Browse Source

Added __restrict__ keyword to CUDA kernel. This should enhance compiler optimization.

Refactored TopologicalValueIterationNondeterministicLinearEquationSolver to support "down-casting" to float.
Added better timing output.


Former-commit-id: 688c40decb
tempestpy_adaptions
PBerger 11 years ago
parent
commit
493f93a94b
  1. 4
      resources/cudaForStorm/srcCuda/cuspExtensionDouble.h
  2. 566
      src/solver/TopologicalValueIterationNondeterministicLinearEquationSolver.cpp
  3. 49
      src/solver/TopologicalValueIterationNondeterministicLinearEquationSolver.h

4
resources/cudaForStorm/srcCuda/cuspExtensionDouble.h

@ -65,7 +65,7 @@ namespace device
template <unsigned int VECTORS_PER_BLOCK, unsigned int THREADS_PER_VECTOR, bool UseCache>
__launch_bounds__(VECTORS_PER_BLOCK * THREADS_PER_VECTOR,1)
__global__ void
storm_cuda_opt_spmv_csr_vector_kernel_double(const uint_fast64_t num_rows, const uint_fast64_t * matrixRowIndices, const double * matrixColumnIndicesAndValues, const double * x, double * y)
storm_cuda_opt_spmv_csr_vector_kernel_double(const uint_fast64_t num_rows, const uint_fast64_t * __restrict__ matrixRowIndices, const double * __restrict__ matrixColumnIndicesAndValues, const double * __restrict__ x, double * __restrict__ y)
{
__shared__ volatile double sdata[VECTORS_PER_BLOCK * THREADS_PER_VECTOR + THREADS_PER_VECTOR / 2]; // padded to avoid reduction conditionals
__shared__ volatile uint_fast64_t ptrs[VECTORS_PER_BLOCK][2];
@ -135,7 +135,7 @@ storm_cuda_opt_spmv_csr_vector_kernel_double(const uint_fast64_t num_rows, const
template <unsigned int ROWS_PER_BLOCK, unsigned int THREADS_PER_ROW, bool Minimize>
__launch_bounds__(ROWS_PER_BLOCK * THREADS_PER_ROW,1)
__global__ void
storm_cuda_opt_vector_reduce_kernel_double(const uint_fast64_t num_rows, const uint_fast64_t * nondeterministicChoiceIndices, double * x, const double * y, const double minMaxInitializer)
storm_cuda_opt_vector_reduce_kernel_double(const uint_fast64_t num_rows, const uint_fast64_t * __restrict__ nondeterministicChoiceIndices, double * __restrict__ x, const double * __restrict__ y, const double minMaxInitializer)
{
__shared__ volatile double sdata[ROWS_PER_BLOCK * THREADS_PER_ROW + THREADS_PER_ROW / 2]; // padded to avoid reduction conditionals
__shared__ volatile uint_fast64_t ptrs[ROWS_PER_BLOCK][2];

566
src/solver/TopologicalValueIterationNondeterministicLinearEquationSolver.cpp

@ -1,6 +1,7 @@
#include "src/solver/TopologicalValueIterationNondeterministicLinearEquationSolver.h"
#include <utility>
#include <chrono>
#include "src/settings/Settings.h"
#include "src/utility/vector.h"
@ -42,386 +43,283 @@ namespace storm {
NondeterministicLinearEquationSolver<ValueType>* TopologicalValueIterationNondeterministicLinearEquationSolver<ValueType>::clone() const {
return new TopologicalValueIterationNondeterministicLinearEquationSolver<ValueType>(*this);
}
template<typename ValueType>
void TopologicalValueIterationNondeterministicLinearEquationSolver<ValueType>::solveEquationSystem(bool minimize, storm::storage::SparseMatrix<ValueType> const& A, std::vector<ValueType>& x, std::vector<ValueType> const& b, std::vector<ValueType>* multiplyResult, std::vector<ValueType>* newX) const {
#ifdef GPU_USE_FLOAT
#define __FORCE_FLOAT_CALCULATION true
#else
#define __FORCE_FLOAT_CALCULATION false
#endif
if (__FORCE_FLOAT_CALCULATION && (sizeof(ValueType) == sizeof(double))) {
TopologicalValueIterationNondeterministicLinearEquationSolver<float> tvindles(precision, maximalNumberOfIterations, relative);
template<>
void TopologicalValueIterationNondeterministicLinearEquationSolver<float>::solveEquationSystem(bool minimize, storm::storage::SparseMatrix<float> const& A, std::vector<float>& x, std::vector<float> const& b, std::vector<float>* multiplyResult, std::vector<float>* newX) const {
// For testing only
std::cout << "<<< Using CUDA-FLOAT Kernels >>>" << std::endl;
LOG4CPLUS_INFO(logger, "<<< Using CUDA-FLOAT Kernels >>>");
storm::storage::SparseMatrix<float> new_A = A.toValueType<float>();
std::vector<float> new_x = storm::utility::vector::toValueType<float>(x);
std::vector<float> const new_b = storm::utility::vector::toValueType<float>(b);
// Now, we need to determine the SCCs of the MDP and perform a topological sort.
