@ -1,14 +1,17 @@
# include "src/modelchecker/abstraction/GameBasedMdpModelChecker.h"
# include "src/modelchecker/results/SymbolicQuantitativeCheckResult.h"
# include "src/models/symbolic/StandardRewardModel.h"
# include "src/storage/expressions/ExpressionManager.h"
# include "src/storage/dd/DdManager.h"
# include "src/abstraction/prism/PrismMenuGameAbstractor.h"
# include "src/logic/FragmentSpecification.h"
# include "src/utility/graph.h"
# include "src/utility/macros.h"
# include "src/exceptions/NotSupportedException.h"
@ -18,6 +21,13 @@
namespace storm {
namespace modelchecker {
namespace detail {
template < storm : : dd : : DdType DdType >
GameProb01Result < DdType > : : GameProb01Result ( storm : : utility : : graph : : GameProb01Result < DdType > const & prob0Min , storm : : utility : : graph : : GameProb01Result < DdType > const & prob1Min , storm : : utility : : graph : : GameProb01Result < DdType > const & prob0Max , storm : : utility : : graph : : GameProb01Result < DdType > const & prob1Max ) : min ( std : : make_pair ( prob0Min , prob1Min ) ) , max ( std : : make_pair ( prob0Max , prob1Max ) ) {
// Intentionally left empty.
}
}
template < storm : : dd : : DdType Type , typename ValueType >
GameBasedMdpModelChecker < Type , ValueType > : : GameBasedMdpModelChecker ( storm : : prism : : Program const & program , std : : shared_ptr < storm : : utility : : solver : : SmtSolverFactory > const & smtSolverFactory ) : originalProgram ( program ) , smtSolverFactory ( smtSolverFactory ) {
STORM_LOG_THROW ( program . getModelType ( ) = = storm : : prism : : Program : : ModelType : : DTMC | | program . getModelType ( ) = = storm : : prism : : Program : : ModelType : : MDP , storm : : exceptions : : NotSupportedException , " Currently only DTMCs/MDPs are supported by the game-based model checker. " ) ;
@ -54,10 +64,39 @@ namespace storm {
return performGameBasedAbstractionRefinement ( checkTask . substituteFormula < storm : : logic : : Formula > ( pathFormula ) , originalProgram . getManager ( ) . boolean ( true ) , getExpression ( pathFormula . getSubformula ( ) ) ) ;
}
template < typename ValueType >
bool getResultConsideringBound ( ValueType const & value , storm : : logic : : Bound < ValueType > const & bound ) {
if ( storm : : logic : : isLowerBound ( bound . comparisonType ) ) {
if ( storm : : logic : : isStrict ( bound . comparisonType ) ) {
return value > bound . threshold ;
} else {
return value > = bound . threshold ;
}
} else {
if ( storm : : logic : : isStrict ( bound . comparisonType ) ) {
return value < bound . threshold ;
} else {
return value < = bound . threshold ;
}
}
}
template < storm : : dd : : DdType Type , typename ValueType >
std : : unique_ptr < CheckResult > getResultAfterQualitativeCheck ( CheckTask < storm : : logic : : Formula > const & checkTask , storm : : dd : : DdManager < Type > const & ddManager , storm : : dd : : Bdd < Type > const & reachableStates , storm : : dd : : Bdd < Type > const & initialStates , bool prob0 ) {
if ( checkTask . isBoundSet ( ) ) {
bool result = getResultConsideringBound ( prob0 ? storm : : utility : : zero < ValueType > ( ) : storm : : utility : : one < ValueType > ( ) , checkTask . getBound ( ) ) ;
return std : : make_unique < storm : : modelchecker : : SymbolicQualitativeCheckResult < Type > > ( reachableStates , initialStates , result ? initialStates : ddManager . getBddZero ( ) ) ;
} else {
return std : : make_unique < storm : : modelchecker : : SymbolicQuantitativeCheckResult < Type > > ( reachableStates , initialStates , prob0 ? ddManager . template getAddZero < ValueType > ( ) : initialStates . template toAdd < ValueType > ( ) ) ;
}
}
template < storm : : dd : : DdType Type , typename ValueType >
std : : unique_ptr < CheckResult > GameBasedMdpModelChecker < Type , ValueType > : : performGameBasedAbstractionRefinement ( CheckTask < storm : : logic : : Formula > const & checkTask , storm : : expressions : : Expression const & constraintExpression , storm : : expressions : : Expression const & targetStateExpression ) {
STORM_LOG_THROW ( checkTask . isOnlyInitialStatesRelevantSet ( ) , storm : : exceptions : : InvalidPropertyException , " The game-based abstraction refinement model checker can only compute the result for the initial states. " ) ;
// Optimization: do not compute both bounds if not necessary (e.g. if bound given and exceeded, etc.)
