diff --git a/src/storm/modelchecker/multiobjective/pcaa/SparseMaPcaaWeightVectorChecker.cpp b/src/storm/modelchecker/multiobjective/pcaa/SparseMaPcaaWeightVectorChecker.cpp index 1c4dd8420..b1c29d25b 100644 --- a/src/storm/modelchecker/multiobjective/pcaa/SparseMaPcaaWeightVectorChecker.cpp +++ b/src/storm/modelchecker/multiobjective/pcaa/SparseMaPcaaWeightVectorChecker.cpp @@ -74,12 +74,12 @@ namespace storm { updateDataToCurrentEpoch(MS, PS, *minMax, consideredObjectives, currentEpoch, weightVector, lowerTimeBoundIt, lowerTimeBounds, upperTimeBoundIt, upperTimeBounds); // Compute the values that can be obtained at probabilistic states in the current time epoch - performPSStep(PS, MS, *minMax, *linEq, optimalChoicesAtCurrentEpoch, consideredObjectives); + performPSStep(PS, MS, *minMax, *linEq, optimalChoicesAtCurrentEpoch, consideredObjectives, weightVector); // Compute values that can be obtained at Markovian states after letting one (digitized) time unit pass. // Only perform such a step if there is time left. if(currentEpoch>0) { - performMSStep(MS, PS, consideredObjectives); + performMSStep(MS, PS, consideredObjectives, weightVector); --currentEpoch; } else { break; @@ -354,55 +354,73 @@ namespace storm { } template - void SparseMaPcaaWeightVectorChecker::performPSStep(SubModel& PS, SubModel const& MS, MinMaxSolverData& minMax, LinEqSolverData& linEq, std::vector& optimalChoicesAtCurrentEpoch, storm::storage::BitVector const& consideredObjectives) const { + void SparseMaPcaaWeightVectorChecker::performPSStep(SubModel& PS, SubModel const& MS, MinMaxSolverData& minMax, LinEqSolverData& linEq, std::vector& optimalChoicesAtCurrentEpoch, storm::storage::BitVector const& consideredObjectives, std::vector const& weightVector) const { // compute a choice vector for the probabilistic states that is optimal w.r.t. the weighted reward vector minMax.solver->solveEquations(PS.weightedSolutionVector, minMax.b); auto newScheduler = minMax.solver->getScheduler(); - // check whether the linEqSolver needs to be updated, i.e., whether the scheduler has changed - if(linEq.solver == nullptr || newScheduler->getChoices() != optimalChoicesAtCurrentEpoch) { + if(consideredObjectives.getNumberOfSetBits() == 1 && !storm::utility::isZero(weightVector[*consideredObjectives.begin()])) { + // In this case there is no need to perform the computation on the individual objectives optimalChoicesAtCurrentEpoch = newScheduler->getChoices(); - linEq.solver = nullptr; - storm::storage::SparseMatrix linEqMatrix = PS.toPS.selectRowsFromRowGroups(optimalChoicesAtCurrentEpoch, true); - linEqMatrix.convertToEquationSystem(); - linEq.solver = linEq.factory.create(std::move(linEqMatrix)); - linEq.solver->setCachingEnabled(true); - } - - // Get the results for the individual objectives. - // Note that we do not consider an estimate for each objective (as done in the unbounded phase) since the results from the previous epoch are already pretty close - for(auto objIndex : consideredObjectives) { - auto const& objectiveRewardVectorPS = PS.objectiveRewardVectors[objIndex]; - auto const& objectiveSolutionVectorMS = MS.objectiveSolutionVectors[objIndex]; - // compute rhs of equation system, i.e., PS.toMS * x + Rewards - // To safe some time, only do this for the obtained optimal choices - auto itGroupIndex = PS.toPS.getRowGroupIndices().begin(); - auto itChoiceOffset = optimalChoicesAtCurrentEpoch.begin(); - for(auto& bValue : linEq.b) { - uint_fast64_t row = (*itGroupIndex) + (*itChoiceOffset); - bValue = objectiveRewardVectorPS[row]; - for(auto const& entry : PS.toMS.getRow(row)){ - bValue += entry.getValue() * objectiveSolutionVectorMS[entry.getColumn()]; + auto objIndex = *consideredObjectives.begin(); + PS.objectiveSolutionVectors[objIndex] = PS.weightedSolutionVector; + if(!storm::utility::isOne(weightVector[objIndex])) { + storm::utility::vector::scaleVectorInPlace(PS.objectiveSolutionVectors[objIndex], storm::utility::one()/weightVector[objIndex]); + } + } else { + // check whether the linEqSolver needs to be updated, i.e., whether the scheduler has changed + if(linEq.solver == nullptr || newScheduler->getChoices() != optimalChoicesAtCurrentEpoch) { + optimalChoicesAtCurrentEpoch = newScheduler->getChoices(); + linEq.solver = nullptr; + storm::storage::SparseMatrix linEqMatrix = PS.toPS.selectRowsFromRowGroups(optimalChoicesAtCurrentEpoch, true); + linEqMatrix.convertToEquationSystem(); + linEq.solver = linEq.factory.create(std::move(linEqMatrix)); + linEq.solver->setCachingEnabled(true); + } + + // Get the results for the individual objectives. + // Note that we do not consider an estimate for each objective (as done in the unbounded phase) since the results from the previous epoch are already pretty close + for(auto objIndex : consideredObjectives) { + auto const& objectiveRewardVectorPS = PS.objectiveRewardVectors[objIndex]; + auto const& objectiveSolutionVectorMS = MS.objectiveSolutionVectors[objIndex]; + // compute rhs of equation system, i.e., PS.toMS * x + Rewards + // To safe some time, only do this for the obtained optimal choices + auto itGroupIndex = PS.toPS.getRowGroupIndices().begin(); + auto itChoiceOffset = optimalChoicesAtCurrentEpoch.begin(); + for(auto& bValue : linEq.b) { + uint_fast64_t row = (*itGroupIndex) + (*itChoiceOffset); + bValue = objectiveRewardVectorPS[row]; + for(auto const& entry : PS.toMS.getRow(row)){ + bValue += entry.getValue() * objectiveSolutionVectorMS[entry.getColumn()]; + } + ++itGroupIndex; + ++itChoiceOffset; } - ++itGroupIndex; - ++itChoiceOffset; + linEq.solver->solveEquations(PS.objectiveSolutionVectors[objIndex], linEq.b); } - linEq.solver->solveEquations(PS.objectiveSolutionVectors[objIndex], linEq.b); } } template - void SparseMaPcaaWeightVectorChecker::performMSStep(SubModel& MS, SubModel const& PS, storm::storage::BitVector const& consideredObjectives) const { + void SparseMaPcaaWeightVectorChecker::performMSStep(SubModel& MS, SubModel const& PS, storm::storage::BitVector const& consideredObjectives, std::vector const& weightVector) const { MS.toMS.multiplyWithVector(MS.weightedSolutionVector, MS.auxChoiceValues); storm::utility::vector::addVectors(MS.weightedRewardVector, MS.auxChoiceValues, MS.weightedSolutionVector); MS.toPS.multiplyWithVector(PS.weightedSolutionVector, MS.auxChoiceValues); storm::utility::vector::addVectors(MS.weightedSolutionVector, MS.auxChoiceValues, MS.weightedSolutionVector); - - for(auto objIndex : consideredObjectives) { - MS.toMS.multiplyWithVector(MS.objectiveSolutionVectors[objIndex], MS.auxChoiceValues); - storm::utility::vector::addVectors(MS.objectiveRewardVectors[objIndex], MS.auxChoiceValues, MS.objectiveSolutionVectors[objIndex]); - MS.toPS.multiplyWithVector(PS.objectiveSolutionVectors[objIndex], MS.auxChoiceValues); - storm::utility::vector::addVectors(MS.objectiveSolutionVectors[objIndex], MS.auxChoiceValues, MS.objectiveSolutionVectors[objIndex]); + if(consideredObjectives.getNumberOfSetBits() == 1 && !storm::utility::isZero(weightVector[*consideredObjectives.begin()])) { + // In