType> SparseCtmcCslHelper<ValueType>::computeLongRunAverageProbabilities(storm::storage::SparseMatrix<ValueType> const& probabilityMatrix, storm::storage::BitVector const& psiStates, std::vector<ValueType> const* exitRateVector, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
// If there are no goal states, we avoid the computation and directly return zero.
uint_fast64_t numberOfStates = probabilityMatrix.getRowCount();
if (psiStates.empty()) {

2
src/modelchecker/csl/helper/SparseCtmcCslHelper.h

@ -26,7 +26,7 @@ namespace storm {
template <typename RewardModelType>
static std::vector<ValueType> computeReachabilityRewards(storm::storage::SparseMatrix<ValueType> const& rateMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, RewardModelType const& rewardModel, storm::storage::BitVector const& targetStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static std::vector<ValueType> computeLongRunAverage(storm::storage::SparseMatrix<ValueType> const& probabilityMatrix, storm::storage::BitVector const& psiStates, std::vector<ValueType> const* exitRateVector, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static std::vector<ValueType> computeLongRunAverageProbabilities(storm::storage::SparseMatrix<ValueType> const& probabilityMatrix, storm::storage::BitVector const& psiStates, std::vector<ValueType> const* exitRateVector, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
/*!
* Computes the matrix representing the transitions of the uniformized CTMC.

2
src/modelchecker/csl/helper/SparseMarkovAutomatonCslHelper.cpp

@ -194,7 +194,7 @@ namespace storm {
return computeExpectedRewards(dir, transitionMatrix, backwardTransitions, exitRateVector, markovianStates, psiStates, totalRewardVector, minMaxLinearEquationSolverFactory);
}
template<typename ValueType>
std::vector<ValueType> SparseMarkovAutomatonCslHelper<ValueType>::computeLongRunAverage(OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) {
std::vector<ValueType> SparseMarkovAutomatonCslHelper<ValueType>::computeLongRunAverageProbabilities(OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) {
uint_fast64_t numberOfStates = transitionMatrix.getRowGroupCount();
// If there are no goal states, we avoid the computation and directly return zero.

2
src/modelchecker/csl/helper/SparseMarkovAutomatonCslHelper.h

@ -22,7 +22,7 @@ namespace storm {
static std::vector<ValueType> computeReachabilityRewards(OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, RewardModelType const& rewardModel, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory);
static std::vector<ValueType> computeLongRunAverage(OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory);
static std::vector<ValueType> computeLongRunAverageProbabilities(OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory);
static std::vector<ValueType> computeExpectedTimes(OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory);

4
src/modelchecker/prctl/HybridDtmcPrctlModelChecker.cpp

@ -89,7 +89,7 @@ namespace storm {
}
template<storm::dd::DdType DdType, class ValueType>
std::unique_ptr<CheckResult> HybridDtmcPrctlModelChecker<DdType, ValueType>::computeLongRunAverage(storm::logic::StateFormula const& stateFormula, bool qualitative, boost::optional<OptimizationDirection> const& optimalityType) {
std::unique_ptr<CheckResult> HybridDtmcPrctlModelChecker<DdType, ValueType>::computeLongRunAverageProbabilities(storm::logic::StateFormula const& stateFormula, bool qualitative, boost::optional<OptimizationDirection> const& optimalityType) {
std::unique_ptr<CheckResult> subResultPointer = this->check(stateFormula);
SymbolicQualitativeCheckResult<DdType> const& subResult = subResultPointer->asSymbolicQualitativeCheckResult<DdType>();
@ -98,7 +98,7 @@ namespace storm {
storm::storage::SparseMatrix<ValueType> explicitProbabilityMatrix = this->getModel().getTransitionMatrix().toMatrix(odd, odd);
std::vector<ValueType> result = storm::modelchecker::helper::SparseDtmcPrctlHelper<ValueType>::computeLongRunAverage(explicitProbabilityMatrix, subResult.getTruthValuesVector().toVector(odd), qualitative, *this->linearEquationSolverFactory);
std::vector<ValueType> result = storm::modelchecker::helper::SparseDtmcPrctlHelper<ValueType>::computeLongRunAverageProbabilities(explicitProbabilityMatrix, subResult.getTruthValuesVector().toVector(odd), qualitative, *this->linearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new HybridQuantitativeCheckResult<DdType>(this->getModel().getReachableStates(), this->getModel().getManager().getBddZero(), this->getModel().getManager().template getAddZero<ValueType>(), this->getModel().getReachableStates(), std::move(odd), std::move(result)));
}

