Browse Source

Improved compatibility of the dd-to-sparse engine (can now handle reward models with state action rewards)

tempestpy_adaptions
Tim Quatmann 5 years ago
parent
commit
5d530bb532
  1. 2
      src/storm/api/transformation.h
  2. 84
      src/storm/storage/dd/Add.cpp
  3. 20
      src/storm/storage/dd/Add.h
  4. 52
      src/storm/storage/dd/cudd/InternalCuddAdd.cpp
  5. 23
      src/storm/storage/dd/cudd/InternalCuddAdd.h
  6. 58
      src/storm/storage/dd/sylvan/InternalSylvanAdd.cpp
  7. 25
      src/storm/storage/dd/sylvan/InternalSylvanAdd.h
  8. 105
      src/storm/transformer/SymbolicToSparseTransformer.cpp
  9. 8
      src/storm/transformer/SymbolicToSparseTransformer.h

2
src/storm/api/transformation.h

@ -105,6 +105,8 @@ namespace storm {
return storm::transformer::SymbolicMdpToSparseMdpTransformer<Type, ValueType>::translate(*symbolicModel->template as<storm::models::symbolic::Mdp<Type, ValueType>>(), formulas);
case storm::models::ModelType::Ctmc:
return storm::transformer::SymbolicCtmcToSparseCtmcTransformer<Type, ValueType>::translate(*symbolicModel->template as<storm::models::symbolic::Ctmc<Type, ValueType>>(), formulas);
case storm::models::ModelType::MarkovAutomaton:
return storm::transformer::SymbolicMaToSparseMaTransformer<Type, ValueType>::translate(*symbolicModel->template as<storm::models::symbolic::MarkovAutomaton<Type, ValueType>>(), formulas);
default:
STORM_LOG_THROW(false, storm::exceptions::NotSupportedException, "Transformation of symbolic " << symbolicModel->getType() << " to sparse model is not supported.");
}