this case there is no need to perform the computation on the individual objectives + auto objIndex = *consideredObjectives.begin(); + MS.objectiveSolutionVectors[objIndex] = MS.weightedSolutionVector; + if(!storm::utility::isOne(weightVector[objIndex])) { + storm::utility::vector::scaleVectorInPlace(MS.objectiveSolutionVectors[objIndex], storm::utility::one()/weightVector[objIndex]); + } + } else { + for(auto objIndex : consideredObjectives) { + MS.toMS.multiplyWithVector(MS.objectiveSolutionVectors[objIndex], MS.auxChoiceValues); + storm::utility::vector::addVectors(MS.objectiveRewardVectors[objIndex], MS.auxChoiceValues, MS.objectiveSolutionVectors[objIndex]); + MS.toPS.multiplyWithVector(PS.objectiveSolutionVectors[objIndex], MS.auxChoiceValues); + storm::utility::vector::addVectors(MS.objectiveSolutionVectors[objIndex], MS.auxChoiceValues, MS.objectiveSolutionVectors[objIndex]); + } } } diff --git a/src/storm/modelchecker/multiobjective/pcaa/SparseMaPcaaWeightVectorChecker.h b/src/storm/modelchecker/multiobjective/pcaa/SparseMaPcaaWeightVectorChecker.h index 845d15577..a757ccf0a 100644 --- a/src/storm/modelchecker/multiobjective/pcaa/SparseMaPcaaWeightVectorChecker.h +++ b/src/storm/modelchecker/multiobjective/pcaa/SparseMaPcaaWeightVectorChecker.h @@ -138,7 +138,7 @@ namespace storm { * * The resulting values represent the rewards at probabilistic states that are obtained at the current time epoch. */ - void performPSStep(SubModel& PS, SubModel const& MS, MinMaxSolverData& minMax, LinEqSolverData& linEq, std::vector& optimalChoicesAtCurrentEpoch, storm::storage::BitVector const& consideredObjectives) const; + void performPSStep(SubModel& PS, SubModel const& MS, MinMaxSolverData& minMax, LinEqSolverData& linEq, std::vector& optimalChoicesAtCurrentEpoch, storm::storage::BitVector const& consideredObjectives, std::vector const& weightVector) const; /* * Performs a step for the Markovian states, that is @@ -146,7 +146,7 @@ namespace storm { * * The resulting values represent the rewards at Markovian states that are obtained after one (digitized) time unit has passed. */ - void performMSStep(SubModel& MS, SubModel const& PS, storm::storage::BitVector const& consideredObjectives) const; + void performMSStep(SubModel& MS, SubModel const& PS, storm::storage::BitVector const& consideredObjectives, std::vector const& weightVector) const; }; diff --git a/src/storm/modelchecker/multiobjective/pcaa/SparsePcaaQuantitativeQuery.cpp b/src/storm/modelchecker/multiobjective/pcaa/SparsePcaaQuantitativeQuery.cpp index 7e5bd12e7..48448f968 100644 --- a/src/storm/modelchecker/multiobjective/pcaa/SparsePcaaQuantitativeQuery.cpp +++ b/src/storm/modelchecker/multiobjective/pcaa/SparsePcaaQuantitativeQuery.cpp @@ -51,8 +51,6 @@ namespace storm { template std::unique_ptr SparsePcaaQuantitativeQuery::check() { - - // First find one solution that achieves the given thresholds ... if(this->checkAchievability()) { // ... then improve it @@ -73,21 +71,26 @@ namespace storm { template bool SparsePcaaQuantitativeQuery::checkAchievability() { - // We don't care for the optimizing objective at this point - this->diracWeightVectorsToBeChecked.set(indexOfOptimizingObjective, false); + if(this->objectives.size()>1) { + // We don't care for the optimizing objective at this point + this->diracWeightVectorsToBeChecked.set(indexOfOptimizingObjective, false); - while(!this->maxStepsPerformed()){ - WeightVector separatingVector = this->findSeparatingVector(thresholds); - this->updateWeightedPrecisionInAchievabilityPhase(separatingVector); - this->performRefinementStep(std::move(separatingVector)); - //Pick the threshold for the optimizing objective low enough so valid solutions are not excluded - thresholds[indexOfOptimizingObjective] = std::min(thresholds[indexOfOptimizingObjective], this->refinementSteps.back().lowerBoundPoint[indexOfOptimizingObjective]); - if(!checkIfThresholdsAreSatisfied(this->overApproximation)){ - return false; - } - if(checkIfThresholdsAreSatisfied(this->underApproximation)){ - return true; + while(!this->maxStepsPerformed()){ + WeightVector separatingVector = this->findSeparatingVector(thresholds); + this->updateWeightedPrecisionInAchievabilityPhase(separatingVector); + this->performRefinementStep(std::move(separatingVector)); + //Pick the threshold for the optimizing objective low enough so valid solutions are not excluded + thresholds[indexOfOptimizingObjective] = std::min(thresholds[indexOfOptimizingObjective], this->refinementSteps.back().lowerBoundPoint[indexOfOptimizingObjective]); + if(!checkIfThresholdsAreSatisfied(this->overApproximation)){ + return false; + } + if(checkIfThresholdsAreSatisfied(this->underApproximation)){ + return true; + } } + } else { + // If there is only one objective than its the optimizing one. Thus the query has to be achievable. + return true; } STORM_LOG_ERROR("Could not check whether thresholds are achievable: Exceeded maximum number of refinement steps"); return false; @@ -124,6 +127,12 @@ namespace storm { // thresholds) and (with very low probability) a scheduler that satisfies all (possibly strict) thresholds. GeometryValueType result = storm::utility::zero(); while(!this->maxStepsPerformed()) { + if(this->refinementSteps.empty()) { + // We did not make any refinement steps during the checkAchievability phase (e.g., because there is only one objective). + this->weightVectorChecker->setWeightedPrecision(storm::utility::convertNumber(storm::settings::getModule().getPrecision())); + WeightVector separatingVector = directionOfOptimizingObjective; + this->performRefinementStep(std::move(separatingVector)); + } std::pair optimizationRes = this->underApproximation->intersection(thresholdsAsPolytope)->optimize(directionOfOptimizingObjective); STORM_LOG_THROW(optimizationRes.second, storm::exceptions::UnexpectedException, "The underapproximation is either unbounded or empty."); result = optimizationRes.first[indexOfOptimizingObjective]; @@ -155,11 +164,12 @@ namespace storm { void SparsePcaaQuantitativeQuery::updateWeightedPrecisionInImprovingPhase(WeightVector const& weights) { STORM_LOG_THROW(!storm::utility::isZero(weights[this->indexOfOptimizingObjective]), exceptions::UnexpectedException, "The chosen weight-vector gives zero weight for the objective that is to be optimized."); // If weighs[indexOfOptimizingObjective] is low, the computation of the weightVectorChecker needs to be more precise. - // Our heuristic ensures that if p is the new vertex of the under-approximation, then max{ eps | p' = p + (0..0 eps 0..0) is in the over-approximation } <= multiobjective_precision/2 + // Our heuristic ensures that if p is the new vertex of the under-approximation, then max{ eps | p' = p + (0..0 eps 0..0) is in the over-approximation } <= multiobjective_precision/0.9 GeometryValueType weightedPrecision = weights[this->indexOfOptimizingObjective] * storm::utility::convertNumber(storm::settings::getModule().getPrecision()); // Normalize by division with the