2
src/modelchecker/prctl/HybridDtmcPrctlModelChecker.h

@ -24,7 +24,7 @@ namespace storm {
virtual std::unique_ptr<CheckResult> computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
virtual std::unique_ptr<CheckResult> computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
virtual std::unique_ptr<CheckResult> computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
virtual std::unique_ptr<CheckResult> computeLongRunAverage(storm::logic::StateFormula const& stateFormula, bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
virtual std::unique_ptr<CheckResult> computeLongRunAverageProbabilities(storm::logic::StateFormula const& stateFormula, bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
protected:
storm::models::symbolic::Dtmc<DdType, ValueType> const& getModel() const override;

4
src/modelchecker/prctl/SparseDtmcPrctlModelChecker.cpp

@ -89,10 +89,10 @@ namespace storm {
}
template<typename SparseDtmcModelType>
std::unique_ptr<CheckResult> SparseDtmcPrctlModelChecker<SparseDtmcModelType>::computeLongRunAverage(storm::logic::StateFormula const& stateFormula, bool qualitative, boost::optional<OptimizationDirection> const& optimalityType) {
std::unique_ptr<CheckResult> SparseDtmcPrctlModelChecker<SparseDtmcModelType>::computeLongRunAverageProbabilities(storm::logic::StateFormula const& stateFormula, bool qualitative, boost::optional<OptimizationDirection> const& optimalityType) {
std::unique_ptr<CheckResult> subResultPointer = this->check(stateFormula);
ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult();
std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseCtmcCslHelper<ValueType>::computeLongRunAverage(this->getModel().getTransitionMatrix(), subResult.getTruthValuesVector(), nullptr, qualitative, *linearEquationSolverFactory);
std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseCtmcCslHelper<ValueType>::computeLongRunAverageProbabilities(this->getModel().getTransitionMatrix(), subResult.getTruthValuesVector(), nullptr, qualitative, *linearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
}

2
src/modelchecker/prctl/SparseDtmcPrctlModelChecker.h

@ -26,7 +26,7 @@ namespace storm {
virtual std::unique_ptr<CheckResult> computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
virtual std::unique_ptr<CheckResult> computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
virtual std::unique_ptr<CheckResult> computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
virtual std::unique_ptr<CheckResult> computeLongRunAverage(storm::logic::StateFormula const& stateFormula, bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
virtual std::unique_ptr<CheckResult> computeLongRunAverageProbabilities(storm::logic::StateFormula const& stateFormula, bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
private:
// An object that is used for retrieving linear equation solvers.

4
src/modelchecker/prctl/SparseMdpPrctlModelChecker.cpp

@ -118,11 +118,11 @@ namespace storm {
}
template<typename SparseMdpModelType>
std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeLongRunAverage(storm::logic::StateFormula const& stateFormula, bool qualitative, boost::optional<OptimizationDirection> const& optimalityType) {
std::unique_ptr<CheckResult> SparseMdpPrctlModelChecker<SparseMdpModelType>::computeLongRunAverageProbabilities(storm::logic::StateFormula const& stateFormula, bool qualitative, boost::optional<OptimizationDirection> const& optimalityType) {
STORM_LOG_THROW(optimalityType, storm::exceptions::InvalidArgumentException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
std::unique_ptr<CheckResult> subResultPointer = this->check(stateFormula);
ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult();
std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeLongRunAverage(optimalityType.get(), this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), subResult.getTruthValuesVector(), qualitative, *minMaxLinearEquationSolverFactory);
std::vector<ValueType> numericResult = storm::modelchecker::helper::SparseMdpPrctlHelper<ValueType>::computeLongRunAverageProbabilities(optimalityType.get(), this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), subResult.getTruthValuesVector(), qualitative, *minMaxLinearEquationSolverFactory);
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
}