// Set up initial predicates.
std : : vector < storm : : expressions : : Expression > initialPredicates ;
initialPredicates . push_back ( targetStateExpression ) ;
@ -72,13 +111,39 @@ namespace storm {
// 1. build initial abstraction based on the the constraint expression (if not 'true') and the target state expression.
storm : : abstraction : : MenuGame < Type , ValueType > game = abstractor . abstract ( ) ;
abstractor . exportToDot ( " game.dot " ) ;
STORM_LOG_DEBUG ( " Initial abstraction has " < < game . getNumberOfStates ( ) < < " (player 1) states and " < < game . getNumberOfTransitions ( ) < < " transitions. " ) ;
// 2. compute all states with probability 0/1 wrt. to the two different player 2 goals (min/max).
detail : : GameProb01Result < Type > prob01 = computeProb01States ( player1Direction , game , constraintExpression , targetStateExpression ) ;
// 3. compute the states for which we know the result/for which we know there is more work to be done.
storm : : dd : : Bdd < Type > maybeMin = ! ( prob01 . min . first . states | | prob01 . min . second . states ) & & game . getReachableStates ( ) ;
storm : : dd : : Bdd < Type > maybeMax = ! ( prob01 . max . first . states | | prob01 . max . second . states ) & & game . getReachableStates ( ) ;
// 4. if the initial states are not maybe states, then we can refine at this point.
storm : : dd : : Bdd < Type > initialMaybeStates = game . getInitialStates ( ) & & ( maybeMin | | maybeMax ) ;
if ( initialMaybeStates . isZero ( ) ) {
// In this case, we know the result for the initial states for both player 2 minimizing and maximizing.
// If the result is 0 independent of the player 2 strategy, then we know the final result and can return it.
storm : : dd : : Bdd < Type > tmp = game . getInitialStates ( ) & & prob01 . min . first . states & & prob01 . max . first . states ;
if ( tmp = = game . getInitialStates ( ) ) {
getResultAfterQualitativeCheck < Type , ValueType > ( checkTask , game . getManager ( ) , game . getReachableStates ( ) , game . getInitialStates ( ) , true ) ;
}
// If the result is 1 independent of the player 2 strategy, then we know the final result and can return it.
tmp = game . getInitialStates ( ) & & prob01 . min . second . states & & prob01 . max . second . states ;
if ( tmp = = game . getInitialStates ( ) ) {
getResultAfterQualitativeCheck < Type , ValueType > ( checkTask , game . getManager ( ) , game . getReachableStates ( ) , game . getInitialStates ( ) , false ) ;
}
// If we get here, the initial states were all identified as prob0/1 states, but the value (0 or 1)
// depends on whether player 2 is minimizing or maximizing. Therefore, we need to find a place to refine.
}
// 2. solve the game wrt. to min/max as given by checkTask and min/max for the abstraction player to obtain two bounds.
// Note that we have to deal with bottom states if not all guards were added in the beginning.