84
src/storm/storage/dd/Add.cpp

@ -533,7 +533,7 @@ namespace storm {
}
template<DdType LibraryType, typename ValueType>
std::vector<ValueType> Add<LibraryType, ValueType>::toVector(storm::dd::Add<LibraryType, ValueType> const& matrix, std::vector<uint_fast64_t> const& rowGroupIndices, std::set<storm::expressions::Variable> const& rowMetaVariables, std::set<storm::expressions::Variable> const& columnMetaVariables, std::set<storm::expressions::Variable> const& groupMetaVariables, storm::dd::Odd const& rowOdd, storm::dd::Odd const& columnOdd) const {
std::vector<ValueType> Add<LibraryType, ValueType>::toVector(storm::dd::Add<LibraryType, ValueType> const& matrix, std::vector<uint_fast64_t> const& rowGroupIndices, std::set<storm::expressions::Variable> const& rowMetaVariables, std::set<storm::expressions::Variable> const& columnMetaVariables, std::set<storm::expressions::Variable> const& groupMetaVariables, storm::dd::Odd const& rowOdd) const {
std::vector<uint_fast64_t> ddRowVariableIndices;
std::vector<uint_fast64_t> ddColumnVariableIndices;
std::vector<uint_fast64_t> ddGroupVariableIndices;
@ -894,6 +894,38 @@ namespace storm {
template<DdType LibraryType, typename ValueType>
std::pair<storm::storage::SparseMatrix<ValueType>, std::vector<ValueType>> Add<LibraryType, ValueType>::toMatrixVector(std::vector<uint_fast64_t>&& rowGroupIndices, storm::dd::Add<LibraryType, ValueType> const& vector, std::set<storm::expressions::Variable> const& rowMetaVariables, std::set<storm::expressions::Variable> const& columnMetaVariables, std::set<storm::expressions::Variable> const& groupMetaVariables, storm::dd::Odd const& rowOdd, storm::dd::Odd const& columnOdd) const {
auto resultAsVector = toMatrixVectors(std::move(rowGroupIndices), {vector}, rowMetaVariables, columnMetaVariables, groupMetaVariables, rowOdd, columnOdd);
return std::make_pair(resultAsVector.first, resultAsVector.second.front());
}
template<DdType LibraryType, typename ValueType>
std::pair<storm::storage::SparseMatrix<ValueType>, std::vector<std::vector<ValueType>>> Add<LibraryType, ValueType>::toMatrixVectors(std::vector<storm::dd::Add<LibraryType, ValueType>> const& vectors, std::set<storm::expressions::Variable> const& groupMetaVariables, storm::dd::Odd const& rowOdd, storm::dd::Odd const& columnOdd) const {
std::set<storm::expressions::Variable> rowMetaVariables;
std::set<storm::expressions::Variable> columnMetaVariables;
for (auto const& variable : this->getContainedMetaVariables()) {
// If the meta variable is a group meta variable, we do not insert it into the set of row/column meta variables.
if (groupMetaVariables.find(variable) != groupMetaVariables.end()) {
continue;
}
if (variable.getName().size() > 0 && variable.getName().back() == '\'') {
columnMetaVariables.insert(variable);
} else {
rowMetaVariables.insert(variable);
}
}
// Count how many choices each row group has.
Bdd<LibraryType> vectorsNotZero = this->getDdManager().getBddZero();
for (auto const& v : vectors) {
vectorsNotZero |= v.notZero();
}
std::vector<uint_fast64_t> rowGroupIndices = (this->notZero().existsAbstract(columnMetaVariables) || vectorsNotZero).template toAdd<uint_fast64_t>().sumAbstract(groupMetaVariables).toVector(rowOdd);
return toMatrixVectors(std::move(rowGroupIndices), vectors, rowMetaVariables, columnMetaVariables, groupMetaVariables, rowOdd, columnOdd);
}
template<DdType LibraryType, typename ValueType>
std::pair<storm::storage::SparseMatrix<ValueType>, std::vector<std::vector<ValueType>>> Add<LibraryType, ValueType>::toMatrixVectors(std::vector<uint_fast64_t>&& rowGroupIndices, std::vector<storm::dd::Add<LibraryType, ValueType>> const& vectors, std::set<storm::expressions::Variable> const& rowMetaVariables, std::set<storm::expressions::Variable> const& columnMetaVariables, std::set<storm::expressions::Variable> const& groupMetaVariables, storm::dd::Odd const& rowOdd, storm::dd::Odd const& columnOdd) const {
std::vector<uint_fast64_t> ddRowVariableIndices;
std::vector<uint_fast64_t> ddColumnVariableIndices;
std::vector<uint_fast64_t> ddGroupVariableIndices;
@ -936,14 +968,36 @@ namespace storm {
}
rowGroupIndices[0] = 0;
// Create the explicit vector we need to fill later.
std::vector<ValueType> explicitVector(rowGroupIndices.back());
// Create the explicit vectors we need to fill later.
std::vector<std::vector<ValueType>> explicitVectors(vectors.size());
for (auto& v : explicitVectors) {
v.resize(rowGroupIndices.back());
}
// Next, we split the matrix into one for each group. Note that this only works if the group variables are at the very top.
std::vector<std::pair<InternalAdd<LibraryType, ValueType>, InternalAdd<LibraryType, ValueType>>> internalAddGroups = internalAdd.splitIntoGroups(vector, ddGroupVariableIndices);
std::vector<std::pair<Add<LibraryType, ValueType>, Add<LibraryType, ValueType>>> groups;
for (auto const& internalAdd : internalAddGroups) {
groups.push_back(std::make_pair(Add<LibraryType, ValueType>(this->getDdManager(), internalAdd.first, rowAndColumnMetaVariables), Add<LibraryType, ValueType>(this->getDdManager(), internalAdd.second, rowMetaVariables)));
std::vector<std::vector<Add<LibraryType, ValueType>>> groups;
if (vectors.size() == 1) {
// This version potentially has slightly reduced overhead
std::vector<std::pair<InternalAdd<LibraryType, ValueType>, InternalAdd<LibraryType, ValueType>>> internalAddGroups = internalAdd.splitIntoGroups(vectors.front(), ddGroupVariableIndices);
for (auto const& internalAdd : internalAddGroups) {
groups.push_back({Add<LibraryType, ValueType>(this->getDdManager(), internalAdd.second, rowMetaVariables), Add<LibraryType, ValueType>(this->getDdManager(), internalAdd.first, rowAndColumnMetaVariables)});
}
} else {
std::vector<InternalAdd<LibraryType, ValueType>> internalVectors;
for (Add<LibraryType, ValueType> const& v : vectors) {
internalVectors.push_back(v.getInternalAdd());
}
std::vector<std::vector<InternalAdd<LibraryType, ValueType>>> internalAddGroups = internalAdd.splitIntoGroups(internalVectors, ddGroupVariableIndices);
for (auto const& internalAddGroup : internalAddGroups) {
STORM_LOG_ASSERT(internalAddGroup.size() == vectors.size() + 1, "Unexpected group size.");
std::vector<Add<LibraryType, ValueType>> group;
for (uint64_t vectorIndex = 0; vectorIndex < vectors.size(); ++vectorIndex) {
group.push_back(Add<LibraryType, ValueType>(this->getDdManager(), internalAddGroup[vectorIndex], rowMetaVariables));
}
// The last group member corresponds to the matrix.
group.push_back(Add<LibraryType, ValueType>(this->getDdManager(), internalAddGroup.back(), rowAndColumnMetaVariables));
groups.push_back(std::move(group));
}
}
// Create the actual storage for the non-zero entries.
@ -955,16 +1009,19 @@ namespace storm {
std::vector<InternalAdd<LibraryType, uint_fast64_t>> statesWithGroupEnabled(groups.size());
InternalAdd<LibraryType, uint_fast64_t> stateToRowGroupCount = this->getDdManager().template getAddZero<uint_fast64_t>();
for (uint_fast64_t i = 0; i < groups.size(); ++i) {
std::pair<Add<LibraryType, ValueType>, Add<LibraryType, ValueType>> const& ddPair = groups[i];
Bdd<LibraryType> matrixDdNotZero = ddPair.first.notZero();
Bdd<LibraryType> vectorDdNotZero = ddPair.second.notZero();
std::vector<Add<LibraryType, ValueType>> const& group = groups[i];
Bdd<LibraryType> matrixDdNotZero = group.back().notZero();
std::vector<uint64_t> tmpRowIndications = matrixDdNotZero.template toAdd<uint_fast64_t>().sumAbstract(columnMetaVariables).toVector(rowOdd);
for (uint64_t offset = 0; offset < tmpRowIndications.size(); ++offset) {
rowIndications[rowGroupIndices[offset]] += tmpRowIndications[offset];
}
ddPair.second.internalAdd.composeWithExplicitVector(rowOdd, ddRowVariableIndices, rowGroupIndices, explicitVector, std::plus<ValueType>());
Bdd<LibraryType> vectorDdNotZero = this->getDdManager().getBddZero();
for (uint64_t vectorIndex = 0; vectorIndex < vectors.size(); ++vectorIndex) {
vectorDdNotZero |= group[vectorIndex].notZero();
group[vectorIndex].internalAdd.composeWithExplicitVector(rowOdd, ddRowVariableIndices, rowGroupIndices, explicitVectors[vectorIndex], std::plus<ValueType>());
}
statesWithGroupEnabled[i] = (matrixDdNotZero.existsAbstract(columnMetaVariables) || vectorDdNotZero).template toAdd<uint_fast64_t>();
stateToRowGroupCount += statesWithGroupEnabled[i];
@ -986,7 +1043,7 @@ namespace storm {
// Now actually fill the entry vector.
for (uint_fast64_t i = 0; i < groups.size(); ++i) {
auto const& dd = groups[i].first;
auto const& dd = groups[i].back();
dd.internalAdd.toMatrixComponents(rowGroupIndices, rowIndications, columnsAndValues, rowOdd, columnOdd, ddRowVariableIndices, ddColumnVariableIndices, true);
statesWithGroupEnabled[i].composeWithExplicitVector(rowOdd, ddRowVariableIndices, rowGroupIndices, std::plus<uint_fast64_t>());
@ -1001,9 +1058,10 @@ namespace storm {
}
rowIndications[0] = 0;
return std::make_pair(storm::storage::SparseMatrix<ValueType>(columnOdd.getTotalOffset(), std::move(rowIndications), std::move(columnsAndValues), std::move(rowGroupIndices)), std::move(explicitVector));
return std::make_pair(storm::storage::SparseMatrix<ValueType>(columnOdd.getTotalOffset(), std::move(rowIndications), std::move(columnsAndValues), std::move(rowGroupIndices)), std::move(explicitVectors));
}
template<DdType LibraryType, typename ValueType>
void Add<LibraryType, ValueType>::exportToDot(std::string const& filename, bool showVariablesIfPossible) const {

