@ -32,10 +32,10 @@ namespace storm {
reachableStates . clear ( ) ;
reachableStates . complement ( ) ;
}
template < typename ValueType >
std : : shared_ptr < storm : : models : : sparse : : Model < ValueType > > SparseModelMemoryProduct < ValueType > : : build ( ) {
std : : shared_ptr < storm : : models : : sparse : : Model < ValueType > > SparseModelMemoryProduct < ValueType > : : build ( boost : : optional < storm : : storage : : Scheduler < ValueType > > const & scheduler ) {
uint64_t modelStateCount = model . getNumberOfStates ( ) ;
uint64_t memoryStateCount = memory . getNumberOfStates ( ) ;
@ -50,7 +50,7 @@ namespace storm {
}
STORM_LOG_ASSERT ( memoryInitIt = = memory . getInitialMemoryStates ( ) . end ( ) , " Unexpected number of initial states. " ) ;
computeReachableStates ( memorySuccessors , initialStates ) ;
computeReachableStates ( memorySuccessors , initialStates , scheduler ) ;
// Compute the mapping to the states of the result
uint64_t reachableStateCount = 0 ;
@ -61,17 +61,22 @@ namespace storm {
}
// Build the model components
storm : : storage : : SparseMatrix < ValueType > transitionMatrix = model . getTransitionMatrix ( ) . hasTrivialRowGrouping ( ) ?
buildDeterministicTransitionMatrix ( memorySuccessors ) :
buildNondeterministicTransitionMatrix ( memorySuccessors ) ;
storm : : storage : : SparseMatrix < ValueType > transitionMatrix ;
if ( scheduler ) {
transitionMatrix = buildTransitionMatrixForScheduler ( memorySuccessors , scheduler . get ( ) ) ;
} else if ( model . getTransitionMatrix ( ) . hasTrivialRowGrouping ( ) ) {
transitionMatrix = buildDeterministicTransitionMatrix ( memorySuccessors ) ;
} else {
transitionMatrix = buildNondeterministicTransitionMatrix ( memorySuccessors ) ;
}
storm : : models : : sparse : : StateLabeling labeling = buildStateLabeling ( transitionMatrix ) ;
std : : unordered_map < std : : string , storm : : models : : sparse : : StandardRewardModel < ValueType > > rewardModels = buildRewardModels ( transitionMatrix , memorySuccessors ) ;
std : : unordered_map < std : : string , storm : : models : : sparse : : StandardRewardModel < ValueType > > rewardModels = buildRewardModels ( transitionMatrix , memorySuccessors , scheduler ) ;
// Add the label for the initial states. We need to translate the state indices w.r.t. the set of reachable states.
labeling . addLabel ( " init " , initialStates % reachableStates ) ;
return buildResult ( std : : move ( transitionMatrix ) , std : : move ( labeling ) , std : : move ( rewardModels ) ) ;
return buildResult ( std : : move ( transitionMatrix ) , std : : move ( labeling ) , std : : move ( rewardModels ) , scheduler ) ;
}
@ -100,7 +105,7 @@ namespace storm {
}
template < typename ValueType >
void SparseModelMemoryProduct < ValueType > : : computeReachableStates ( std : : vector < uint64_t > const & memorySuccessors , storm : : storage : : BitVector const & initialStates ) {
void SparseModelMemoryProduct < ValueType > : : computeReachableStates ( std : : vector < uint64_t > const & memorySuccessors , storm : : storage : : BitVector const & initialStates , boost : : optional < storm : : storage : : Scheduler < ValueType > > const & scheduler ) {
uint64_t memoryStateCount = memory . getNumberOfStates ( ) ;
// Explore the reachable states via DFS.
