Browse Source

Re-applied all necessary fixes. Things that work: Some DTMCs, emptyset MDPs.

Former-commit-id: 0f782fdf61
tempestpy_adaptions
PBerger 8 years ago
parent
commit
4b95f72a0a
  1. 40
      src/modelchecker/abstraction/GameBasedMdpModelChecker.cpp

40
src/modelchecker/abstraction/GameBasedMdpModelChecker.cpp

@ -218,7 +218,7 @@ namespace storm {
minPlayer1Strategy = (maxPlayer1Strategy && prob01.min.first.getPlayer2States()).existsAbstract(game.getPlayer1Variables()).ite(maxPlayer1Strategy, minPlayer1Strategy);
// Build the fragment of transitions that is reachable by both the min and the max strategies.
storm::dd::Bdd<Type> reachableTransitions = transitionMatrixBdd && minPlayer1Strategy && minPlayer2Strategy && maxPlayer1Strategy && maxPlayer2Strategy;
storm::dd::Bdd<Type> reachableTransitions = transitionMatrixBdd && (minPlayer1Strategy || minPlayer2Strategy) && maxPlayer1Strategy && maxPlayer2Strategy;
reachableTransitions = reachableTransitions.existsAbstract(game.getNondeterminismVariables());
storm::dd::Bdd<Type> pivotStates = storm::utility::dd::computeReachableStates(game.getInitialStates(), reachableTransitions, game.getRowVariables(), game.getColumnVariables());
@ -526,12 +526,17 @@ namespace storm {
storm::dd::Add<Type, ValueType> maxResult = prob01.max.second.getPlayer1States().template toAdd<ValueType>();
storm::dd::Add<Type, ValueType> initialStatesAdd = game.getInitialStates().template toAdd<ValueType>();
storm::dd::Bdd<Type> combinedMinPlayer1QualitativeStrategies = (prob01.min.first.getPlayer1Strategy() || prob01.min.second.getPlayer1Strategy());
storm::dd::Bdd<Type> combinedMinPlayer2QualitativeStrategies = (prob01.min.first.getPlayer2Strategy() || prob01.min.second.getPlayer2Strategy());
// The minimal value after qualitative checking can only be zero. It it was 1, we could have given
// the result right away.
ValueType minValue = storm::utility::zero<ValueType>();
MaybeStateResult<Type, ValueType> minMaybeStateResult(game.getManager().template getAddZero<ValueType>(), game.getManager().getBddZero(), game.getManager().getBddZero());
if (!maybeMin.isZero()) {
minMaybeStateResult = solveMaybeStates(player1Direction, storm::OptimizationDirection::Minimize, game, maybeMin, prob01.min.second.getPlayer1States());
minMaybeStateResult.player1Strategy &= game.getReachableStates();
minMaybeStateResult.player2Strategy &= game.getReachableStates();
minResult += minMaybeStateResult.values;
storm::dd::Add<Type, ValueType> initialStateMin = initialStatesAdd * minResult;
// Here we can only require a non-zero count of *at most* one, because the result may actually be 0.
@ -540,18 +545,27 @@ namespace storm {
}
STORM_LOG_TRACE("Obtained quantitative lower bound " << minValue << ".");
minMaybeStateResult.player1Strategy = combinedMinPlayer1QualitativeStrategies.existsAbstract(game.getPlayer1Variables()).ite(combinedMinPlayer1QualitativeStrategies, minMaybeStateResult.player1Strategy);
minMaybeStateResult.player2Strategy = combinedMinPlayer2QualitativeStrategies.existsAbstract(game.getPlayer2Variables()).ite(combinedMinPlayer2QualitativeStrategies, minMaybeStateResult.player2Strategy);
// Check whether we can abort the computation because of the lower value.
result = checkForResultAfterQuantitativeCheck<ValueType>(checkTask, storm::OptimizationDirection::Minimize, minValue);
if (result) {
return result;
}
storm::dd::Bdd<Type> combinedMaxPlayer1QualitativeStrategies = (prob01.max.first.getPlayer1Strategy() || prob01.max.second.getPlayer1Strategy());
storm::dd::Bdd<Type> combinedMaxPlayer2QualitativeStrategies = (prob01.max.first.getPlayer2Strategy() || prob01.max.second.getPlayer2Strategy());
// Likewise, the maximal value after qualitative checking can only be 1. If it was 0, we could have
// given the result right awy.
ValueType maxValue = storm::utility::one<ValueType>();
MaybeStateResult<Type, ValueType> maxMaybeStateResult(game.getManager().template getAddZero<ValueType>(), game.getManager().getBddZero(), game.getManager().getBddZero());
if (!maybeMax.isZero()) {
maxMaybeStateResult = solveMaybeStates(player1Direction, storm::OptimizationDirection::Maximize, game, maybeMax, prob01.max.second.getPlayer1States(), boost::make_optional(minMaybeStateResult));