20
src/storm/storage/dd/Add.h

@ -585,17 +585,16 @@ namespace storm {
* variables used to distinguish different row groups are at the very top of the ADD.
*
* @param matrix The symbolic matrix whose row group sizes to respect.
* @param rowGroupSizes A vector specifying the sizes of the row groups.
* @param rowGroupIndices A vector specifying the sizes of the row groups.
* @param rowMetaVariables The meta variables that encode the rows of the matrix.
* @param columnMetaVariables The meta variables that encode the columns of the matrix.
* @param groupMetaVariables The meta variables that are used to distinguish different row groups.
* @param rowOdd The ODD used for determining the correct row.
* @param columnOdd The ODD used for determining the correct column.
* @return The matrix that is represented by this ADD and and a vector corresponding to the symbolic vector
* (if it was given).
* @return The vector that is represented by this ADD.
*/
std::vector<ValueType> toVector(storm::dd::Add<LibraryType, ValueType> const& matrix, std::vector<uint_fast64_t> const& rowGroupSizes, std::set<storm::expressions::Variable> const& rowMetaVariables, std::set<storm::expressions::Variable> const& columnMetaVariables, std::set<storm::expressions::Variable> const& groupMetaVariables, storm::dd::Odd const& rowOdd, storm::dd::Odd const& columnOdd) const;
std::vector<ValueType> toVector(storm::dd::Add<LibraryType, ValueType> const& matrix, std::vector<uint_fast64_t> const& rowGroupIndices, std::set<storm::expressions::Variable> const& rowMetaVariables, std::set<storm::expressions::Variable> const& columnMetaVariables, std::set<storm::expressions::Variable> const& groupMetaVariables, storm::dd::Odd const& rowOdd) const;
/*!
* Converts the ADD to a (sparse) matrix. All contained non-primed variables are assumed to encode the
@ -686,6 +685,21 @@ namespace storm {
*/
std::pair<storm::storage::SparseMatrix<ValueType>, std::vector<ValueType>> toMatrixVector(storm::dd::Add<LibraryType, ValueType> const& vector, std::set<storm::expressions::Variable> const& groupMetaVariables, storm::dd::Odd const& rowOdd, storm::dd::Odd const& columnOdd) const;
std::pair<storm::storage::SparseMatrix<ValueType>, std::vector<ValueType>> toMatrixVector(std::vector<uint_fast64_t>&& rowGroupSizes, storm::dd::Add<LibraryType, ValueType> const& vector, std::set<storm::expressions::Variable> const& rowMetaVariables, std::set<storm::expressions::Variable> const& columnMetaVariables, std::set<storm::expressions::Variable> const& groupMetaVariables, storm::dd::Odd const& rowOdd, storm::dd::Odd const& columnOdd) const;
/*!
* Converts the ADD to a row-grouped (sparse) matrix and the given vectors to row-grouped vectors.
* The given offset-labeled DDs are used to determine the correct row and column, respectively, for each
* entry. Note: this function assumes that the meta variables used to distinguish different row groups are
* at the very top of the ADD.
*
* @param vectors The symbolic vectors to convert.
* @param groupMetaVariables The meta variables that are used to distinguish different row groups.
* @param rowOdd The ODD used for determining the correct row.
* @param columnOdd The ODD used for determining the correct column.
* @return The matrix that is represented by this ADD.
*/
std::pair<storm::storage::SparseMatrix<ValueType>, std::vector<std::vector<ValueType>>> toMatrixVectors(std::vector<storm::dd::Add<LibraryType, ValueType>> const& vectors, std::set<storm::expressions::Variable> const& groupMetaVariables, storm::dd::Odd const& rowOdd, storm::dd::Odd const& columnOdd) const;
std::pair<storm::storage::SparseMatrix<ValueType>, std::vector<std::vector<ValueType>>> toMatrixVectors(std::vector<uint_fast64_t>&& rowGroupSizes, std::vector<storm::dd::Add<LibraryType, ValueType>> const& vectors, std::set<storm::expressions::Variable> const& rowMetaVariables, std::set<storm::expressions::Variable> const& columnMetaVariables, std::set<storm::expressions::Variable> const& groupMetaVariables, storm::dd::Odd const& rowOdd, storm::dd::Odd const& columnOdd) const;
/*!
* Exports the DD to the given file in the dot format.