// A state s on the stack corresponds to the model state (s / memoryStateCount) and memory state (s % memoryStateCount)
@ -113,16 +118,37 @@ namespace storm {
uint64_t modelState = stateIndex / memoryStateCount ;
uint64_t memoryState = stateIndex % memoryStateCount ;
auto const & rowGroup = model . getTransitionMatrix ( ) . getRowGroup ( modelState ) ;
for ( auto modelTransitionIt = rowGroup . begin ( ) ; modelTransitionIt ! = rowGroup . end ( ) ; + + modelTransitionIt ) {
if ( ! storm : : utility : : isZero ( modelTransitionIt - > getValue ( ) ) ) {
uint64_t successorModelState = modelTransitionIt - > getColumn ( ) ;
uint64_t modelTransitionId = modelTransitionIt - model . getTransitionMatrix ( ) . begin ( ) ;
uint64_t successorMemoryState = memorySuccessors [ modelTransitionId * memoryStateCount + memoryState ] ;
uint64_t successorStateIndex = successorModelState * memoryStateCount + successorMemoryState ;
if ( ! reachableStates . get ( successorStateIndex ) ) {
reachableStates . set ( successorStateIndex , true ) ;
stack . push_back ( successorStateIndex ) ;
if ( scheduler ) {
auto choices = scheduler - > getChoice ( modelState , memoryState ) . getChoiceAsDistribution ( ) ;
uint64_t groupStart = model . getTransitionMatrix ( ) . getRowGroupIndices ( ) [ modelState ] ;
for ( auto const & choice : choices ) {
STORM_LOG_ASSERT ( groupStart + choice . first < model . getTransitionMatrix ( ) . getRowGroupIndices ( ) [ modelState + 1 ] , " Invalid choice " < < choice . first < < " at model state " < < modelState < < " . " ) ;
auto const & row = model . getTransitionMatrix ( ) . getRow ( groupStart + choice . first ) ;
for ( auto modelTransitionIt = row . begin ( ) ; modelTransitionIt ! = row . end ( ) ; + + modelTransitionIt ) {
if ( ! storm : : utility : : isZero ( modelTransitionIt - > getValue ( ) ) ) {
uint64_t successorModelState = modelTransitionIt - > getColumn ( ) ;
uint64_t modelTransitionId = modelTransitionIt - model . getTransitionMatrix ( ) . begin ( ) ;
uint64_t successorMemoryState = memorySuccessors [ modelTransitionId * memoryStateCount + memoryState ] ;
uint64_t successorStateIndex = successorModelState * memoryStateCount + successorMemoryState ;
if ( ! reachableStates . get ( successorStateIndex ) ) {
reachableStates . set ( successorStateIndex , true ) ;
stack . push_back ( successorStateIndex ) ;
}
}
}
}
} else {
auto const & rowGroup = model . getTransitionMatrix ( ) . getRowGroup ( modelState ) ;
for ( auto modelTransitionIt = rowGroup . begin ( ) ; modelTransitionIt ! = rowGroup . end ( ) ; + + modelTransitionIt ) {
if ( ! storm : : utility : : isZero ( modelTransitionIt - > getValue ( ) ) ) {
uint64_t successorModelState = modelTransitionIt - > getColumn ( ) ;
uint64_t modelTransitionId = modelTransitionIt - model . getTransitionMatrix ( ) . begin ( ) ;
uint64_t successorMemoryState = memorySuccessors [ modelTransitionId * memoryStateCount + memoryState ] ;
uint64_t successorStateIndex = successorModelState * memoryStateCount + successorMemoryState ;
if ( ! reachableStates . get ( successorStateIndex ) ) {
reachableStates . set ( successorStateIndex , true ) ;
stack . push_back ( successorStateIndex ) ;
}
}
}
}
@ -190,6 +216,101 @@ namespace storm {
return builder . build ( ) ;
}
template < typename ValueType >