std::vector<uint_fast64_t> const& nondeterministicChoiceIndices = A.getRowGroupIndices();
storm::models::NonDeterministicMatrixBasedPseudoModel<float> pseudoModel(A, nondeterministicChoiceIndices);
storm::storage::StronglyConnectedComponentDecomposition<float> sccDecomposition(pseudoModel, false, false);
if (sccDecomposition.size() == 0) {
LOG4CPLUS_ERROR(logger, "Can not solve given Equation System as the SCC Decomposition returned no SCCs.");
throw storm::exceptions::IllegalArgumentException() << "Can not solve given Equation System as the SCC Decomposition returned no SCCs.";
}
tvindles.solveEquationSystem(minimize, new_A, new_x, new_b, nullptr, nullptr);
storm::storage::SparseMatrix<float> stronglyConnectedComponentsDependencyGraph = pseudoModel.extractPartitionDependencyGraph(sccDecomposition);
std::vector<uint_fast64_t> topologicalSort = storm::utility::graph::getTopologicalSort(stronglyConnectedComponentsDependencyGraph);
// Calculate the optimal distribution of sccs
std::vector<std::pair<bool, storm::storage::StateBlock>> optimalSccs = this->getOptimalGroupingFromTopologicalSccDecomposition(sccDecomposition, topologicalSort, A);
LOG4CPLUS_INFO(logger, "Optimized SCC Decomposition, originally " << topologicalSort.size() << " SCCs, optimized to " << optimalSccs.size() << " SCCs.");
std::vector<float>* currentX = nullptr;
std::vector<float>* swap = nullptr;
size_t currentMaxLocalIterations = 0;
size_t localIterations = 0;
size_t globalIterations = 0;
bool converged = true;
// Iterate over all SCCs of the MDP as specified by the topological sort. This guarantees that an SCC is only
// solved after all SCCs it depends on have been solved.
int counter = 0;
for (auto sccIndexIt = optimalSccs.cbegin(); sccIndexIt != optimalSccs.cend() && converged; ++sccIndexIt) {
bool const useGpu = sccIndexIt->first;
storm::storage::StateBlock const& scc = sccIndexIt->second;
// Generate a sub matrix
storm::storage::BitVector subMatrixIndices(A.getColumnCount(), scc.cbegin(), scc.cend());
storm::storage::SparseMatrix<float> sccSubmatrix = A.getSubmatrix(true, subMatrixIndices, subMatrixIndices);
std::vector<float> sccSubB(sccSubmatrix.getRowCount());
storm::utility::vector::selectVectorValues<float>(sccSubB, subMatrixIndices, nondeterministicChoiceIndices, b);
std::vector<float> sccSubX(sccSubmatrix.getColumnCount());
std::vector<float> sccSubXSwap(sccSubmatrix.getColumnCount());
std::vector<float> sccMultiplyResult(sccSubmatrix.getRowCount());
// Prepare the pointers for swapping in the calculation
currentX = &sccSubX;
swap = &sccSubXSwap;
storm::utility::vector::selectVectorValues<float>(sccSubX, subMatrixIndices, x); // x is getCols() large, where as b and multiplyResult are getRows() (nondet. choices times states)
std::vector<uint_fast64_t> sccSubNondeterministicChoiceIndices(sccSubmatrix.getColumnCount() + 1);
sccSubNondeterministicChoiceIndices.at(0) = 0;
// Pre-process all dependent states
// Remove outgoing transitions and create the ChoiceIndices
uint_fast64_t innerIndex = 0;
uint_fast64_t outerIndex = 0;
for (uint_fast64_t state : scc) {
// Choice Indices
sccSubNondeterministicChoiceIndices.at(outerIndex + 1) = sccSubNondeterministicChoiceIndices.at(outerIndex) + (nondeterministicChoiceIndices[state + 1] - nondeterministicChoiceIndices[state]);
for (auto rowGroupIt = nondeterministicChoiceIndices[state]; rowGroupIt != nondeterministicChoiceIndices[state + 1]; ++rowGroupIt) {
storm::storage::SparseMatrix<float>::const_rows row = A.getRow(rowGroupIt);
for (auto rowIt = row.begin(); rowIt != row.end(); ++rowIt) {
if (!subMatrixIndices.get(rowIt->getColumn())) {
// This is an outgoing transition of a state in the SCC to a state not included in the SCC
// Subtracting Pr(tau) * x_other from b fixes that
sccSubB.at(innerIndex) = sccSubB.at(innerIndex) + (rowIt->getValue() * x.at(rowIt->getColumn()));
}
}
++innerIndex;
}
++outerIndex;
for (size_t i = 0, size = new_x.size(); i < size; ++i) {
x.at(i) = new_x.at(i);
}
return;
}
// For testing only
if (sizeof(ValueType) == sizeof(double)) {
std::cout << "<<< Using CUDA-DOUBLE Kernels >>>" << std::endl;
LOG4CPLUS_INFO(logger, "<<< Using CUDA-DOUBLE Kernels >>>");
} else {
std::cout << "<<< Using CUDA-FLOAT Kernels >>>" << std::endl;
LOG4CPLUS_INFO(logger, "<<< Using CUDA-FLOAT Kernels >>>");
}
// For the current SCC, we need to perform value iteration until convergence.
if (useGpu) {
// Now, we need to determine the SCCs of the MDP and perform a topological sort.