2
src/modelchecker/prctl/SparseMdpPrctlModelChecker.h

@ -40,7 +40,7 @@ namespace storm {
virtual std::unique_ptr<CheckResult> computeCumulativeRewards(storm::logic::CumulativeRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
virtual std::unique_ptr<CheckResult> computeInstantaneousRewards(storm::logic::InstantaneousRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
virtual std::unique_ptr<CheckResult> computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
virtual std::unique_ptr<CheckResult> computeLongRunAverage(storm::logic::StateFormula const& stateFormula, bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
virtual std::unique_ptr<CheckResult> computeLongRunAverageProbabilities(storm::logic::StateFormula const& stateFormula, bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
private:
// An object that is used for retrieving solvers for systems of linear equations that are the result of nondeterministic choices.

4
src/modelchecker/prctl/helper/SparseDtmcPrctlHelper.cpp

@ -214,8 +214,8 @@ namespace storm {
}
template<typename ValueType, typename RewardModelType>
std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeLongRunAverage(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
return SparseCtmcCslHelper<ValueType>::computeLongRunAverage(transitionMatrix, psiStates, nullptr, qualitative, linearEquationSolverFactory);
std::vector<ValueType> SparseDtmcPrctlHelper<ValueType, RewardModelType>::computeLongRunAverageProbabilities(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
return SparseCtmcCslHelper<ValueType>::computeLongRunAverageProbabilities(transitionMatrix, psiStates, nullptr, qualitative, linearEquationSolverFactory);
}
template class SparseDtmcPrctlHelper<double>;

2
src/modelchecker/prctl/helper/SparseDtmcPrctlHelper.h

@ -31,7 +31,7 @@ namespace storm {
static std::vector<ValueType> computeReachabilityRewards(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::vector<ValueType> const& totalStateRewardVector, storm::storage::BitVector const& targetStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static std::vector<ValueType> computeLongRunAverage(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
static std::vector<ValueType> computeLongRunAverageProbabilities(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);
private:
static std::vector<ValueType> computeReachabilityRewards(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::function<std::vector<ValueType>(uint_fast64_t, storm::storage::SparseMatrix<ValueType> const&, storm::storage::BitVector const&)> const& totalStateRewardVectorGetter, storm::storage::BitVector const& targetStates, bool qualitative, storm::utility::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory);

2
src/modelchecker/prctl/helper/SparseMdpPrctlHelper.cpp

@ -282,7 +282,7 @@ namespace storm {
}
template<typename ValueType>
std::vector<ValueType> SparseMdpPrctlHelper<ValueType>::computeLongRunAverage(OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) {
std::vector<ValueType> SparseMdpPrctlHelper<ValueType>::computeLongRunAverageProbabilities(OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory) {
// If there are no goal states, we avoid the computation and directly return zero.
uint_fast64_t numberOfStates = transitionMatrix.getRowGroupCount();
if (psiStates.empty()) {

2
src/modelchecker/prctl/helper/SparseMdpPrctlHelper.h

@ -51,7 +51,7 @@ namespace storm {
static std::vector<ValueType> computeReachabilityRewards(OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::models::sparse::StandardRewardModel<storm::Interval> const& intervalRewardModel, bool lowerBoundOfIntervals, storm::storage::BitVector const& targetStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory);
#endif
static std::vector<ValueType> computeLongRunAverage(OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory);
static std::vector<ValueType> computeLongRunAverageProbabilities(OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& psiStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory);
private:
static std::vector<ValueType> computeReachabilityRewardsHelper(OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::function<std::vector<ValueType>(uint_fast64_t, storm::storage::SparseMatrix<ValueType> const&, storm::storage::BitVector const&)> const& totalStateRewardVectorGetter, storm::storage::BitVector const& targetStates, bool qualitative, storm::utility::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory);

