Browse Source

PermissiveSchedulers are on future now

Former-commit-id: d49b7623e6
tempestpy_adaptions
sjunges 10 years ago
parent
commit
5ec1e2acbe
  1. 232
      src/storage/PermissiveSchedulers.h

232
src/storage/PermissiveSchedulers.h

@ -0,0 +1,232 @@
#ifndef PERMISSIVESCHEDULERS_H
#define PERMISSIVESCHEDULERS_H
#include <unordered_map>
#include "expressions/Variable.h"
#include "StateActionPair.h"
#include "StateActionTargetTuple.h"
namespace storm {
namespace storage {
class PermissiveSchedulerPenalties {
std::unordered_map<StateActionPair, double> mPenalties;
public:
double get(uint_fast64_t state, uint_fast64_t action) const {
return get(StateActionPair(state, action));
}
double get(StateActionPair const& sap) const {
auto it = mPenalties.find(sap);
if(it == mPenalties.end()) {
return 1.0;
}
else {
return it->second;
}
}
void set(uint_fast64_t state, uint_fast64_t action, double penalty) {
assert(penalty >= 1.0);
if(penalty == 1.0) {
auto it = mPenalties.find(std::make_pair(state, action));
if(it != mPenalties.end()) {
mPenalties.erase(it);
}
} else {
mPenalties.emplace(std::make_pair(state, action), penalty);
}
}
void clear() {
mPenalties.clear();
}
};
class MilpPermissiveSchedulerComputation {
private:
bool mCalledOptimizer = false;
storm::solver::LpSolver& solver;
std::shared_ptr<storm::models::sparse::Mdp<double>> mdp;
std::unordered_map<StateActionPair, storm::expressions::Variable> multistrategyVariables;
std::unordered_map<uint_fast64_t, storm::expressions::Variable> mProbVariables;
std::unordered_map<uint_fast64_t, storm::expressions::Variable> mAlphaVariables;
std::unordered_map<StateActionTarget, storm::expressions::Variable> mBetaVariables;
std::unordered_map<uint_fast64_t, storm::expressions::Variable> mGammaVariables;
BitVector const& mGoals;
BitVector const& mSinks;
public:
MilpPermissiveSchedulerComputation(storm::solver::LpSolver& milpsolver, std::shared_ptr<storm::models::sparse::Mdp<double>> mdp, BitVector const& goalstates, BitVector const& sinkstates)
: solver(milpsolver), mdp(mdp), mGoals(goalstates), mSinks(sinkstates)
{
}
void calculatePermissiveScheduler(double boundary, PermissiveSchedulerPenalties const& penalties, BitVector const& irrelevantStates = BitVector()) {
createMILP(boundary, penalties, irrelevantStates);
solver.optimize();
mCalledOptimizer = true;
}
bool foundSolution() {
assert(mCalledOptimizer);
return !solver.isInfeasible();
}
BitVector getAllowedStateActionPairs() const {
BitVector result(mdp->getNumberOfChoices(), true);
for(auto const& entry : multistrategyVariables) {
if(!solver.getBinaryValue(entry.second)) {
result.set(mdp->getNondeterministicChoiceIndices()[entry.first.getState()]+entry.first.getAction(), false);
}
}
return result;
}
private:
/**
*
*/
void createVariables(PermissiveSchedulerPenalties const& penalties, BitVector const& relevantStates) {
// We need the unique initial state later, so we get that one before looping.
assert(mdp->getInitialStates().getNumberOfSetBits() == 1);
uint_fast64_t initialStateIndex = mdp->getInitialStates().getNextSetIndex(0);
storm::expressions::Variable var;
for(uint_fast64_t s : relevantStates) {
// Create x_s variables
// Notice that only the initial probability appears in the objective.
if(s == initialStateIndex) {
var = solver.addLowerBoundedContinuousVariable("x_" + std::to_string(s), 0.0, -1.0);
} else {
var = solver.addLowerBoundedContinuousVariable("x_" + std::to_string(s), 0.0);
}
mProbVariables[s] = var;
// Create alpha_s variables
var = solver.addBinaryVariable("alp_" + std::to_string(s));
mAlphaVariables[s] = var;
// Create gamma_s variables
var = solver.addBoundedContinuousVariable("gam_" + std::to_string(s), 0.0, 1.0);
mGammaVariables[s] = var;
for(uint_fast64_t a = 0; a < mdp->getNumberOfChoices(s); ++a) {