std::vector<uint_fast64_t> const& nondeterministicChoiceIndices = A.getRowGroupIndices();
storm::models::NonDeterministicMatrixBasedPseudoModel<ValueType> const pseudoModel(A, nondeterministicChoiceIndices);
// Check if the decomposition is necessary
#ifdef STORM_HAVE_CUDAFORSTORM
if (!resetCudaDevice()) {
LOG4CPLUS_ERROR(logger, "Could not reset CUDA Device, can not use CUDA Equation Solver.");
throw storm::exceptions::InvalidStateException() << "Could not reset CUDA Device, can not use CUDA Equation Solver.";
}
//LOG4CPLUS_INFO(logger, "Device has " << getTotalCudaMemory() << " Bytes of Memory with " << getFreeCudaMemory() << "Bytes free (" << (static_cast<double>(getFreeCudaMemory()) / static_cast<double>(getTotalCudaMemory())) * 100 << "%).");
//LOG4CPLUS_INFO(logger, "We will allocate " << (sizeof(uint_fast64_t)* sccSubmatrix.rowIndications.size() + sizeof(uint_fast64_t)* sccSubmatrix.columnsAndValues.size() * 2 + sizeof(double)* sccSubX.size() + sizeof(double)* sccSubX.size() + sizeof(double)* sccSubB.size() + sizeof(double)* sccSubB.size() + sizeof(uint_fast64_t)* sccSubNondeterministicChoiceIndices.size()) << " Bytes.");
//LOG4CPLUS_INFO(logger, "The CUDA Runtime Version is " << getRuntimeCudaVersion());
bool result = false;
localIterations = 0;
if (minimize) {
result = basicValueIteration_mvReduce_uint64_float_minimize(this->maximalNumberOfIterations, this->precision, this->relative, sccSubmatrix.rowIndications, sccSubmatrix.columnsAndValues, *currentX, sccSubB, sccSubNondeterministicChoiceIndices, localIterations);
} else {
result = basicValueIteration_mvReduce_uint64_float_maximize(this->maximalNumberOfIterations, this->precision, this->relative, sccSubmatrix.rowIndications, sccSubmatrix.columnsAndValues, *currentX, sccSubB, sccSubNondeterministicChoiceIndices, localIterations);
}
LOG4CPLUS_INFO(logger, "Executed " << localIterations << " of max. " << maximalNumberOfIterations << " Iterations on GPU.");
if (!result) {
converged = false;
LOG4CPLUS_ERROR(logger, "An error occurred in the CUDA Plugin. Can not continue.");
throw storm::exceptions::InvalidStateException() << "An error occurred in the CUDA Plugin. Can not continue.";
} else {
converged = true;
}
// As the "number of iterations" of the full method is the maximum of the local iterations, we need to keep
// track of the maximum.
if (localIterations > currentMaxLocalIterations) {
currentMaxLocalIterations = localIterations;
}
#define __USE_CUDAFORSTORM_OPT true
size_t const gpuSizeOfCompleteSystem = basicValueIteration_mvReduce_uint64_double_calculateMemorySize(static_cast<size_t>(A.getRowCount()), nondeterministicChoiceIndices.size(), static_cast<size_t>(A.getEntryCount()));
size_t const cudaFreeMemory = static_cast<size_t>(getFreeCudaMemory() * 0.95);
#else
LOG4CPLUS_ERROR(logger, "The useGpu Flag of a SCC was set, but this version of StoRM does not support CUDA acceleration. Internal Error!");
throw storm::exceptions::InvalidStateException() << "The useGpu Flag of a SCC was set, but this version of StoRM does not support CUDA acceleration. Internal Error!";
#define __USE_CUDAFORSTORM_OPT false
size_t const gpuSizeOfCompleteSystem = 0;
size_t const cudaFreeMemory = 0;
#endif
} else {
localIterations = 0;
converged = false;
while (!converged && localIterations < this->maximalNumberOfIterations) {
// Compute x' = A*x + b.
sccSubmatrix.multiplyWithVector(*currentX, sccMultiplyResult);
storm::utility::vector::addVectorsInPlace<float>(sccMultiplyResult, sccSubB);
//A.multiplyWithVector(scc, nondeterministicChoiceIndices, *currentX, multiplyResult);
//storm::utility::addVectors(scc, nondeterministicChoiceIndices, multiplyResult, b);
std::vector<std::pair<bool, storm::storage::StateBlock>> sccDecomposition;
if (__USE_CUDAFORSTORM_OPT && (gpuSizeOfCompleteSystem < cudaFreeMemory)) {
// Dummy output for SCC Times
std::cout << "Computing the SCC Decomposition took 0ms" << std::endl;
/*
Versus:
A.multiplyWithVector(*currentX, *multiplyResult);
storm::utility::vector::addVectorsInPlace(*multiplyResult, b);
*/
// Reduce the vector x' by applying min/max for all non-deterministic choices.
if (minimize) {
storm::utility::vector::reduceVectorMin<float>(sccMultiplyResult, *swap, sccSubNondeterministicChoiceIndices);
} else {
storm::utility::vector::reduceVectorMax<float>(sccMultiplyResult, *swap, sccSubNondeterministicChoiceIndices);
}
// Determine whether the method converged.
// TODO: It seems that the equalModuloPrecision call that compares all values should have a higher
// running time. In fact, it is faster. This has to be investigated.
// converged = storm::utility::equalModuloPrecision(*currentX, *newX, scc, precision, relative);
converged = storm::utility::vector::equalModuloPrecision<float>(*currentX, *swap, this->precision, this->relative);
// Update environment variables.