29
src/modelchecker/reachability/SparseDtmcEliminationModelChecker.cpp

@ -119,6 +119,8 @@ namespace storm {
if (longRunAverageOperatorFormula.getSubformula().isPropositionalFormula()) {
return true;
}
} else if (formula.isLongRunAverageRewardFormula()) {
return true;
}
else if (formula.isPropositionalFormula()) {
@ -128,7 +130,7 @@ namespace storm {
}
template<typename SparseDtmcModelType>
std::unique_ptr<CheckResult> SparseDtmcEliminationModelChecker<SparseDtmcModelType>::computeLongRunAverage(storm::logic::StateFormula const& stateFormula, bool qualitative, boost::optional<OptimizationDirection> const& optimalityType) {
std::unique_ptr<CheckResult> SparseDtmcEliminationModelChecker<SparseDtmcModelType>::computeLongRunAverageProbabilities(storm::logic::StateFormula const& stateFormula, bool qualitative, boost::optional<OptimizationDirection> const& optimalityType) {
std::unique_ptr<CheckResult> subResultPointer = this->check(stateFormula);
storm::storage::BitVector const& psiStates = subResultPointer->asExplicitQualitativeCheckResult().getTruthValuesVector();
@ -162,9 +164,7 @@ namespace storm {
}
if (furtherComputationNeeded) {
// Start by decomposing the DTMC into its BSCCs.
storm::storage::BitVector allStates(transitionMatrix.getRowCount(), true);
storm::storage::StronglyConnectedComponentDecomposition<ValueType> bsccDecomposition(transitionMatrix, allStates, false, true);
if (computeResultsForInitialStatesOnly) {
// Determine the set of states that is reachable from the initial state without jumping over a target state.
@ -176,7 +176,7 @@ namespace storm {
std::vector<ValueType> stateValues(maybeStates.size(), storm::utility::zero<ValueType>());
storm::utility::vector::setVectorValues(stateValues, psiStates, storm::utility::one<ValueType>());
result = computeLongRunValues(transitionMatrix, this->getModel().getBackwardTransitions(), initialStates, maybeStates, bsccDecomposition, computeResultsForInitialStatesOnly, stateValues);
result = computeLongRunValues(transitionMatrix, this->getModel().getBackwardTransitions(), initialStates, maybeStates, computeResultsForInitialStatesOnly, stateValues);
}
// Construct check result based on whether we have computed values for all states or just the initial states.
@ -190,10 +190,20 @@ namespace storm {
}
template<typename SparseDtmcModelType>
std::vector<typename SparseDtmcEliminationModelChecker<SparseDtmcModelType>::ValueType> SparseDtmcEliminationModelChecker<SparseDtmcModelType>::computeLongRunValues(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& initialStates, storm::storage::BitVector const& statesWithProbabilityGreater0, storm::storage::StronglyConnectedComponentDecomposition<ValueType> const& bsccDecomposition, bool computeResultsForInitialStatesOnly, std::vector<ValueType>& stateValues) {
std::unique_ptr<CheckResult> SparseDtmcEliminationModelChecker<SparseDtmcModelType>::computeLongRunAverageRewards(storm::logic::LongRunAverageRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName, bool qualitative, boost::optional<OptimizationDirection> const& optimalityType) {
// FIXME
return nullptr;
}
template<typename SparseDtmcModelType>
std::vector<typename SparseDtmcEliminationModelChecker<SparseDtmcModelType>::ValueType> SparseDtmcEliminationModelChecker<SparseDtmcModelType>::computeLongRunValues(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& initialStates, storm::storage::BitVector const& statesWithProbabilityGreater0, bool computeResultsForInitialStatesOnly, std::vector<ValueType>& stateValues) {
std::chrono::high_resolution_clock::time_point totalTimeStart = std::chrono::high_resolution_clock::now();
// Start by decomposing the DTMC into its BSCCs.
// FIXME: time this as well.
storm::storage::StronglyConnectedComponentDecomposition<ValueType> bsccDecomposition(transitionMatrix, storm::storage::BitVector(transitionMatrix.getRowCount(), true), false, true);
std::chrono::high_resolution_clock::time_point conversionStart = std::chrono::high_resolution_clock::now();
// Then, we convert the reduced matrix to a more flexible format to be able to perform state elimination more easily.
@ -236,6 +246,10 @@ namespace storm {
// Compute the average time to stay in each state for all states in BSCCs.
std::vector<ValueType> averageTimeInStates(stateValues.size(), storm::utility::one<ValueType>());
for (auto const& el : stateValues) {
std::cout << el << std::endl;
}
// First, we eliminate all states in BSCCs (except for the representative states).
{
std::unique_ptr<StatePriorityQueue> priorityQueue = createStatePriorityQueue(distanceBasedPriorities, flexibleMatrix, flexibleBackwardTransitions, stateValues, statesInBsccs);
@ -255,12 +269,17 @@ namespace storm {
});
boost::optional<PredecessorFilterCallback> predecessorFilterCallback = boost::none;
// PredecessorFilterCallback([&statesInBsccs,&bsccRepresentativesAsBitVector] (storm::storage::sparse::state_type const& state) { return statesInBsccs.get(state) || bsccRepresentativesAsBitVector.get(state); } );
while (priorityQueue->hasNextState()) {
storm::storage::sparse::state_type state = priorityQueue->popNextState();
eliminateState(state, flexibleMatrix, flexibleBackwardTransitions, valueUpdateCallback, predecessorCallback, priorityUpdateCallback, predecessorFilterCallback, true);
STORM_LOG_ASSERT(checkConsistent(flexibleMatrix, flexibleBackwardTransitions), "The forward and backward transition matrices became inconsistent.");
}
flexibleMatrix.print();
for (auto const& el : stateValues) {
std::cout << el << std::endl;
}
}
// Now, we set the values of all states in BSCCs to that of the representative value (and clear the