52
src/storm/storage/dd/cudd/InternalCuddAdd.cpp

@ -634,6 +634,58 @@ namespace storm {
}
}
template<typename ValueType>
std::vector<std::vector<InternalAdd<DdType::CUDD, ValueType>>> InternalAdd<DdType::CUDD, ValueType>::splitIntoGroups(std::vector<InternalAdd<DdType::CUDD, ValueType>> const& vectors, std::vector<uint_fast64_t> const& ddGroupVariableIndices) const {
std::vector<std::vector<InternalAdd<DdType::CUDD, ValueType>>> result;
std::vector<DdNode*> dds;
for (auto const& vector : vectors) {
dds.push_back(vector.getCuddDdNode());
}
dds.push_back(this->getCuddDdNode());
splitIntoGroupsRec(dds, result, ddGroupVariableIndices, 0, ddGroupVariableIndices.size());
return result;
}
template<typename ValueType>
void InternalAdd<DdType::CUDD, ValueType>::splitIntoGroupsRec(std::vector<DdNode*> const& dds, std::vector<std::vector<InternalAdd<DdType::CUDD, ValueType>>>& groups, std::vector<uint_fast64_t> const& ddGroupVariableIndices, uint_fast64_t currentLevel, uint_fast64_t maxLevel) const {
// For the empty DD, we do not need to create a group.
{
bool emptyDd = true;
for (auto const& dd : dds) {
if (dd != Cudd_ReadZero(ddManager->getCuddManager().getManager())) {
emptyDd = false;
break;
}
}
if (emptyDd) {
return;
}
}
if (currentLevel == maxLevel) {
std::vector<InternalAdd<DdType::CUDD, ValueType>> newGroup;
for (auto dd : dds) {
newGroup.emplace_back(ddManager, cudd::ADD(ddManager->getCuddManager(), dd));
}
groups.push_back(std::move(newGroup));
} else {
std::vector<DdNode*> thenSubDds(dds), elseSubDds(dds);
for (uint64_t ddIndex = 0; ddIndex < dds.size(); ++ddIndex) {
auto const& dd = dds[ddIndex];
if (ddGroupVariableIndices[currentLevel] == Cudd_NodeReadIndex(dd)) {
thenSubDds[ddIndex] = Cudd_T(dd);
elseSubDds[ddIndex] = Cudd_E(dd);
}
}
splitIntoGroupsRec(thenSubDds, groups, ddGroupVariableIndices, currentLevel + 1, maxLevel);
splitIntoGroupsRec(elseSubDds, groups, ddGroupVariableIndices, currentLevel + 1, maxLevel);
}
}
template<typename ValueType>
void InternalAdd<DdType::CUDD, ValueType>::toMatrixComponents(std::vector<uint_fast64_t> const& rowGroupIndices, std::vector<uint_fast64_t>& rowIndications, std::vector<storm::storage::MatrixEntry<uint_fast64_t, ValueType>>& columnsAndValues, Odd const& rowOdd, Odd const& columnOdd, std::vector<uint_fast64_t> const& ddRowVariableIndices, std::vector<uint_fast64_t> const& ddColumnVariableIndices, bool writeValues) const {
return toMatrixComponentsRec(this->getCuddDdNode(), rowGroupIndices, rowIndications, columnsAndValues, rowOdd, columnOdd, 0, 0, ddRowVariableIndices.size() + ddColumnVariableIndices.size(), 0, 0, ddRowVariableIndices, ddColumnVariableIndices, writeValues);