std::swap(currentX, swap);
++localIterations;
++globalIterations;
}
LOG4CPLUS_INFO(logger, "Executed " << localIterations << " of max. " << maximalNumberOfIterations << " Iterations.");
#ifdef STORM_HAVE_CUDAFORSTORM
if (!resetCudaDevice()) {
LOG4CPLUS_ERROR(logger, "Could not reset CUDA Device, can not use CUDA Equation Solver.");
throw storm::exceptions::InvalidStateException() << "Could not reset CUDA Device, can not use CUDA Equation Solver.";
}
// The Result of this SCC has to be taken back into the main result vector
innerIndex = 0;
for (uint_fast64_t state : scc) {
x.at(state) = currentX->at(innerIndex);
++innerIndex;
std::chrono::high_resolution_clock::time_point calcStartTime = std::chrono::high_resolution_clock::now();
bool result = false;
size_t globalIterations = 0;
if (minimize) {
result = __basicValueIteration_mvReduce_uint64_minimize<ValueType>(this->maximalNumberOfIterations, this->precision, this->relative, A.rowIndications, A.columnsAndValues, x, b, nondeterministicChoiceIndices, globalIterations);
} else {
result = __basicValueIteration_mvReduce_uint64_maximize<ValueType>(this->maximalNumberOfIterations, this->precision, this->relative, A.rowIndications, A.columnsAndValues, x, b, nondeterministicChoiceIndices, globalIterations);
}
LOG4CPLUS_INFO(logger, "Executed " << globalIterations << " of max. " << maximalNumberOfIterations << " Iterations on GPU.");
// Since the pointers for swapping in the calculation point to temps they should not be valid anymore
currentX = nullptr;
swap = nullptr;
// As the "number of iterations" of the full method is the maximum of the local iterations, we need to keep
// track of the maximum.
if (localIterations > currentMaxLocalIterations) {
currentMaxLocalIterations = localIterations;
bool converged = false;
if (!result) {
converged = false;
LOG4CPLUS_ERROR(logger, "An error occurred in the CUDA Plugin. Can not continue.");
throw storm::exceptions::InvalidStateException() << "An error occurred in the CUDA Plugin. Can not continue.";
} else {
converged = true;
}
}
// Check if the solver converged and issue a warning otherwise.
if (converged) {
LOG4CPLUS_INFO(logger, "Iterative solver converged after " << currentMaxLocalIterations << " iterations.");
} else {
LOG4CPLUS_WARN(logger, "Iterative solver did not converged after " << currentMaxLocalIterations << " iterations.");
}
}
template<typename ValueType>
void TopologicalValueIterationNondeterministicLinearEquationSolver<ValueType>::solveEquationSystem(bool minimize, storm::storage::SparseMatrix<ValueType> const& A, std::vector<ValueType>& x, std::vector<ValueType> const& b, std::vector<ValueType>* multiplyResult, std::vector<ValueType>* newX) const {
#ifndef GPU_USE_DOUBLE
TopologicalValueIterationNondeterministicLinearEquationSolver<float> tvindles(precision, maximalNumberOfIterations, relative);
storm::storage::SparseMatrix<float> new_A = A.toValueType<float>();
std::vector<float> new_x = storm::utility::vector::toValueType<float>(x);
std::vector<float> const new_b = storm::utility::vector::toValueType<float>(b);
std::chrono::high_resolution_clock::time_point calcEndTime = std::chrono::high_resolution_clock::now();
std::cout << "Obtaining the fixpoint solution took " << std::chrono::duration_cast<std::chrono::milliseconds>(calcEndTime - calcStartTime).count() << "ms." << std::endl;
tvindles.solveEquationSystem(minimize, new_A, new_x, new_b, nullptr, nullptr);
std::cout << "Used a total of " << globalIterations << " iterations with a maximum of " << globalIterations << " iterations in a single block." << std::endl;
for (size_t i = 0, size = new_x.size(); i < size; ++i) {
x.at(i) = new_x.at(i);
}
// Check if the solver converged and issue a warning otherwise.
if (converged) {
LOG4CPLUS_INFO(logger, "Iterative solver converged after " << globalIterations << " iterations.");
} else {
LOG4CPLUS_WARN(logger, "Iterative solver did not converged after " << globalIterations << " iterations.");
}
#else
// For testing only
std::cout << "<<< Using CUDA-DOUBLE Kernels >>>" << std::endl;
LOG4CPLUS_INFO(logger, "<<< Using CUDA-DOUBLE Kernels >>>");
// Now, we need to determine the SCCs of the MDP and perform a topological sort.
std::vector<uint_fast64_t> const& nondeterministicChoiceIndices = A.getRowGroupIndices();
storm::models::NonDeterministicMatrixBasedPseudoModel<ValueType> pseudoModel(A, nondeterministicChoiceIndices);
storm::storage::StronglyConnectedComponentDecomposition<ValueType> sccDecomposition(pseudoModel, false, false);
LOG4CPLUS_ERROR(logger, "The useGpu Flag of a SCC was set, but this version of StoRM does not support CUDA acceleration. Internal Error!");
throw storm::exceptions::InvalidStateException() << "The useGpu Flag of a SCC was set, but this version of StoRM does not support CUDA acceleration. Internal Error!";
#endif
} else {
std::chrono::high_resolution_clock::time_point sccStartTime = std::chrono::high_resolution_clock::now();
storm::storage::StronglyConnectedComponentDecomposition<ValueType> sccDecomposition(pseudoModel, false, false);
if (sccDecomposition.size() == 0) {
LOG4CPLUS_ERROR(logger, "Can not solve given Equation System as the SCC Decomposition returned no SCCs.");
throw storm::exceptions::IllegalArgumentException() << "Can not solve given Equation System as the SCC Decomposition returned no SCCs.";
}
if (sccDecomposition.size() == 0) {
LOG4CPLUS_ERROR(logger, "Can not solve given Equation System as the SCC Decomposition returned no SCCs.");
throw storm::exceptions::IllegalArgumentException() << "Can not solve given Equation System as the SCC Decomposition returned no SCCs.";
}
storm::storage::SparseMatrix<ValueType> stronglyConnectedComponentsDependencyGraph = pseudoModel.extractPartitionDependencyGraph(sccDecomposition);
std::vector<uint_fast64_t> topologicalSort = storm::utility::graph::getTopologicalSort(stronglyConnectedComponentsDependencyGraph);
// Calculate the optimal distribution of sccs
std::vector<std::pair<bool, storm::storage::StateBlock>> optimalSccs = this->getOptimalGroupingFromTopologicalSccDecomposition(sccDecomposition, topologicalSort, A);
LOG4CPLUS_INFO(logger, "Optimized SCC Decomposition, originally " << topologicalSort.size() << " SCCs, optimized to " << optimalSccs.size() << " SCCs.");
std::vector<ValueType>* currentX = nullptr;
std::vector<ValueType>* swap = nullptr;
size_t currentMaxLocalIterations = 0;
size_t localIterations = 0;
size_t globalIterations = 0;
bool converged = true;
// Iterate over all SCCs of the MDP as specified by the topological sort. This guarantees that an SCC is only
// solved after all SCCs it depends on have been solved.