10
src/modelchecker/reachability/SparseDtmcEliminationModelChecker.h

@ -7,11 +7,6 @@
#include "src/utility/constants.h"
namespace storm {
namespace storage {
template<typename ValueType>
class StronglyConnectedComponentDecomposition;
}
namespace modelchecker {
template<typename SparseDtmcModelType>
@ -33,8 +28,9 @@ namespace storm {
virtual std::unique_ptr<CheckResult> computeBoundedUntilProbabilities(storm::logic::BoundedUntilFormula const& pathFormula, bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
virtual std::unique_ptr<CheckResult> computeUntilProbabilities(storm::logic::UntilFormula const& pathFormula, bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
virtual std::unique_ptr<CheckResult> computeReachabilityRewards(storm::logic::ReachabilityRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
virtual std::unique_ptr<CheckResult> computeLongRunAverageRewards(storm::logic::LongRunAverageRewardFormula const& rewardPathFormula, boost::optional<std::string> const& rewardModelName = boost::optional<std::string>(), bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
virtual std::unique_ptr<CheckResult> computeConditionalProbabilities(storm::logic::ConditionalPathFormula const& pathFormula, bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
virtual std::unique_ptr<CheckResult> computeLongRunAverage(storm::logic::StateFormula const& stateFormula, bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
virtual std::unique_ptr<CheckResult> computeLongRunAverageProbabilities(storm::logic::StateFormula const& stateFormula, bool qualitative = false, boost::optional<OptimizationDirection> const& optimalityType = boost::optional<OptimizationDirection>()) override;
private:
class FlexibleSparseMatrix {
@ -117,7 +113,7 @@ namespace storm {
PenaltyFunctionType penaltyFunction;
};
static std::vector<ValueType> computeLongRunValues(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& initialStates, storm::storage::BitVector const& statesWithProbabilityGreater0, storm::storage::StronglyConnectedComponentDecomposition<ValueType> const& bsccDecomposition, bool computeResultsForInitialStatesOnly, std::vector<ValueType>& stateValues);
static std::vector<ValueType> computeLongRunValues(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& initialStates, storm::storage::BitVector const& statesWithProbabilityGreater0, bool computeResultsForInitialStatesOnly, std::vector<ValueType>& stateValues);
static std::vector<ValueType> computeReachabilityValues(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<ValueType>& values, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& initialStates, bool computeResultsForInitialStatesOnly, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, std::vector<ValueType> const& oneStepProbabilitiesToTarget);