23
src/storm/storage/dd/cudd/InternalCuddAdd.h

@ -609,6 +609,17 @@ namespace storm {
*/
std::vector<std::pair<InternalAdd<DdType::CUDD, ValueType>, InternalAdd<DdType::CUDD, ValueType>>> splitIntoGroups(InternalAdd<DdType::CUDD, ValueType> vector, std::vector<uint_fast64_t> const& ddGroupVariableIndices) const;
/*!
* Simultaneously splits the ADD and the given vector ADDs into several ADDs that differ in the encoding of
* the given group variables (given via indices).
*
* @param vectors The vectors to split (in addition to the current ADD).
* @param ddGroupVariableIndices The indices of the variables that are used to distinguish the groups.
* @return A vector of vectors of ADDs such that result.size() is the number of groups and result[i] refers to all ADDs within the same group i (wrt. to the encoding of the given variables).
* result[i].back() always refers to this ADD.
*/
std::vector<std::vector<InternalAdd<DdType::CUDD, ValueType>>> splitIntoGroups(std::vector<InternalAdd<DdType::CUDD, ValueType>> const& vectors, std::vector<uint_fast64_t> const& ddGroupVariableIndices) const;
/*!
* Translates the ADD into the components needed for constructing a matrix.
*
@ -716,6 +727,18 @@ namespace storm {
*/
void splitIntoGroupsRec(DdNode* dd1, DdNode* dd2, std::vector<std::pair<InternalAdd<DdType::CUDD, ValueType>, InternalAdd<DdType::CUDD, ValueType>>>& groups, std::vector<uint_fast64_t> const& ddGroupVariableIndices, uint_fast64_t currentLevel, uint_fast64_t maxLevel) const;
/*!
* Splits the given DDs into the groups using the given group variables.
*
* @param dds The DDs to split.
* @param negatedDds indicates which of the DDs need to be interpreted as negated.
* @param groups A vector that is to be filled with the DDs for the individual groups.
* @param ddGroupVariableIndices The (sorted) indices of all DD group variables that need to be considered.
* @param currentLevel The currently considered level in the DD.
* @param maxLevel The number of levels that need to be considered.
*/
void splitIntoGroupsRec(std::vector<DdNode*> const& dds, std::vector<std::vector<InternalAdd<DdType::CUDD, ValueType>>>& groups, std::vector<uint_fast64_t> const& ddGroupVariableIndices, uint_fast64_t currentLevel, uint_fast64_t maxLevel) const;
/*!
* Helper function to convert the DD into a (sparse) matrix.
*

58
src/storm/storage/dd/sylvan/InternalSylvanAdd.cpp

@ -986,6 +986,22 @@ namespace storm {
return result;
}
template<typename ValueType>
std::vector<std::vector<InternalAdd<DdType::Sylvan, ValueType>>> InternalAdd<DdType::Sylvan, ValueType>::splitIntoGroups(std::vector<InternalAdd<DdType::Sylvan, ValueType>> const& vectors, std::vector<uint_fast64_t> const& ddGroupVariableIndices) const {
std::vector<std::vector<InternalAdd<DdType::Sylvan, ValueType>>> result;
std::vector<MTBDD> dds;
storm::storage::BitVector negatedDds(vectors.size() + 1);
for (auto const& vector : vectors) {
negatedDds.set(dds.size(), mtbdd_hascomp(vector.getSylvanMtbdd().GetMTBDD()));
dds.push_back(mtbdd_regular(vector.getSylvanMtbdd().GetMTBDD()));
}
dds.push_back(this->getSylvanMtbdd().GetMTBDD());
negatedDds.set(vectors.size(), mtbdd_hascomp(this->getSylvanMtbdd().GetMTBDD()));
splitIntoGroupsRec(dds, negatedDds, result, ddGroupVariableIndices, 0, ddGroupVariableIndices.size());
return result;
}
template<typename ValueType>
void InternalAdd<DdType::Sylvan, ValueType>::splitIntoGroupsRec(MTBDD dd, bool negated, std::vector<InternalAdd<DdType::Sylvan, ValueType>>& groups, std::vector<uint_fast64_t> const& ddGroupVariableIndices, uint_fast64_t currentLevel, uint_fast64_t maxLevel) const {
// For the empty DD, we do not need to create a group.
@ -1063,6 +1079,48 @@ namespace storm {
}
}
template<typename ValueType>
void InternalAdd<DdType::Sylvan, ValueType>::splitIntoGroupsRec(std::vector<MTBDD> const& dds, storm::storage::BitVector const& negatedDds, std::vector<std::vector<InternalAdd<DdType::Sylvan, ValueType>>>& groups, std::vector<uint_fast64_t> const& ddGroupVariableIndices, uint_fast64_t currentLevel, uint_fast64_t maxLevel) const {
// For the empty DD, we do not need to create a group.
{
bool emptyDd = true;
for (auto const& dd : dds) {
if (!(mtbdd_isleaf(dd) && mtbdd_iszero(dd))) {
emptyDd = false;
break;
}
}
if (emptyDd) {
return;
}
}
if (currentLevel == maxLevel) {
std::vector<InternalAdd<DdType::Sylvan, ValueType>> newGroup;
for (uint64_t ddIndex = 0; ddIndex < dds.size(); ++ddIndex) {
newGroup.emplace_back(ddManager, negatedDds.get(ddIndex) ? sylvan::Mtbdd(dds[ddIndex]).Negate() : sylvan::Mtbdd(dds[ddIndex]));
}
groups.push_back(std::move(newGroup));
} else {
std::vector<MTBDD> thenSubDds(dds), elseSubDds(dds);
storm::storage::BitVector thenNegatedSubDds(negatedDds), elseNegatedSubDds(negatedDds);
for (uint64_t ddIndex = 0; ddIndex < dds.size(); ++ddIndex) {
auto const& dd = dds[ddIndex];
if (!mtbdd_isleaf(dd) && ddGroupVariableIndices[currentLevel] == mtbdd_getvar(dd)) {
MTBDD ddThenNode = mtbdd_gethigh(dd);
MTBDD ddElseNode = mtbdd_getlow(dd);
thenSubDds[ddIndex] = mtbdd_regular(ddThenNode);
elseSubDds[ddIndex] = mtbdd_regular(ddElseNode);
// Determine whether we have to evaluate the successors as if they were complemented.
thenNegatedSubDds.set(ddIndex, mtbdd_hascomp(ddThenNode) ^ negatedDds.get(ddIndex));
elseNegatedSubDds.set(ddIndex, mtbdd_hascomp(ddElseNode) ^ negatedDds.get(ddIndex));
}
}
splitIntoGroupsRec(thenSubDds, thenNegatedSubDds, groups, ddGroupVariableIndices, currentLevel + 1, maxLevel);
splitIntoGroupsRec(elseSubDds, elseNegatedSubDds, groups, ddGroupVariableIndices, currentLevel + 1, maxLevel);
}
}
template<typename ValueType>
void InternalAdd<DdType::Sylvan, ValueType>::toMatrixComponents(std::vector<uint_fast64_t> const& rowGroupIndices, std::vector<uint_fast64_t>& rowIndications, std::vector<storm::storage::MatrixEntry<uint_fast64_t, ValueType>>& columnsAndValues, Odd const& rowOdd, Odd const& columnOdd, std::vector<uint_fast64_t> const& ddRowVariableIndices, std::vector<uint_fast64_t> const& ddColumnVariableIndices, bool writeValues) const {
return toMatrixComponentsRec(mtbdd_regular(this->getSylvanMtbdd().GetMTBDD()), mtbdd_hascomp(this->getSylvanMtbdd().GetMTBDD()), rowGroupIndices, rowIndications, columnsAndValues, rowOdd, columnOdd, 0, 0, ddRowVariableIndices.size() + ddColumnVariableIndices.size(), 0, 0, ddRowVariableIndices, ddColumnVariableIndices, writeValues);