storm : : storage : : SparseMatrix < ValueType > SparseModelMemoryProduct < ValueType > : : buildTransitionMatrixForScheduler ( std : : vector < uint64_t > const & memorySuccessors , storm : : storage : : Scheduler < ValueType > const & scheduler ) const {
uint64_t memoryStateCount = memory . getNumberOfStates ( ) ;
uint64_t numResStates = reachableStates . getNumberOfSetBits ( ) ;
uint64_t numResChoices = 0 ;
uint64_t numResTransitions = 0 ;
bool hasTrivialNondeterminism = true ;
for ( auto const & stateIndex : reachableStates ) {
uint64_t modelState = stateIndex / memoryStateCount ;
uint64_t memoryState = stateIndex % memoryStateCount ;
storm : : storage : : SchedulerChoice < ValueType > choice = scheduler . getChoice ( modelState , memoryState ) ;
if ( choice . isDefined ( ) ) {
+ + numResChoices ;
if ( choice . isDeterministic ( ) ) {
uint64_t modelRow = model . getTransitionMatrix ( ) . getRowGroupIndices ( ) [ modelState ] + choice . getDeterministicChoice ( ) ;
numResTransitions + = model . getTransitionMatrix ( ) . getRow ( modelRow ) . getNumberOfEntries ( ) ;
} else {
std : : set < uint64_t > successors ;
for ( auto const & choiceIndex : choice . getChoiceAsDistribution ( ) ) {
if ( ! storm : : utility : : isZero ( choiceIndex . second ) ) {
uint64_t modelRow = model . getTransitionMatrix ( ) . getRowGroupIndices ( ) [ modelState ] + choiceIndex . first ;
for ( auto const & entry : model . getTransitionMatrix ( ) . getRow ( modelRow ) ) {
successors . insert ( entry . getColumn ( ) ) ;
}
}
}
numResTransitions + = successors . size ( ) ;
}
} else {
uint64_t modelRow = model . getTransitionMatrix ( ) . getRowGroupIndices ( ) [ modelState ] ;
uint64_t groupEnd = model . getTransitionMatrix ( ) . getRowGroupIndices ( ) [ modelState + 1 ] ;
hasTrivialNondeterminism = hasTrivialNondeterminism & & ( groupEnd = = modelRow + 1 ) ;
for ( ; groupEnd ; + + modelRow ) {
+ + numResChoices ;
numResTransitions + = model . getTransitionMatrix ( ) . getRow ( modelRow ) . getNumberOfEntries ( ) ;
}
}
}
storm : : storage : : SparseMatrixBuilder < ValueType > builder ( numResChoices , numResStates , numResTransitions , true , ! hasTrivialNondeterminism , hasTrivialNondeterminism ? 0 : numResStates ) ;
uint64_t currentRow = 0 ;
for ( auto const & stateIndex : reachableStates ) {
uint64_t modelState = stateIndex / memoryStateCount ;
uint64_t memoryState = stateIndex % memoryStateCount ;
if ( ! hasTrivialNondeterminism ) {
builder . newRowGroup ( currentRow ) ;
}
storm : : storage : : SchedulerChoice < ValueType > choice = scheduler . getChoice ( modelState , memoryState ) ;
if ( choice . isDefined ( ) ) {
if ( choice . isDeterministic ( ) ) {
uint64_t modelRowIndex = model . getTransitionMatrix ( ) . getRowGroupIndices ( ) [ modelState ] + choice . getDeterministicChoice ( ) ;
auto const & modelRow = model . getTransitionMatrix ( ) . getRow ( modelRowIndex ) ;
for ( auto entryIt = modelRow . begin ( ) ; entryIt ! = modelRow . end ( ) ; + + entryIt ) {
uint64_t transitionId = entryIt - model . getTransitionMatrix ( ) . begin ( ) ;
uint64_t const & successorMemoryState = memorySuccessors [ transitionId * memoryStateCount + memoryState ] ;
builder . addNextValue ( currentRow , getResultState ( entryIt - > getColumn ( ) , successorMemoryState ) , entryIt - > getValue ( ) ) ;