// Also note that it might be the case that not both bounds need to be computed if there is a bound given in checkTask.
computeProb01States ( player1Direction , game , constraintExpression , targetStateExpression ) ;
// std::unique_ptr<storm::utility::solver::SymbolicGameSolverFactory<Type, ValueType>> gameSolverFactory = std::make_unique<storm::utility::solver::SymbolicGameSolverFactory<Type, ValueType>>();
// gameSolverFactory->create(game.getTransitionMatrix(), game.getReachableStates());
@ -92,7 +157,7 @@ namespace storm {
}
template < storm : : dd : : DdType Type , typename ValueType >
void GameBasedMdpModelChecker < Type , ValueType > : : computeProb01States ( storm : : OptimizationDirection player1Direction , storm : : abstraction : : MenuGame < Type , ValueType > const & game , storm : : expressions : : Expression const & constraintExpression , storm : : expressions : : Expression const & targetStateExpression ) {
detail : : GameProb01Result < Type > GameBasedMdpModelChecker < Type , ValueType > : : computeProb01States ( storm : : OptimizationDirection player1Direction , storm : : abstraction : : MenuGame < Type , ValueType > const & game , storm : : expressions : : Expression const & constraintExpression , storm : : expressions : : Expression const & targetStateExpression ) {
storm : : dd : : Bdd < Type > transitionMatrixBdd = game . getTransitionMatrix ( ) . toBdd ( ) ;
storm : : dd : : Bdd < Type > bottomStatesBdd = game . getBottomStates ( ) ;
@ -100,8 +165,6 @@ namespace storm {
if ( player1Direction = = storm : : OptimizationDirection : : Minimize ) {
targetStates | = game . getBottomStates ( ) ;
}
transitionMatrixBdd . template toAdd < ValueType > ( ) . exportToDot ( " transbdd.dot " ) ;
// Start by computing the states with probability 0/1 when player 2 minimizes.
storm : : utility : : graph : : GameProb01Result < Type > prob0Min = storm : : utility : : graph : : performProb0 ( game , transitionMatrixBdd , game . getStates ( constraintExpression ) , targetStates , player1Direction , storm : : OptimizationDirection : : Minimize , true ) ;
@ -111,21 +174,10 @@ namespace storm {
storm : : utility : : graph : : GameProb01Result < Type > prob0Max = storm : : utility : : graph : : performProb0 ( game , transitionMatrixBdd , game . getStates ( constraintExpression ) , targetStates , player1Direction , storm : : OptimizationDirection : : Maximize , false ) ;
storm : : utility : : graph : : GameProb01Result < Type > prob1Max = storm : : utility : : graph : : performProb1 ( game , transitionMatrixBdd , game . getStates ( constraintExpression ) , targetStates , player1Direction , storm : : OptimizationDirection : : Maximize , true ) ;
// STORM_LOG_ASSERT(prob0Min.hasPlayer1Strategy(), "Unable to proceed without strategy.");
STORM_LOG_ASSERT ( prob0Min . hasPlayer2Strategy ( ) , " Unable to proceed without strategy. " ) ;
STORM_LOG_ASSERT ( prob1Max . hasPlayer1Strategy ( ) , " Unable to proceed without strategy. " ) ;
STORM_LOG_ASSERT ( prob1Max . hasPlayer2Strategy ( ) , " Unable to proceed without strategy. " ) ;
// prob0Min.getPlayer1Strategy().template toAdd<ValueType>().exportToDot("prob0_min_pl1_strat.dot");
prob0Min . getPlayer2Strategy ( ) . template toAdd < ValueType > ( ) . exportToDot ( " prob0_min_pl2_strat.dot " ) ;
prob1Max . getPlayer1Strategy ( ) . template toAdd < ValueType > ( ) . exportToDot ( " prob1_max_pl1_strat.dot " ) ;
prob1Max . getPlayer2Strategy ( ) . template toAdd < ValueType > ( ) . exportToDot ( " prob1_max_pl2_strat.dot " ) ;
STORM_LOG_DEBUG ( " Min: " < < prob0Min . states . getNonZeroCount ( ) < < " no states, " < < prob1Min . states . getNonZeroCount ( ) < < " yes states. " ) ;
STORM_LOG_DEBUG ( " Max: " < < prob0Max . states . getNonZeroCount ( ) < < " no states, " < < prob1Max . states . getNonZeroCount ( ) < < " yes states. " ) ;
return detail : : GameProb01Result < Type > ( prob0Min , prob1Min , prob0Max , prob1Max ) ;
}
template < storm : : dd : : DdType Type , typename ValueType >