int counter = 0;
for (auto sccIndexIt = optimalSccs.cbegin(); sccIndexIt != optimalSccs.cend() && converged; ++sccIndexIt) {
bool const useGpu = sccIndexIt->first;
storm::storage::StateBlock const& scc = sccIndexIt->second;
// Generate a sub matrix
storm::storage::BitVector subMatrixIndices(A.getColumnCount(), scc.cbegin(), scc.cend());
storm::storage::SparseMatrix<ValueType> sccSubmatrix = A.getSubmatrix(true, subMatrixIndices, subMatrixIndices);
std::vector<ValueType> sccSubB(sccSubmatrix.getRowCount());
storm::utility::vector::selectVectorValues<ValueType>(sccSubB, subMatrixIndices, nondeterministicChoiceIndices, b);
std::vector<ValueType> sccSubX(sccSubmatrix.getColumnCount());
std::vector<ValueType> sccSubXSwap(sccSubmatrix.getColumnCount());
std::vector<ValueType> sccMultiplyResult(sccSubmatrix.getRowCount());
// Prepare the pointers for swapping in the calculation
currentX = &sccSubX;
swap = &sccSubXSwap;
storm::utility::vector::selectVectorValues<ValueType>(sccSubX, subMatrixIndices, x); // x is getCols() large, where as b and multiplyResult are getRows() (nondet. choices times states)
std::vector<uint_fast64_t> sccSubNondeterministicChoiceIndices(sccSubmatrix.getColumnCount() + 1);
sccSubNondeterministicChoiceIndices.at(0) = 0;
// Pre-process all dependent states
// Remove outgoing transitions and create the ChoiceIndices
uint_fast64_t innerIndex = 0;
uint_fast64_t outerIndex = 0;
for (uint_fast64_t state: scc) {
// Choice Indices
sccSubNondeterministicChoiceIndices.at(outerIndex + 1) = sccSubNondeterministicChoiceIndices.at(outerIndex) + (nondeterministicChoiceIndices[state + 1] - nondeterministicChoiceIndices[state]);
for (auto rowGroupIt = nondeterministicChoiceIndices[state]; rowGroupIt != nondeterministicChoiceIndices[state + 1]; ++rowGroupIt) {
typename storm::storage::SparseMatrix<ValueType>::const_rows row = A.getRow(rowGroupIt);
for (auto rowIt = row.begin(); rowIt != row.end(); ++rowIt) {
if (!subMatrixIndices.get(rowIt->getColumn())) {
// This is an outgoing transition of a state in the SCC to a state not included in the SCC
// Subtracting Pr(tau) * x_other from b fixes that
sccSubB.at(innerIndex) = sccSubB.at(innerIndex) + (rowIt->getValue() * x.at(rowIt->getColumn()));
storm::storage::SparseMatrix<ValueType> stronglyConnectedComponentsDependencyGraph = pseudoModel.extractPartitionDependencyGraph(sccDecomposition);
std::vector<uint_fast64_t> topologicalSort = storm::utility::graph::getTopologicalSort(stronglyConnectedComponentsDependencyGraph);
// Calculate the optimal distribution of sccs
std::vector<std::pair<bool, storm::storage::StateBlock>> optimalSccs = this->getOptimalGroupingFromTopologicalSccDecomposition(sccDecomposition, topologicalSort, A);
LOG4CPLUS_INFO(logger, "Optimized SCC Decomposition, originally " << topologicalSort.size() << " SCCs, optimized to " << optimalSccs.size() << " SCCs.");
std::chrono::high_resolution_clock::time_point sccEndTime = std::chrono::high_resolution_clock::now();
std::cout << "Computing the SCC Decomposition took " << std::chrono::duration_cast<std::chrono::milliseconds>(sccEndTime - sccStartTime).count() << "ms." << std::endl;
std::chrono::high_resolution_clock::time_point calcStartTime = std::chrono::high_resolution_clock::now();
std::vector<ValueType>* currentX = nullptr;
std::vector<ValueType>* swap = nullptr;
size_t currentMaxLocalIterations = 0;
size_t localIterations = 0;
size_t globalIterations = 0;
bool converged = true;
// Iterate over all SCCs of the MDP as specified by the topological sort. This guarantees that an SCC is only
// solved after all SCCs it depends on have been solved.
