Browse Source

Use new LRA helper for Markov automata.

tempestpy_adaptions
Tim Quatmann 4 years ago
parent
commit
32503594d5
  1. 25
      src/storm/modelchecker/csl/SparseMarkovAutomatonCslModelChecker.cpp

25
src/storm/modelchecker/csl/SparseMarkovAutomatonCslModelChecker.cpp

@ -1,6 +1,8 @@
#include "storm/modelchecker/csl/SparseMarkovAutomatonCslModelChecker.h"
#include "storm/modelchecker/csl/helper/SparseMarkovAutomatonCslHelper.h"
#include "storm/modelchecker/helper/infinitehorizon/SparseNondeterministicInfiniteHorizonHelper.h"
#include "storm/modelchecker/helper/utility/SetInformationFromCheckTask.h"
#include "storm/modelchecker/multiobjective/multiObjectiveModelChecking.h"
@ -140,8 +142,15 @@ namespace storm {
std::unique_ptr<CheckResult> subResultPointer = this->check(env, stateFormula);
ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult();
std::vector<ValueType> result = storm::modelchecker::helper::SparseMarkovAutomatonCslHelper::computeLongRunAverageProbabilities(env, checkTask.getOptimizationDirection(), this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), this->getModel().getExitRates(), this->getModel().getMarkovianStates(), subResult.getTruthValuesVector());
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(result)));
storm::modelchecker::helper::SparseNondeterministicInfiniteHorizonHelper<ValueType> helper(this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), this->getModel().getMarkovianStates(), this->getModel().getExitRates());
storm::modelchecker::helper::setInformationFromCheckTaskNondeterministic(helper, checkTask, this->getModel());
auto values = helper.computeLongRunAverageProbabilities(env, subResult.getTruthValuesVector());
std::unique_ptr<CheckResult> result(new ExplicitQuantitativeCheckResult<ValueType>(std::move(values)));
if (checkTask.isProduceSchedulersSet()) {
result->asExplicitQuantitativeCheckResult<ValueType>().setScheduler(std::make_unique<storm::storage::Scheduler<ValueType>>(helper.extractScheduler()));
}
return result;
}
template<typename SparseMarkovAutomatonModelType>
@ -149,8 +158,16 @@ namespace storm {
STORM_LOG_THROW(checkTask.isOptimizationDirectionSet(), storm::exceptions::InvalidPropertyException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
STORM_LOG_THROW(this->getModel().isClosed(), storm::exceptions::InvalidPropertyException, "Unable to compute long run average rewards in non-closed Markov automaton.");
auto rewardModel = storm::utility::createFilteredRewardModel(this->getModel(), checkTask);
std::vector<ValueType> result = storm::modelchecker::helper::SparseMarkovAutomatonCslHelper::computeLongRunAverageRewards<ValueType, RewardModelType>(env, checkTask.getOptimizationDirection(), this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), this->getModel().getExitRates(), this->getModel().getMarkovianStates(), rewardModel.get());
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(result)));
storm::modelchecker::helper::SparseNondeterministicInfiniteHorizonHelper<ValueType> helper(this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), this->getModel().getMarkovianStates(), this->getModel().getExitRates());
storm::modelchecker::helper::setInformationFromCheckTaskNondeterministic(helper, checkTask, this->getModel());
auto values = helper.computeLongRunAverageRewards(env, rewardModel.get());
std::unique_ptr<CheckResult> result(new ExplicitQuantitativeCheckResult<ValueType>(std::move(values)));
if (checkTask.isProduceSchedulersSet()) {
result->asExplicitQuantitativeCheckResult<ValueType>().setScheduler(std::make_unique<storm::storage::Scheduler<ValueType>>(helper.extractScheduler()));
}
return result;
}
template<typename SparseMarkovAutomatonModelType>
Loading…
Cancel
Save