23
src/parser/FormulaParser.cpp

@ -101,7 +101,7 @@ namespace storm {
qi::rule<Iterator, std::shared_ptr<storm::logic::Formula>(), Skipper> probabilityOperator;
qi::rule<Iterator, std::shared_ptr<storm::logic::Formula>(), Skipper> rewardOperator;
qi::rule<Iterator, std::shared_ptr<storm::logic::Formula>(), Skipper> expectedTimeOperator;
qi::rule<Iterator, std::shared_ptr<storm::logic::Formula>(), Skipper> steadyStateOperator;
qi::rule<Iterator, std::shared_ptr<storm::logic::Formula>(), Skipper> longRunAverageOperator;
qi::rule<Iterator, std::shared_ptr<storm::logic::Formula>(), Skipper> simpleFormula;
qi::rule<Iterator, std::shared_ptr<storm::logic::Formula>(), Skipper> stateFormula;
@ -131,6 +131,7 @@ namespace storm {
qi::rule<Iterator, std::shared_ptr<storm::logic::Formula>(), Skipper> cumulativeRewardFormula;
qi::rule<Iterator, std::shared_ptr<storm::logic::Formula>(), Skipper> reachabilityRewardFormula;
qi::rule<Iterator, std::shared_ptr<storm::logic::Formula>(), Skipper> instantaneousRewardFormula;
qi::rule<Iterator, std::shared_ptr<storm::logic::Formula>(), Skipper> longRunAverageRewardFormula;
// Parser that is used to recognize doubles only (as opposed to Spirit's double_ parser).
boost::spirit::qi::real_parser<double, boost::spirit::qi::strict_real_policies<double>> strict_double;
@ -139,6 +140,7 @@ namespace storm {
std::shared_ptr<storm::logic::Formula> createInstantaneousRewardFormula(boost::variant<unsigned, double> const& timeBound) const;
std::shared_ptr<storm::logic::Formula> createCumulativeRewardFormula(boost::variant<unsigned, double> const& timeBound) const;
std::shared_ptr<storm::logic::Formula> createReachabilityRewardFormula(std::shared_ptr<storm::logic::Formula> const& stateFormula) const;
std::shared_ptr<storm::logic::Formula> createLongRunAverageRewardFormula() const;
std::shared_ptr<storm::logic::Formula> createAtomicExpressionFormula(storm::expressions::Expression const& expression) const;
std::shared_ptr<storm::logic::Formula> createBooleanLiteralFormula(bool literal) const;
std::shared_ptr<storm::logic::Formula> createAtomicLabelFormula(std::string const& label) const;
@ -243,6 +245,9 @@ namespace storm {
// Set the identifier mapping to actually generate expressions.
expressionParser.setIdentifierMapping(&identifiers_);
longRunAverageRewardFormula = (qi::lit("LRA") | qi::lit("S"))[qi::_val = phoenix::bind(&FormulaParserGrammar::createLongRunAverageRewardFormula, phoenix::ref(*this))];
longRunAverageRewardFormula.name("long run average reward formula");
instantaneousRewardFormula = (qi::lit("I=") >> strict_double)[qi::_val = phoenix::bind(&FormulaParserGrammar::createInstantaneousRewardFormula, phoenix::ref(*this), qi::_1)] | (qi::lit("I=") > qi::uint_)[qi::_val = phoenix::bind(&FormulaParserGrammar::createInstantaneousRewardFormula, phoenix::ref(*this), qi::_1)];
instantaneousRewardFormula.name("instantaneous reward formula");
@ -252,7 +257,7 @@ namespace storm {
reachabilityRewardFormula = (qi::lit("F") > stateFormula)[qi::_val = phoenix::bind(&FormulaParserGrammar::createReachabilityRewardFormula, phoenix::ref(*this), qi::_1)];
reachabilityRewardFormula.name("reachability reward formula");
rewardPathFormula = reachabilityRewardFormula | cumulativeRewardFormula | instantaneousRewardFormula;
rewardPathFormula = reachabilityRewardFormula | cumulativeRewardFormula | instantaneousRewardFormula | longRunAverageRewardFormula;
rewardPathFormula.name("reward path formula");
expressionFormula = expressionParser[qi::_val = phoenix::bind(&FormulaParserGrammar::createAtomicExpressionFormula, phoenix::ref(*this), qi::_1)];