auto stateAndAction = StateActionPair(s,a);
// Create y_(s,a) variables
double penalty = penalties.get(stateAndAction);
var = solver.addBinaryVariable("y_" + std::to_string(s) + "_" + std::to_string(a), -penalty);
multistrategyVariables[stateAndAction] = var;
// Create beta_(s,a,t) variables
// Iterate over successors of s via a.
for(auto const& entry : mdp->getTransitionMatrix().getRow(mdp->getNondeterministicChoiceIndices()[s]+a)) {
if(entry.getValue() != 0) {
StateActionTarget sat = {s,a,entry.getColumn()};
var = solver.addBinaryVariable("beta_" + to_string(sat));
mBetaVariables[sat] = var;
}
}
}
}
}
void createConstraints(double boundary, storm::storage::BitVector const& relevantStates) {
// (5) and (7) are omitted on purpose (-- we currenty do not support controllability of actions -- )
// (1)
assert(mdp->getInitialStates().getNumberOfSetBits() == 1);
uint_fast64_t initialStateIndex = mdp->getInitialStates().getNextSetIndex(0);
solver.addConstraint("c1", mProbVariables[initialStateIndex] >= solver.getConstant(boundary));
for(uint_fast64_t s : relevantStates) {
std::string stateString = std::to_string(s);
storm::expressions::Expression expr;
// (2)
for(uint_fast64_t a = 0; a < mdp->getNumberOfChoices(s); ++a) {
expr = expr + multistrategyVariables[StateActionPair(s,a)];
}
solver.addConstraint("c2-" + stateString, solver.getConstant(1) <= expr);
// (5)
solver.addConstraint("c5-" + std::to_string(s), mProbVariables[s] <= mAlphaVariables[s]);
// (3) For the relevant states.
for(uint_fast64_t a = 0; a < mdp->getNumberOfChoices(s); ++a) {
std::string sastring(stateString + "_" + std::to_string(a));
expr = storm::expressions::Expression();
for(auto const& entry : mdp->getTransitionMatrix().getRow(mdp->getNondeterministicChoiceIndices()[s]+a)) {
if(entry.getValue() != 0 && relevantStates.get(entry.getColumn())) {
expr = expr + solver.getConstant(entry.getValue()) * mProbVariables[entry.getColumn()];
} else if (entry.getValue() != 0 && mGoals.get(entry.getColumn())) {
expr = expr + solver.getConstant(entry.getValue());
}
}
solver.addConstraint("c3-" + sastring, mProbVariables[s] < (solver.getConstant(1) - multistrategyVariables[StateActionPair(s,a)]) + expr);
}
for(uint_fast64_t a = 0; a < mdp->getNumberOfChoices(s); ++a) {
// (6)
std::string sastring(stateString + "_" + std::to_string(a));
expr = storm::expressions::Expression();
for(auto const& entry : mdp->getTransitionMatrix().getRow(mdp->getNondeterministicChoiceIndices()[s]+a)) {
if(entry.getValue() != 0) {
StateActionTarget sat = {s,a,entry.getColumn()};
expr = expr + mBetaVariables[sat];
}
}
solver.addConstraint("c6-" + sastring, multistrategyVariables[StateActionPair(s,a)] == (solver.getConstant(1) - mAlphaVariables[s]) + expr);
for(auto const& entry : mdp->getTransitionMatrix().getRow(mdp->getNondeterministicChoiceIndices()[s]+a)) {
if(entry.getValue() != 0) {
StateActionTarget sat = {s,a,entry.getColumn()};
std::string satstring = to_string(sat);
// (8)
solver.addConstraint("c8-" + satstring, mGammaVariables[entry.getColumn()] < mGammaVariables[s] + (solver.getConstant(1) - mBetaVariables[sat])); // With rewards, we have to change this.
}
}
}
}
}
/**
*
*/
void createMILP(double boundary, PermissiveSchedulerPenalties const& penalties, BitVector const& dontCareStates ) {
BitVector irrelevant = mGoals | mSinks;
BitVector relevantStates = ~irrelevant;
// Notice that the separated construction of variables and
// constraints slows down the construction of the MILP.
// In the future, we might want to merge this.
createVariables(penalties, relevantStates);
createConstraints(boundary, relevantStates);
solver.setModelSense(storm::solver::LpSolver::ModelSense::Minimize);
}
};
}
}
#endif /* PERMISSIVESCHEDULERS_H */
Loading…
Cancel
Save