25
src/storm/storage/dd/sylvan/InternalSylvanAdd.h

@ -601,6 +601,17 @@ namespace storm {
*/
std::vector<std::pair<InternalAdd<DdType::Sylvan, ValueType>, InternalAdd<DdType::Sylvan, ValueType>>> splitIntoGroups(InternalAdd<DdType::Sylvan, ValueType> vector, std::vector<uint_fast64_t> const& ddGroupVariableIndices) const;
/*!
* Simultaneously splits the ADD and the given vector ADDs into several ADDs that differ in the encoding of
* the given group variables (given via indices).
*
* @param vectors The vectors to split (in addition to the current ADD).
* @param ddGroupVariableIndices The indices of the variables that are used to distinguish the groups.
* @return A vector of vectors of ADDs such that result.size() is the number of groups and result[i] refers to all ADDs within the same group i (wrt. to the encoding of the given variables).
* result[i].back() always refers to this ADD.
*/
std::vector<std::vector<InternalAdd<DdType::Sylvan, ValueType>>> splitIntoGroups(std::vector<InternalAdd<DdType::Sylvan, ValueType>> const& vectors, std::vector<uint_fast64_t> const& ddGroupVariableIndices) const;
/*!
* Translates the ADD into the components needed for constructing a matrix.
*
@ -702,7 +713,6 @@ namespace storm {
* @param ddGroupVariableIndices The (sorted) indices of all DD group variables that need to be considered.
* @param currentLevel The currently considered level in the DD.
* @param maxLevel The number of levels that need to be considered.
* @param remainingMetaVariables The meta variables that remain in the DDs after the groups have been split.
*/
void splitIntoGroupsRec(MTBDD dd, bool negated, std::vector<InternalAdd<DdType::Sylvan, ValueType>>& groups, std::vector<uint_fast64_t> const& ddGroupVariableIndices, uint_fast64_t currentLevel, uint_fast64_t maxLevel) const;
@ -717,10 +727,21 @@ namespace storm {
* @param ddGroupVariableIndices The (sorted) indices of all DD group variables that need to be considered.
* @param currentLevel The currently considered level in the DD.
* @param maxLevel The number of levels that need to be considered.
* @param remainingMetaVariables The meta variables that remain in the DDs after the groups have been split.
*/
void splitIntoGroupsRec(MTBDD dd1, bool negated1, MTBDD dd2, bool negated2, std::vector<std::pair<InternalAdd<DdType::Sylvan, ValueType>, InternalAdd<DdType::Sylvan, ValueType>>>& groups, std::vector<uint_fast64_t> const& ddGroupVariableIndices, uint_fast64_t currentLevel, uint_fast64_t maxLevel) const;
/*!
* Splits the given DDs into the groups using the given group variables.
*
* @param dds The DDs to split.
* @param negatedDds indicates which of the DDs need to be interpreted as negated.
* @param groups A vector that is to be filled with the DDs for the individual groups.
* @param ddGroupVariableIndices The (sorted) indices of all DD group variables that need to be considered.
* @param currentLevel The currently considered level in the DD.
* @param maxLevel The number of levels that need to be considered.
*/
void splitIntoGroupsRec(std::vector<MTBDD> const& dds, storm::storage::BitVector const& negatedDds, std::vector<std::vector<InternalAdd<DdType::Sylvan, ValueType>>>& groups, std::vector<uint_fast64_t> const& ddGroupVariableIndices, uint_fast64_t currentLevel, uint_fast64_t maxLevel) const;
/*!
* Builds an ADD representing the given vector.
*