@ -267,7 +272,7 @@ namespace storm {
booleanLiteralFormula = (qi::lit("true")[qi::_a = true] | qi::lit("false")[qi::_a = false])[qi::_val = phoenix::bind(&FormulaParserGrammar::createBooleanLiteralFormula, phoenix::ref(*this), qi::_a)];
booleanLiteralFormula.name("boolean literal formula");
operatorFormula = probabilityOperator | rewardOperator | steadyStateOperator;
operatorFormula = probabilityOperator | rewardOperator | longRunAverageOperator;
operatorFormula.name("operator formulas");
atomicStateFormula = booleanLiteralFormula | labelFormula | expressionFormula | (qi::lit("(") > stateFormula > qi::lit(")")) | operatorFormula;
@ -303,8 +308,8 @@ namespace storm {
operatorInformation = (-optimalityOperator_[qi::_a = qi::_1] >> ((relationalOperator_[qi::_b = qi::_1] > qi::double_[qi::_c = qi::_1]) | (qi::lit("=") > qi::lit("?"))))[qi::_val = phoenix::construct<std::tuple<boost::optional<storm::OptimizationDirection>, boost::optional<storm::logic::ComparisonType>, boost::optional<double>>>(qi::_a, qi::_b, qi::_c)];
operatorInformation.name("operator information");
steadyStateOperator = (qi::lit("LRA") > operatorInformation > qi::lit("[") > stateFormula > qi::lit("]"))[qi::_val = phoenix::bind(&FormulaParserGrammar::createLongRunAverageOperatorFormula, phoenix::ref(*this), qi::_1, qi::_2)];
steadyStateOperator.name("long-run average operator");
longRunAverageOperator = ((qi::lit("LRA") | qi::lit("S")) > operatorInformation > qi::lit("[") > stateFormula > qi::lit("]"))[qi::_val = phoenix::bind(&FormulaParserGrammar::createLongRunAverageOperatorFormula, phoenix::ref(*this), qi::_1, qi::_2)];
longRunAverageOperator.name("long-run average operator");
rewardModelName = qi::lit("{\"") > label > qi::lit("\"}");
rewardModelName.name("reward model name");
@ -338,7 +343,7 @@ namespace storm {
debug(andStateFormula);
debug(probabilityOperator);
debug(rewardOperator);
debug(steadyStateOperator);
debug(longRunAverageOperator);
debug(pathFormulaWithoutUntil);
debug(pathFormula);
debug(conditionalFormula);
@ -362,7 +367,7 @@ namespace storm {
qi::on_error<qi::fail>(andStateFormula, handler(qi::_1, qi::_2, qi::_3, qi::_4));
qi::on_error<qi::fail>(probabilityOperator, handler(qi::_1, qi::_2, qi::_3, qi::_4));
qi::on_error<qi::fail>(rewardOperator, handler(qi::_1, qi::_2, qi::_3, qi::_4));
qi::on_error<qi::fail>(steadyStateOperator, handler(qi::_1, qi::_2, qi::_3, qi::_4));
qi::on_error<qi::fail>(longRunAverageOperator, handler(qi::_1, qi::_2, qi::_3, qi::_4));
qi::on_error<qi::fail>(operatorInformation, handler(qi::_1, qi::_2, qi::_3, qi::_4));
qi::on_error<qi::fail>(pathFormulaWithoutUntil, handler(qi::_1, qi::_2, qi::_3, qi::_4));
qi::on_error<qi::fail>(pathFormula, handler(qi::_1, qi::_2, qi::_3, qi::_4));
@ -409,6 +414,10 @@ namespace storm {
return std::shared_ptr<storm::logic::Formula>(new storm::logic::ReachabilityRewardFormula(stateFormula));
}
std::shared_ptr<storm::logic::Formula> FormulaParserGrammar::createLongRunAverageRewardFormula() const {
return std::shared_ptr<storm::logic::Formula>(new storm::logic::LongRunAverageRewardFormula());
}
std::shared_ptr<storm::logic::Formula> FormulaParserGrammar::createAtomicExpressionFormula(storm::expressions::Expression const& expression) const {
STORM_LOG_THROW(expression.hasBooleanType(), storm::exceptions::WrongFormatException, "Expected expression of boolean type.");
return std::shared_ptr<storm::logic::Formula>(new storm::logic::AtomicExpressionFormula(expression));

|||||||
100:0
Loading…
Cancel
Save