Euclidean Norm of the weight-vector weightedPrecision /= storm::utility::sqrt(storm::utility::vector::dotProduct(weights, weights)); - weightedPrecision /= GeometryValueType(2); + weightedPrecision *= storm::utility::convertNumber(0.9); + this->weightVectorChecker->setWeightedPrecision(storm::utility::convertNumber(weightedPrecision)); } diff --git a/src/storm/modelchecker/multiobjective/pcaa/SparsePcaaWeightVectorChecker.cpp b/src/storm/modelchecker/multiobjective/pcaa/SparsePcaaWeightVectorChecker.cpp index 8cd5245a9..6a353d580 100644 --- a/src/storm/modelchecker/multiobjective/pcaa/SparsePcaaWeightVectorChecker.cpp +++ b/src/storm/modelchecker/multiobjective/pcaa/SparsePcaaWeightVectorChecker.cpp @@ -159,49 +159,62 @@ namespace storm { template void SparsePcaaWeightVectorChecker::unboundedIndividualPhase(std::vector const& weightVector) { - storm::storage::SparseMatrix deterministicMatrix = model.getTransitionMatrix().selectRowsFromRowGroups(this->scheduler.getChoices(), true); - storm::storage::SparseMatrix deterministicBackwardTransitions = deterministicMatrix.transpose(); - std::vector deterministicStateRewards(deterministicMatrix.getRowCount()); - storm::solver::GeneralLinearEquationSolverFactory linearEquationSolverFactory; - - // We compute an estimate for the results of the individual objectives which is obtained from the weighted result and the result of the objectives computed so far. - // Note that weightedResult = Sum_{i=1}^{n} w_i * objectiveResult_i. - std::vector weightedSumOfUncheckedObjectives = weightedResult; - ValueType sumOfWeightsOfUncheckedObjectives = storm::utility::vector::sum_if(weightVector, objectivesWithNoUpperTimeBound); - - for(uint_fast64_t const& objIndex : storm::utility::vector::getSortedIndices(weightVector)) { - if(objectivesWithNoUpperTimeBound.get(objIndex)){ - offsetsToLowerBound[objIndex] = storm::utility::zero(); - offsetsToUpperBound[objIndex] = storm::utility::zero(); - storm::utility::vector::selectVectorValues(deterministicStateRewards, this->scheduler.getChoices(), model.getTransitionMatrix().getRowGroupIndices(), discreteActionRewards[objIndex]); - storm::storage::BitVector statesWithRewards = ~storm::utility::vector::filterZero(deterministicStateRewards); - // As target states, we pick the states from which no reward is reachable. - storm::storage::BitVector targetStates = ~storm::utility::graph::performProbGreater0(deterministicBackwardTransitions, storm::storage::BitVector(deterministicMatrix.getRowCount(), true), statesWithRewards); - - // Compute the estimate for this objective - if(!storm::utility::isZero(weightVector[objIndex])) { - objectiveResults[objIndex] = weightedSumOfUncheckedObjectives; - storm::utility::vector::scaleVectorInPlace(objectiveResults[objIndex], storm::utility::one() / sumOfWeightsOfUncheckedObjectives); + if(objectivesWithNoUpperTimeBound.getNumberOfSetBits()==1) { + auto objIndex = *objectivesWithNoUpperTimeBound.begin(); + objectiveResults[objIndex] = weightedResult; + if(!storm::utility::isZero(weightVector[objIndex])) { + storm::utility::vector::scaleVectorInPlace(objectiveResults[objIndex], storm::utility::one()/weightVector[objIndex]); + } + for (uint_fast64_t objIndex2 = 0; objIndex2 < objectives.size(); ++objIndex2) { + if(objIndex != objIndex2) { + objectiveResults[objIndex2] = std::vector(model.getNumberOfStates(), storm::utility::zero()); } + } + } else { + storm::storage::SparseMatrix deterministicMatrix = model.getTransitionMatrix().selectRowsFromRowGroups(this->scheduler.getChoices(), true); + storm::storage::SparseMatrix deterministicBackwardTransitions = deterministicMatrix.transpose(); + std::vector deterministicStateRewards(deterministicMatrix.getRowCount()); + storm::solver::GeneralLinearEquationSolverFactory linearEquationSolverFactory; + + // We compute an estimate for the results of the individual objectives which is obtained from the weighted result and the result of the objectives computed so far. + // Note that weightedResult = Sum_{i=1}^{n} w_i * objectiveResult_i. + std::vector weightedSumOfUncheckedObjectives = weightedResult; + ValueType sumOfWeightsOfUncheckedObjectives = storm::utility::vector::sum_if(weightVector, objectivesWithNoUpperTimeBound); + + for(uint_fast64_t const& objIndex : storm::utility::vector::getSortedIndices(weightVector)) { + if(objectivesWithNoUpperTimeBound.get(objIndex)){ + offsetsToLowerBound[objIndex] = storm::utility::zero(); + offsetsToUpperBound[objIndex] = storm::utility::zero(); + storm::utility::vector::selectVectorValues(deterministicStateRewards, this->scheduler.getChoices(), model.getTransitionMatrix().getRowGroupIndices(), discreteActionRewards[objIndex]); + storm::storage::BitVector statesWithRewards = ~storm::utility::vector::filterZero(deterministicStateRewards); + // As target states, we pick the states from which no reward is reachable. + storm::storage::BitVector targetStates = ~storm::utility::graph::performProbGreater0(deterministicBackwardTransitions, storm::storage::BitVector(deterministicMatrix.getRowCount(), true), statesWithRewards); + + // Compute the estimate for this objective + if(!storm::utility::isZero(weightVector[objIndex])) { + objectiveResults[objIndex] = weightedSumOfUncheckedObjectives; + storm::utility::vector::scaleVectorInPlace(objectiveResults[objIndex], storm::utility::one() / sumOfWeightsOfUncheckedObjectives); + } + + // Make sure that the objectiveResult is initialized in some way + objectiveResults[objIndex].resize(model.getNumberOfStates(), storm::utility::zero()); - // Make sure that the objectiveResult is initialized in some way - objectiveResults[objIndex].resize(model.getNumberOfStates(), storm::utility::zero()); - - // Invoke the linear equation solver - objectiveResults[objIndex] = storm::modelchecker::helper::SparseDtmcPrctlHelper::computeReachabilityRewards(deterministicMatrix, + // Invoke the linear equation solver + objectiveResults[objIndex] = storm::modelchecker::helper::SparseDtmcPrctlHelper::computeReachabilityRewards(deterministicMatrix, deterministicBackwardTransitions, deterministicStateRewards, targetStates, false, //no qualitative checking, linearEquationSolverFactory, objectiveResults[objIndex]); - // Update the estimate for the next objectives. - if(!storm::utility::isZero(weightVector[objIndex])) { - storm::utility::vector::addScaledVector(weightedSumOfUncheckedObjectives, objectiveResults[objIndex], -weightVector[objIndex]); - sumOfWeightsOfUncheckedObjectives -= weightVector[objIndex]; + // Update the estimate for the next objectives. + if(!storm::utility::isZero(weightVector[objIndex])) { + storm::utility::vector::addScaledVector(weightedSumOfUncheckedObjectives, objectiveResults[objIndex], -weightVector[objIndex]); + sumOfWeightsOfUncheckedObjectives -= weightVector[objIndex]; + } + } else { + objectiveResults[objIndex] = std::vector(model.getNumberOfStates(), storm::utility::zero()); } - } else { - objectiveResults[objIndex] = std::vector(model.getNumberOfStates(), storm::utility::zero()); } } }