}
} else {
std : : map < uint64_t , ValueType > transitions ;
for ( auto const & choiceIndex : choice . getChoiceAsDistribution ( ) ) {
if ( ! storm : : utility : : isZero ( choiceIndex . second ) ) {
uint64_t modelRowIndex = model . getTransitionMatrix ( ) . getRowGroupIndices ( ) [ modelState ] + choiceIndex . first ;
auto const & modelRow = model . getTransitionMatrix ( ) . getRow ( modelRowIndex ) ;
for ( auto entryIt = modelRow . begin ( ) ; entryIt ! = modelRow . end ( ) ; + + entryIt ) {
uint64_t transitionId = entryIt - model . getTransitionMatrix ( ) . begin ( ) ;
uint64_t const & successorMemoryState = memorySuccessors [ transitionId * memoryStateCount + memoryState ] ;
ValueType transitionValue = choiceIndex . second * entryIt - > getValue ( ) ;
auto insertionRes = transitions . insert ( std : : make_pair ( getResultState ( entryIt - > getColumn ( ) , successorMemoryState ) , transitionValue ) ) ;
if ( ! insertionRes . second ) {
insertionRes . first - > second + = transitionValue ;
}
}
}
}
for ( auto const & transition : transitions ) {
builder . addNextValue ( currentRow , transition . first , transition . second ) ;
}
}
+ + currentRow ;
} else {
for ( uint64_t modelRowIndex = model . getTransitionMatrix ( ) . getRowGroupIndices ( ) [ modelState ] ; modelRowIndex < model . getTransitionMatrix ( ) . getRowGroupIndices ( ) [ modelState + 1 ] ; + + modelRowIndex ) {
auto const & modelRow = model . getTransitionMatrix ( ) . getRow ( modelRowIndex ) ;
for ( auto entryIt = modelRow . begin ( ) ; entryIt ! = modelRow . end ( ) ; + + entryIt ) {
uint64_t transitionId = entryIt - model . getTransitionMatrix ( ) . begin ( ) ;
uint64_t const & successorMemoryState = memorySuccessors [ transitionId * memoryStateCount + memoryState ] ;
builder . addNextValue ( currentRow , getResultState ( entryIt - > getColumn ( ) , successorMemoryState ) , entryIt - > getValue ( ) ) ;
}
+ + currentRow ;
}
}
}
return builder . build ( ) ;
}
template < typename ValueType >
storm : : models : : sparse : : StateLabeling SparseModelMemoryProduct < ValueType > : : buildStateLabeling ( storm : : storage : : SparseMatrix < ValueType > const & resultTransitionMatrix ) const {
uint64_t modelStateCount = model . getNumberOfStates ( ) ;
@ -231,7 +352,7 @@ namespace storm {
}
template < typename ValueType >
std : : unordered_map < std : : string , storm : : models : : sparse : : StandardRewardModel < ValueType > > SparseModelMemoryProduct < ValueType > : : buildRewardModels ( storm : : storage : : SparseMatrix < ValueType > const & resultTransitionMatrix , std : : vector < uint64_t > const & memorySuccessors ) const {
std : : unordered_map < std : : string , storm : : models : : sparse : : StandardRewardModel < ValueType > > SparseModelMemoryProduct < ValueType > : : buildRewardModels ( storm : : storage : : SparseMatrix < ValueType > const & resultTransitionMatrix , std : : vector < uint64_t > const & memorySuccessors , boost : : optional < storm : : storage : : Scheduler < ValueType > > const & scheduler ) const {
std : : unordered_map < std : : string , storm : : models : : sparse : : StandardRewardModel < ValueType > > result ;
uint64_t memoryStateCount = memory . getNumberOfStates ( ) ;
uint64_t numResStates = resultTransitionMatrix . getRowGroupCount ( ) ;