105
src/storm/transformer/SymbolicToSparseTransformer.cpp

@ -3,6 +3,7 @@
#include "storm/storage/dd/DdManager.h"
#include "storm/storage/dd/Add.h"
#include "storm/storage/dd/Bdd.h"
#include "storm/storage/sparse/ModelComponents.h"
#include "storm/models/symbolic/StandardRewardModel.h"
#include "storm/models/sparse/StandardRewardModel.h"
#include "storm/utility/macros.h"
@ -83,7 +84,28 @@ namespace storm {
template<storm::dd::DdType Type, typename ValueType>
std::shared_ptr<storm::models::sparse::Mdp<ValueType>> SymbolicMdpToSparseMdpTransformer<Type, ValueType>::translate(storm::models::symbolic::Mdp<Type, ValueType> const& symbolicMdp, std::vector<std::shared_ptr<storm::logic::Formula const>> const& formulas) {
storm::dd::Odd odd = symbolicMdp.getReachableStates().createOdd();
storm::storage::SparseMatrix<ValueType> transitionMatrix = symbolicMdp.getTransitionMatrix().toMatrix(symbolicMdp.getNondeterminismVariables(), odd, odd);
// Collect action reward vectors that need translation
std::vector<storm::dd::Add<Type, ValueType>> symbolicActionRewardVectors;
std::map<std::string, uint64_t> rewardNameToActionRewardIndexMap;
for (auto const& rewardModelNameAndModel : symbolicMdp.getRewardModels()) {
if (rewardModelNameAndModel.second.hasStateActionRewards()) {
rewardNameToActionRewardIndexMap.emplace(rewardModelNameAndModel.first, symbolicActionRewardVectors.size());
symbolicActionRewardVectors.push_back(rewardModelNameAndModel.second.getStateActionRewardVector());
}
}
// Build transition matrix and (potentially) actionRewardVectors.
storm::storage::SparseMatrix<ValueType> transitionMatrix;
std::vector<std::vector<ValueType>> actionRewardVectors;
if (symbolicActionRewardVectors.empty()) {
transitionMatrix = symbolicMdp.getTransitionMatrix().toMatrix(symbolicMdp.getNondeterminismVariables(), odd, odd);
} else {
auto matrRewards = symbolicMdp.getTransitionMatrix().toMatrixVectors(symbolicActionRewardVectors, symbolicMdp.getNondeterminismVariables(), odd, odd);
transitionMatrix = std::move(matrRewards.first);
actionRewardVectors = std::move(matrRewards.second);
}
// Translate reward models
std::unordered_map<std::string, storm::models::sparse::StandardRewardModel<ValueType>> rewardModels;
for (auto const& rewardModelNameAndModel : symbolicMdp.getRewardModels()) {
boost::optional<std::vector<ValueType>> stateRewards;
@ -92,12 +114,14 @@ namespace storm {
if (rewardModelNameAndModel.second.hasStateRewards()) {
stateRewards = rewardModelNameAndModel.second.getStateRewardVector().toVector(odd);
}
// Note: .getStateActionRewardVector().toVector(odd); does not work as it needs to have information regarding the nondeterminism
// One could use transitionMatrix().toMatrixVector instead.
STORM_LOG_THROW(!rewardModelNameAndModel.second.hasStateActionRewards(), storm::exceptions::NotImplementedException, "Translation of symbolic to explicit state-action rewards is not yet supported.");
auto actRewIndexIt = rewardNameToActionRewardIndexMap.find(rewardModelNameAndModel.first);
if (actRewIndexIt != rewardNameToActionRewardIndexMap.end()) {
stateActionRewards = std::move(actionRewardVectors[actRewIndexIt->second]);
}
STORM_LOG_THROW(!rewardModelNameAndModel.second.hasTransitionRewards(), storm::exceptions::NotImplementedException, "Translation of symbolic to explicit transition rewards is not yet supported.");
rewardModels.emplace(rewardModelNameAndModel.first,storm::models::sparse::StandardRewardModel<ValueType>(stateRewards, stateActionRewards, transitionRewards));
rewardModels.emplace(rewardModelNameAndModel.first, storm::models::sparse::StandardRewardModel<ValueType>(stateRewards, stateActionRewards, transitionRewards));
}
storm::models::sparse::StateLabeling labelling(transitionMatrix.getRowGroupCount());
labelling.addLabel("init", symbolicMdp.getInitialStates().toVector(odd));
@ -159,6 +183,72 @@ namespace storm {
return std::make_shared<storm::models::sparse::Ctmc<ValueType>>(transitionMatrix, labelling, rewardModels);
}
template<storm::dd::DdType Type, typename ValueType>
std::shared_ptr<storm::models::sparse::MarkovAutomaton<ValueType>> SymbolicMaToSparseMaTransformer<Type, ValueType>::translate(storm::models::symbolic::MarkovAutomaton<Type, ValueType> const& symbolicMa, std::vector<std::shared_ptr<storm::logic::Formula const>> const& formulas) {
storm::dd::Odd odd = symbolicMa.getReachableStates().createOdd();
// Collect action reward vectors that need translation
std::vector<storm::dd::Add<Type, ValueType>> symbolicActionRewardVectors;
std::map<std::string, uint64_t> rewardNameToActionRewardIndexMap;
for (auto const& rewardModelNameAndModel : symbolicMa.getRewardModels()) {
if (rewardModelNameAndModel.second.hasStateActionRewards()) {
rewardNameToActionRewardIndexMap.emplace(rewardModelNameAndModel.first, symbolicActionRewardVectors.size());
symbolicActionRewardVectors.push_back(rewardModelNameAndModel.second.getStateActionRewardVector());
}
}
// Build transition matrix and (potentially) actionRewardVectors.
storm::storage::SparseMatrix<ValueType> transitionMatrix;
std::vector<std::vector<ValueType>> actionRewardVectors;
if (symbolicActionRewardVectors.empty()) {
transitionMatrix = symbolicMa.getTransitionMatrix().toMatrix(symbolicMa.getNondeterminismVariables(), odd, odd);
} else {
auto matrRewards = symbolicMa.getTransitionMatrix().toMatrixVectors(symbolicActionRewardVectors, symbolicMa.getNondeterminismVariables(), odd, odd);
transitionMatrix = std::move(matrRewards.first);
actionRewardVectors = std::move(matrRewards.second);
}
// Translate reward models
std::unordered_map<std::string, storm::models::sparse::StandardRewardModel<ValueType>> rewardModels;
for (auto const& rewardModelNameAndModel : symbolicMa.getRewardModels()) {
boost::optional<std::vector<ValueType>> stateRewards;
boost::optional<std::vector<ValueType>> stateActionRewards;
boost::optional<storm::storage::SparseMatrix<ValueType>> transitionRewards;
if (rewardModelNameAndModel.second.hasStateRewards()) {
stateRewards = rewardModelNameAndModel.second.getStateRewardVector().toVector(odd);
}
auto actRewIndexIt = rewardNameToActionRewardIndexMap.find(rewardModelNameAndModel.first);
if (actRewIndexIt != rewardNameToActionRewardIndexMap.end()) {
stateActionRewards = std::move(actionRewardVectors[actRewIndexIt->second]);
}
STORM_LOG_THROW(!rewardModelNameAndModel.second.hasTransitionRewards(), storm::exceptions::NotImplementedException, "Translation of symbolic to explicit transition rewards is not yet supported.");
rewardModels.emplace(rewardModelNameAndModel.first, storm::models::sparse::StandardRewardModel<ValueType>(stateRewards, stateActionRewards, transitionRewards));
}
storm::models::sparse::StateLabeling labelling(transitionMatrix.getRowGroupCount());
labelling.addLabel("init", symbolicMa.getInitialStates().toVector(odd));
labelling.addLabel("deadlock", symbolicMa.getDeadlockStates().toVector(odd));
if (formulas.empty()) {
for (auto const& label : symbolicMa.getLabels()) {
labelling.addLabel(label, symbolicMa.getStates(label).toVector(odd));
}
} else {
LabelInformation labelInfo(formulas);
for (auto const& label : labelInfo.atomicLabels) {
labelling.addLabel(label, symbolicMa.getStates(label).toVector(odd));
}
for (auto const& expressionLabel : labelInfo.expressionLabels) {
labelling.addLabel(expressionLabel.first, symbolicMa.getStates(expressionLabel.second).toVector(odd));
}
}
storm::storage::BitVector markovianStates = symbolicMa.getMarkovianStates().toVector(odd);
storm::storage::sparse::ModelComponents<ValueType> components(std::move(transitionMatrix), std::move(labelling), std::move(rewardModels), false, std::move(markovianStates));
components.exitRates = symbolicMa.getExitRateVector().toVector(odd);
return std::make_shared<storm::models::sparse::MarkovAutomaton<ValueType>>(std::move(components));
}
template class SymbolicDtmcToSparseDtmcTransformer<storm::dd::DdType::CUDD, double>;
template class SymbolicDtmcToSparseDtmcTransformer<storm::dd::DdType::Sylvan, double>;
@ -175,5 +265,10 @@ namespace storm {
template class SymbolicCtmcToSparseCtmcTransformer<storm::dd::DdType::Sylvan, storm::RationalNumber>;
template class SymbolicCtmcToSparseCtmcTransformer<storm::dd::DdType::Sylvan, storm::RationalFunction>;
template class SymbolicMaToSparseMaTransformer<storm::dd::DdType::CUDD, double>;
template class SymbolicMaToSparseMaTransformer<storm::dd::DdType::Sylvan, double>;
template class SymbolicMaToSparseMaTransformer<storm::dd::DdType::Sylvan, storm::RationalNumber>;
template class SymbolicMaToSparseMaTransformer<storm::dd::DdType::Sylvan, storm::RationalFunction>;
}
}