int counter = 0;
for (auto sccIndexIt = optimalSccs.cbegin(); sccIndexIt != optimalSccs.cend() && converged; ++sccIndexIt) {
bool const useGpu = sccIndexIt->first;
storm::storage::StateBlock const& scc = sccIndexIt->second;
// Generate a sub matrix
storm::storage::BitVector subMatrixIndices(A.getColumnCount(), scc.cbegin(), scc.cend());
storm::storage::SparseMatrix<ValueType> sccSubmatrix = A.getSubmatrix(true, subMatrixIndices, subMatrixIndices);
std::vector<ValueType> sccSubB(sccSubmatrix.getRowCount());
storm::utility::vector::selectVectorValues<ValueType>(sccSubB, subMatrixIndices, nondeterministicChoiceIndices, b);
std::vector<ValueType> sccSubX(sccSubmatrix.getColumnCount());
std::vector<ValueType> sccSubXSwap(sccSubmatrix.getColumnCount());
std::vector<ValueType> sccMultiplyResult(sccSubmatrix.getRowCount());
// Prepare the pointers for swapping in the calculation
currentX = &sccSubX;
swap = &sccSubXSwap;
storm::utility::vector::selectVectorValues<ValueType>(sccSubX, subMatrixIndices, x); // x is getCols() large, where as b and multiplyResult are getRows() (nondet. choices times states)
std::vector<uint_fast64_t> sccSubNondeterministicChoiceIndices(sccSubmatrix.getColumnCount() + 1);
sccSubNondeterministicChoiceIndices.at(0) = 0;
// Pre-process all dependent states
// Remove outgoing transitions and create the ChoiceIndices
uint_fast64_t innerIndex = 0;
uint_fast64_t outerIndex = 0;
for (uint_fast64_t state : scc) {
// Choice Indices
sccSubNondeterministicChoiceIndices.at(outerIndex + 1) = sccSubNondeterministicChoiceIndices.at(outerIndex) + (nondeterministicChoiceIndices[state + 1] - nondeterministicChoiceIndices[state]);
for (auto rowGroupIt = nondeterministicChoiceIndices[state]; rowGroupIt != nondeterministicChoiceIndices[state + 1]; ++rowGroupIt) {
typename storm::storage::SparseMatrix<ValueType>::const_rows row = A.getRow(rowGroupIt);
for (auto rowIt = row.begin(); rowIt != row.end(); ++rowIt) {
if (!subMatrixIndices.get(rowIt->getColumn())) {
// This is an outgoing transition of a state in the SCC to a state not included in the SCC
// Subtracting Pr(tau) * x_other from b fixes that
sccSubB.at(innerIndex) = sccSubB.at(innerIndex) + (rowIt->getValue() * x.at(rowIt->getColumn()));
}
}
++innerIndex;
}
++innerIndex;
++outerIndex;
}
++outerIndex;
}
// For the current SCC, we need to perform value iteration until convergence.
if (useGpu) {
// For the current SCC, we need to perform value iteration until convergence.
if (useGpu) {
#ifdef STORM_HAVE_CUDAFORSTORM
if (!resetCudaDevice()) {
LOG4CPLUS_ERROR(logger, "Could not reset CUDA Device, can not use CUDA Equation Solver.");
throw storm::exceptions::InvalidStateException() << "Could not reset CUDA Device, can not use CUDA Equation Solver.";
}
if (!resetCudaDevice()) {
LOG4CPLUS_ERROR(logger, "Could not reset CUDA Device, can not use CUDA Equation Solver.");
throw storm::exceptions::InvalidStateException() << "Could not reset CUDA Device, can not use CUDA Equation Solver.";
}
//LOG4CPLUS_INFO(logger, "Device has " << getTotalCudaMemory() << " Bytes of Memory with " << getFreeCudaMemory() << "Bytes free (" << (static_cast<double>(getFreeCudaMemory()) / static_cast<double>(getTotalCudaMemory())) * 100 << "%).");
//LOG4CPLUS_INFO(logger, "We will allocate " << (sizeof(uint_fast64_t)* sccSubmatrix.rowIndications.size() + sizeof(uint_fast64_t)* sccSubmatrix.columnsAndValues.size() * 2 + sizeof(double)* sccSubX.size() + sizeof(double)* sccSubX.size() + sizeof(double)* sccSubB.size() + sizeof(double)* sccSubB.size() + sizeof(uint_fast64_t)* sccSubNondeterministicChoiceIndices.size()) << " Bytes.");
//LOG4CPLUS_INFO(logger, "The CUDA Runtime Version is " << getRuntimeCudaVersion());
//LOG4CPLUS_INFO(logger, "Device has " << getTotalCudaMemory() << " Bytes of Memory with " << getFreeCudaMemory() << "Bytes free (" << (static_cast<double>(getFreeCudaMemory()) / static_cast<double>(getTotalCudaMemory())) * 100 << "%).");
//LOG4CPLUS_INFO(logger, "We will allocate " << (sizeof(uint_fast64_t)* sccSubmatrix.rowIndications.size() + sizeof(uint_fast64_t)* sccSubmatrix.columnsAndValues.size() * 2 + sizeof(double)* sccSubX.size() + sizeof(double)* sccSubX.size() + sizeof(double)* sccSubB.size() + sizeof(double)* sccSubB.size() + sizeof(uint_fast64_t)* sccSubNondeterministicChoiceIndices.size()) << " Bytes.");
//LOG4CPLUS_INFO(logger, "The CUDA Runtime Version is " << getRuntimeCudaVersion());
bool result = false;
localIterations = 0;
if (minimize) {
result = basicValueIteration_mvReduce_uint64_double_minimize(this->maximalNumberOfIterations, this->precision, this->relative, sccSubmatrix.rowIndications, sccSubmatrix.columnsAndValues, *currentX, sccSubB, sccSubNondeterministicChoiceIndices, localIterations);
} else {
result = basicValueIteration_mvReduce_uint64_double_maximize(this->maximalNumberOfIterations, this->precision, this->relative, sccSubmatrix.rowIndications, sccSubmatrix.columnsAndValues, *currentX, sccSubB, sccSubNondeterministicChoiceIndices, localIterations);
}
LOG4CPLUS_INFO(logger, "Executed " << localIterations << " of max. " << maximalNumberOfIterations << " Iterations on GPU.");
if (!result) {
converged = false;
LOG4CPLUS_ERROR(logger, "An error occurred in the CUDA Plugin. Can not continue.");
throw storm::exceptions::InvalidStateException() << "An error occurred in the CUDA Plugin. Can not continue.";
} else {
converged = true;
}
bool result = false;
localIterations = 0;
if (minimize) {
result = __basicValueIteration_mvReduce_uint64_minimize<ValueType>(this->maximalNumberOfIterations, this->precision, this->relative, sccSubmatrix.rowIndications, sccSubmatrix.columnsAndValues, *currentX, sccSubB, sccSubNondeterministicChoiceIndices, localIterations);
} else {
result = __basicValueIteration_mvReduce_uint64_maximize<ValueType>(this->maximalNumberOfIterations, this->precision, this->relative, sccSubmatrix.rowIndications, sccSubmatrix.columnsAndValues, *currentX, sccSubB, sccSubNondeterministicChoiceIndices, localIterations);
}
LOG4CPLUS_INFO(logger, "Executed " << localIterations << " of max. " << maximalNumberOfIterations << " Iterations on GPU.");
// As the "number of iterations" of the full method is the maximum of the local iterations, we need to keep
// track of the maximum.