@ -269,7 +390,12 @@ namespace storm {
uint64_t const & resState = getResultState ( modelState , memoryState ) ;
// Check if the state exists in the result (i.e. if it is reachable)
if ( resState < numResStates ) {
stateActionRewards . get ( ) [ resultTransitionMatrix . getRowGroupIndices ( ) [ resState ] + rowOffset ] = modelStateActionReward ;
if ( scheduler & & scheduler - > getChoice ( modelState , memoryState ) . isDefined ( ) ) {
ValueType factor = scheduler - > getChoice ( modelState , memoryState ) . getChoiceAsDistribution ( ) . getProbability ( rowOffset ) ;
stateActionRewards . get ( ) [ resultTransitionMatrix . getRowGroupIndices ( ) [ resState ] ] = factor * modelStateActionReward ;
} else {
stateActionRewards . get ( ) [ resultTransitionMatrix . getRowGroupIndices ( ) [ resState ] + rowOffset ] = modelStateActionReward ;
}
}
}
}
@ -285,14 +411,42 @@ namespace storm {
uint64_t modelState = stateIndex / memoryStateCount ;
uint64_t memoryState = stateIndex % memoryStateCount ;
uint64_t rowGroupSize = resultTransitionMatrix . getRowGroupSize ( resState ) ;
for ( uint64_t rowOffset = 0 ; rowOffset < rowGroupSize ; + + rowOffset ) {
uint64_t resRowIndex = resultTransitionMatrix . getRowGroupIndices ( ) [ resState ] + rowOffset ;
uint64_t modelRowIndex = model . getTransitionMatrix ( ) . getRowGroupIndices ( ) [ modelState ] + rowOffset ;
auto const & rewardMatrixRow = rewardModel . second . getTransitionRewardMatrix ( ) . getRow ( modelRowIndex ) ;
for ( auto entryIt = rewardMatrixRow . begin ( ) ; entryIt ! = rewardMatrixRow . end ( ) ; + + entryIt ) {
uint64_t transitionId = entryIt - rewardModel . second . getTransitionRewardMatrix ( ) . begin ( ) ;
uint64_t const & successorMemoryState = memorySuccessors [ transitionId * memoryStateCount + memoryState ] ;
builder . addNextValue ( resRowIndex , getResultState ( entryIt - > getColumn ( ) , successorMemoryState ) , entryIt - > getValue ( ) ) ;
if ( scheduler & & scheduler - > getChoice ( modelState , memoryState ) . isDefined ( ) ) {
std : : map < uint64_t , ValueType > rewards ;
for ( uint64_t rowOffset = 0 ; rowOffset < rowGroupSize ; + + rowOffset ) {
uint64_t modelRowIndex = model . getTransitionMatrix ( ) . getRowGroupIndices ( ) [ modelState ] + rowOffset ;
auto transitionEntryIt = model . getTransitionMatrix ( ) . getRow ( modelRowIndex ) . begin ( ) ;
for ( auto const & rewardEntry : rewardModel . second . getTransitionRewardMatrix ( ) . getRow ( modelRowIndex ) ) {
while ( transitionEntryIt - > getColumn ( ) ! = rewardEntry . getColumn ( ) ) {
STORM_LOG_ASSERT ( transitionEntryIt ! = model . getTransitionMatrix ( ) . getRow ( modelRowIndex ) . end ( ) , " The reward transition matrix is not a submatrix of the model transition matrix. " ) ;
+ + transitionEntryIt ;
}
uint64_t transitionId = transitionEntryIt - model . getTransitionMatrix ( ) . begin ( ) ;
uint64_t const & successorMemoryState = memorySuccessors [ transitionId * memoryStateCount + memoryState ] ;
auto insertionRes = rewards . insert ( std : : make_pair ( getResultState ( rewardEntry . getColumn ( ) , successorMemoryState ) , rewardEntry . getValue ( ) ) ) ;
if ( ! insertionRes . second ) {
insertionRes . first - > second + = rewardEntry . getValue ( ) ;
}
}
}
uint64_t resRowIndex = resultTransitionMatrix . getRowGroupIndices ( ) [ resState ] ;