8
src/storm/transformer/SymbolicToSparseTransformer.h

@ -7,6 +7,8 @@
#include "storm/models/symbolic/Mdp.h"
#include "storm/models/sparse/Ctmc.h"
#include "storm/models/symbolic/Ctmc.h"
#include "storm/models/sparse/MarkovAutomaton.h"
#include "storm/models/symbolic/MarkovAutomaton.h"
#include "storm/storage/dd/Odd.h"
@ -34,5 +36,11 @@ namespace storm {
public:
static std::shared_ptr<storm::models::sparse::Ctmc<ValueType>> translate(storm::models::symbolic::Ctmc<Type, ValueType> const& symbolicCtmc, std::vector<std::shared_ptr<storm::logic::Formula const>> const& formulas = std::vector<std::shared_ptr<storm::logic::Formula const>>());
};
template<storm::dd::DdType Type, typename ValueType>
class SymbolicMaToSparseMaTransformer {
public:
static std::shared_ptr<storm::models::sparse::MarkovAutomaton<ValueType>> translate(storm::models::symbolic::MarkovAutomaton<Type, ValueType> const& symbolicMa, std::vector<std::shared_ptr<storm::logic::Formula const>> const& formulas = std::vector<std::shared_ptr<storm::logic::Formula const>>());
};
}
}
Loading…
Cancel
Save