maxMaybeStateResult.player1Strategy &= game.getReachableStates();
maxMaybeStateResult.player2Strategy &= game.getReachableStates();
maxResult += maxMaybeStateResult.values;
storm::dd::Add<Type, ValueType> initialStateMax = (initialStatesAdd * maxResult);
// Unlike in the min-case, we can require a non-zero count of 1 here, because if the max was in
@ -561,6 +575,9 @@ namespace storm {
}
STORM_LOG_TRACE("Obtained quantitative upper bound " << maxValue << ".");
maxMaybeStateResult.player1Strategy = combinedMaxPlayer1QualitativeStrategies.existsAbstract(game.getPlayer1Variables()).ite(combinedMaxPlayer1QualitativeStrategies, maxMaybeStateResult.player1Strategy);
maxMaybeStateResult.player2Strategy = combinedMaxPlayer2QualitativeStrategies.existsAbstract(game.getPlayer2Variables()).ite(combinedMaxPlayer2QualitativeStrategies, maxMaybeStateResult.player2Strategy);
// Check whether we can abort the computation because of the upper value.
result = checkForResultAfterQuantitativeCheck<ValueType>(checkTask, storm::OptimizationDirection::Maximize, maxValue);
if (result) {
@ -577,8 +594,25 @@ namespace storm {
// If we arrived at this point, it means that we have all qualitative and quantitative information
// about the game, but we could not yet answer the query. In this case, we need to refine.
// Redirect all player 1 choices of the min strategy to that of the max strategy if this leads to a player 2 state that has the same prob.
// Get all relevant strategies.
storm::dd::Add<Type, ValueType> matrix = game.getTransitionMatrix();
storm::dd::Add<Type, ValueType> minResultTmp = minResult.swapVariables(game.getRowColumnMetaVariablePairs());
storm::dd::Add<Type, ValueType> minValuesForPlayer1UnderMinP1Strategy = (matrix * minMaybeStateResult.player1Strategy.template toAdd<ValueType>() * minMaybeStateResult.player2Strategy.template toAdd<ValueType>() * minResultTmp).sumAbstract(game.getColumnVariables()).sumAbstract(game.getPlayer2Variables()).sumAbstract(game.getPlayer1Variables());
storm::dd::Add<Type, ValueType> minValuesForPlayer1UnderMaxP1P2Strategy = (matrix * maxMaybeStateResult.player1Strategy.template toAdd<ValueType>() * maxMaybeStateResult.player2Strategy.template toAdd<ValueType>() * minResultTmp).sumAbstract(game.getColumnVariables()).sumAbstract(game.getPlayer2Variables()).sumAbstract(game.getPlayer1Variables());
storm::dd::Add<Type, ValueType> minValuesForPlayer1UnderMaxP1Strategy = (matrix * maxMaybeStateResult.player1Strategy.template toAdd<ValueType>() * minMaybeStateResult.player2Strategy.template toAdd<ValueType>() * minResultTmp).sumAbstract(game.getColumnVariables()).sumAbstract(game.getPlayer2Variables()).sumAbstract(game.getPlayer1Variables());
minValuesForPlayer1UnderMinP1Strategy = prob01.min.first.getPlayer1States().ite(game.getManager().template getAddZero<ValueType>(), prob01.min.second.getPlayer1States().ite(game.getManager().template getAddOne<ValueType>(), minValuesForPlayer1UnderMinP1Strategy));
minValuesForPlayer1UnderMaxP1Strategy = prob01.min.first.getPlayer1States().ite(game.getManager().template getAddZero<ValueType>(), prob01.min.second.getPlayer1States().ite(game.getManager().template getAddOne<ValueType>(), minValuesForPlayer1UnderMaxP1Strategy));
// This BDD has a 1 for every state (s) that can switch the strategy.
storm::dd::Bdd<Type> minIsGreaterOrEqual = minValuesForPlayer1UnderMinP1Strategy.greaterOrEqual(minValuesForPlayer1UnderMaxP1Strategy);
minMaybeStateResult.player1Strategy = minIsGreaterOrEqual.ite(maxMaybeStateResult.player1Strategy, minMaybeStateResult.player1Strategy);
// Start by extending the quantitative strategies by the qualitative ones.
minMaybeStateResult.player1Strategy |= prob01.min.first.getPlayer1Strategy() || prob01.min.second.getPlayer1Strategy();
//minMaybeStateResult.player1Strategy |= prob01.min.first.getPlayer1Strategy() || prob01.min.second.getPlayer1Strategy();
storm::dd::Bdd<Type> tmp = (prob01.min.first.getPlayer2Strategy().existsAbstract(game.getPlayer2Variables()) && prob01.min.second.getPlayer2Strategy().existsAbstract(game.getPlayer2Variables()));
STORM_LOG_ASSERT(tmp.isZero(), "wth?");

Loading…
Cancel
Save