if (localIterations > currentMaxLocalIterations) {
currentMaxLocalIterations = localIterations;
}
if (!result) {
converged = false;
LOG4CPLUS_ERROR(logger, "An error occurred in the CUDA Plugin. Can not continue.");
throw storm::exceptions::InvalidStateException() << "An error occurred in the CUDA Plugin. Can not continue.";
} else {
converged = true;
}
// As the "number of iterations" of the full method is the maximum of the local iterations, we need to keep
// track of the maximum.
if (localIterations > currentMaxLocalIterations) {
currentMaxLocalIterations = localIterations;
}
globalIterations += localIterations;
#else
LOG4CPLUS_ERROR(logger, "The useGpu Flag of a SCC was set, but this version of StoRM does not support CUDA acceleration. Internal Error!");
throw storm::exceptions::InvalidStateException() << "The useGpu Flag of a SCC was set, but this version of StoRM does not support CUDA acceleration. Internal Error!";
LOG4CPLUS_ERROR(logger, "The useGpu Flag of a SCC was set, but this version of StoRM does not support CUDA acceleration. Internal Error!");
throw storm::exceptions::InvalidStateException() << "The useGpu Flag of a SCC was set, but this version of StoRM does not support CUDA acceleration. Internal Error!";
#endif
} else {
localIterations = 0;
converged = false;
while (!converged && localIterations < this->maximalNumberOfIterations) {
// Compute x' = A*x + b.
sccSubmatrix.multiplyWithVector(*currentX, sccMultiplyResult);
storm::utility::vector::addVectorsInPlace<ValueType>(sccMultiplyResult, sccSubB);
} else {
std::cout << "WARNING: Using CPU based TopoSolver! (double)" << std::endl;
localIterations = 0;
converged = false;
while (!converged && localIterations < this->maximalNumberOfIterations) {
// Compute x' = A*x + b.
sccSubmatrix.multiplyWithVector(*currentX, sccMultiplyResult);
storm::utility::vector::addVectorsInPlace<ValueType>(sccMultiplyResult, sccSubB);
//A.multiplyWithVector(scc, nondeterministicChoiceIndices, *currentX, multiplyResult);
//storm::utility::addVectors(scc, nondeterministicChoiceIndices, multiplyResult, b);
/*
Versus:
A.multiplyWithVector(*currentX, *multiplyResult);
storm::utility::vector::addVectorsInPlace(*multiplyResult, b);
*/
// Reduce the vector x' by applying min/max for all non-deterministic choices.
if (minimize) {
storm::utility::vector::reduceVectorMin<ValueType>(sccMultiplyResult, *swap, sccSubNondeterministicChoiceIndices);
} else {
storm::utility::vector::reduceVectorMax<ValueType>(sccMultiplyResult, *swap, sccSubNondeterministicChoiceIndices);
}
//A.multiplyWithVector(scc, nondeterministicChoiceIndices, *currentX, multiplyResult);
//storm::utility::addVectors(scc, nondeterministicChoiceIndices, multiplyResult, b);
// Determine whether the method converged.
// TODO: It seems that the equalModuloPrecision call that compares all values should have a higher
// running time. In fact, it is faster. This has to be investigated.
// converged = storm::utility::equalModuloPrecision(*currentX, *newX, scc, precision, relative);
converged = storm::utility::vector::equalModuloPrecision<ValueType>(*currentX, *swap, this->precision, this->relative);
/*
Versus:
A.multiplyWithVector(*currentX, *multiplyResult);
storm::utility::vector::addVectorsInPlace(*multiplyResult, b);
*/
// Update environment variables.
std::swap(currentX, swap);
// Reduce the vector x' by applying min/max for all non-deterministic choices.
if (minimize) {
storm::utility::vector::reduceVectorMin<ValueType>(sccMultiplyResult, *swap, sccSubNondeterministicChoiceIndices);
++localIterations;
++globalIterations;
}
else {
storm::utility::vector::reduceVectorMax<ValueType>(sccMultiplyResult, *swap, sccSubNondeterministicChoiceIndices);
}
// Determine whether the method converged.
// TODO: It seems that the equalModuloPrecision call that compares all values should have a higher
// running time. In fact, it is faster. This has to be investigated.