for ( auto & reward : rewards ) {
builder . addNextValue ( resRowIndex , reward . first , reward . second ) ;
}
} else {
for ( uint64_t rowOffset = 0 ; rowOffset < rowGroupSize ; + + rowOffset ) {
uint64_t resRowIndex = resultTransitionMatrix . getRowGroupIndices ( ) [ resState ] + rowOffset ;
uint64_t modelRowIndex = model . getTransitionMatrix ( ) . getRowGroupIndices ( ) [ modelState ] + rowOffset ;
auto transitionEntryIt = model . getTransitionMatrix ( ) . getRow ( modelRowIndex ) . begin ( ) ;
for ( auto const & rewardEntry : rewardModel . second . getTransitionRewardMatrix ( ) . getRow ( modelRowIndex ) ) {
while ( transitionEntryIt - > getColumn ( ) ! = rewardEntry . getColumn ( ) ) {
STORM_LOG_ASSERT ( transitionEntryIt ! = model . getTransitionMatrix ( ) . getRow ( modelRowIndex ) . end ( ) , " The reward transition matrix is not a submatrix of the model transition matrix. " ) ;
+ + transitionEntryIt ;
}
uint64_t transitionId = transitionEntryIt - model . getTransitionMatrix ( ) . begin ( ) ;
uint64_t const & successorMemoryState = memorySuccessors [ transitionId * memoryStateCount + memoryState ] ;
builder . addNextValue ( resRowIndex , getResultState ( rewardEntry . getColumn ( ) , successorMemoryState ) , rewardEntry . getValue ( ) ) ;
}
}
}
}
@ -306,7 +460,7 @@ namespace storm {
}
template < typename ValueType >
std : : shared_ptr < storm : : models : : sparse : : Model < ValueType > > SparseModelMemoryProduct < ValueType > : : buildResult ( storm : : storage : : SparseMatrix < ValueType > & & matrix , storm : : models : : sparse : : StateLabeling & & labeling , std : : unordered_map < std : : string , storm : : models : : sparse : : StandardRewardModel < ValueType > > & & rewardModels ) const {
std : : shared_ptr < storm : : models : : sparse : : Model < ValueType > > SparseModelMemoryProduct < ValueType > : : buildResult ( storm : : storage : : SparseMatrix < ValueType > & & matrix , storm : : models : : sparse : : StateLabeling & & labeling , std : : unordered_map < std : : string , storm : : models : : sparse : : StandardRewardModel < ValueType > > & & rewardModels , boost : : optional < storm : : storage : : Scheduler < ValueType > > const & scheduler ) const {
storm : : storage : : sparse : : ModelComponents < ValueType , storm : : models : : sparse : : StandardRewardModel < ValueType > > components ( std : : move ( matrix ) , std : : move ( labeling ) , std : : move ( rewardModels ) ) ;
if ( model . isOfType ( storm : : models : : ModelType : : Ctmc ) ) {
@ -337,7 +491,15 @@ namespace storm {
components . exitRates = std : : move ( resultExitRates ) ;
}
return storm : : utility : : builder : : buildModelFromComponents ( model . getType ( ) , std : : move ( components ) ) ;
storm : : models : : ModelType resultType = model . getType ( ) ;
if ( scheduler & & ! scheduler - > isPartialScheduler ( ) ) {
if ( model . isOfType ( storm : : models : : ModelType : : Mdp ) ) {
resultType = storm : : models : : ModelType : : Dtmc ;
}
// Note that converting deterministic MAs to CTMCs via state elimination does not preserve all properties (e.g. step bounded)
}
return storm : : utility : : builder : : buildModelFromComponents ( resultType , std : : move ( components ) ) ;
}
template class SparseModelMemoryProduct < double > ;