// converged = storm::utility::equalModuloPrecision(*currentX, *newX, scc, precision, relative);
converged = storm::utility::vector::equalModuloPrecision<ValueType>(*currentX, *swap, this->precision, this->relative);
LOG4CPLUS_INFO(logger, "Executed " << localIterations << " of max. " << maximalNumberOfIterations << " Iterations.");
}
// Update environment variables.
std::swap(currentX, swap);
++localIterations;
++globalIterations;
// The Result of this SCC has to be taken back into the main result vector
innerIndex = 0;
for (uint_fast64_t state : scc) {
x.at(state) = currentX->at(innerIndex);
++innerIndex;
}
LOG4CPLUS_INFO(logger, "Executed " << localIterations << " of max. " << maximalNumberOfIterations << " Iterations.");
}
// Since the pointers for swapping in the calculation point to temps they should not be valid anymore
currentX = nullptr;
swap = nullptr;
// The Result of this SCC has to be taken back into the main result vector
innerIndex = 0;
for (uint_fast64_t state: scc) {
x.at(state) = currentX->at(innerIndex);
++innerIndex;
// As the "number of iterations" of the full method is the maximum of the local iterations, we need to keep
// track of the maximum.
if (localIterations > currentMaxLocalIterations) {
currentMaxLocalIterations = localIterations;
}
}
// Since the pointers for swapping in the calculation point to temps they should not be valid anymore
currentX = nullptr;
swap = nullptr;
std::cout << "Used a total of " << globalIterations << " iterations with a maximum of " << localIterations << " iterations in a single block." << std::endl;
// As the "number of iterations" of the full method is the maximum of the local iterations, we need to keep
// track of the maximum.
if (localIterations > currentMaxLocalIterations) {
currentMaxLocalIterations = localIterations;
// Check if the solver converged and issue a warning otherwise.
if (converged) {
LOG4CPLUS_INFO(logger, "Iterative solver converged after " << currentMaxLocalIterations << " iterations.");
} else {
LOG4CPLUS_WARN(logger, "Iterative solver did not converged after " << currentMaxLocalIterations << " iterations.");
}
}
// Check if the solver converged and issue a warning otherwise.
if (converged) {
LOG4CPLUS_INFO(logger, "Iterative solver converged after " << currentMaxLocalIterations << " iterations.");
}
else {
LOG4CPLUS_WARN(logger, "Iterative solver did not converged after " << currentMaxLocalIterations << " iterations.");
std::chrono::high_resolution_clock::time_point calcEndTime = std::chrono::high_resolution_clock::now();
std::cout << "Obtaining the fixpoint solution took " << std::chrono::duration_cast<std::chrono::milliseconds>(calcEndTime - calcStartTime).count() << "ms." << std::endl;
}
#endif
}
template<typename ValueType>

49
src/solver/TopologicalValueIterationNondeterministicLinearEquationSolver.h

@ -8,6 +8,11 @@
#include <utility>
#include <vector>
#include "storm-config.h"
#ifdef STORM_HAVE_CUDAFORSTORM
# include "cudaForStorm.h"
#endif
namespace storm {
namespace solver {
@ -42,6 +47,50 @@ namespace storm {
*/
std::vector<std::pair<bool, storm::storage::StateBlock>> getOptimalGroupingFromTopologicalSccDecomposition(storm::storage::StronglyConnectedComponentDecomposition<ValueType> const& sccDecomposition, std::vector<uint_fast64_t> const& topologicalSort, storm::storage::SparseMatrix<ValueType> const& matrix) const;
};
template <typename ValueType>
bool __basicValueIteration_mvReduce_uint64_minimize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<ValueType>> const& columnIndicesAndValues, std::vector<ValueType>& x, std::vector<ValueType> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
//
throw;
}
template <>
inline bool __basicValueIteration_mvReduce_uint64_minimize<double>(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<double>> const& columnIndicesAndValues, std::vector<double>& x, std::vector<double> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
#ifdef STORM_HAVE_CUDAFORSTORM
return basicValueIteration_mvReduce_uint64_double_minimize(maxIterationCount, precision, relativePrecisionCheck, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
#else
throw;
#endif
}
template <>
inline bool __basicValueIteration_mvReduce_uint64_minimize<float>(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<float>> const& columnIndicesAndValues, std::vector<float>& x, std::vector<float> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
#ifdef STORM_HAVE_CUDAFORSTORM
return basicValueIteration_mvReduce_uint64_float_minimize(maxIterationCount, precision, relativePrecisionCheck, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
#else
throw;
#endif
}
template <typename ValueType>
bool __basicValueIteration_mvReduce_uint64_maximize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<ValueType>> const& columnIndicesAndValues, std::vector<ValueType>& x, std::vector<ValueType> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
//
throw;
}
template <>
inline bool __basicValueIteration_mvReduce_uint64_maximize<double>(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<double>> const& columnIndicesAndValues, std::vector<double>& x, std::vector<double> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
#ifdef STORM_HAVE_CUDAFORSTORM
return basicValueIteration_mvReduce_uint64_double_maximize(maxIterationCount, precision, relativePrecisionCheck, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
#else
throw;
#endif
}
template <>
inline bool __basicValueIteration_mvReduce_uint64_maximize<float>(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<float>> const& columnIndicesAndValues, std::vector<float>& x, std::vector<float> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
#ifdef STORM_HAVE_CUDAFORSTORM
return basicValueIteration_mvReduce_uint64_float_maximize(maxIterationCount, precision, relativePrecisionCheck, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
#else
throw;
#endif
}
} // namespace solver
} // namespace storm

Loading…
Cancel
Save