diff --git a/src/storm/modelchecker/multiobjective/pcaa/SparseMdpRewardBoundedPcaaWeightVectorChecker.cpp b/src/storm/modelchecker/multiobjective/pcaa/SparseMdpRewardBoundedPcaaWeightVectorChecker.cpp
index 385c72b1e..3f7063f2d 100644
--- a/src/storm/modelchecker/multiobjective/pcaa/SparseMdpRewardBoundedPcaaWeightVectorChecker.cpp
+++ b/src/storm/modelchecker/multiobjective/pcaa/SparseMdpRewardBoundedPcaaWeightVectorChecker.cpp
@@ -85,136 +85,200 @@ namespace storm {
             
             template <class SparseMdpModelType>
             void SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::computeEpochSolution(typename MultiDimensionalRewardUnfolding<ValueType, false>::Epoch const& epoch, std::vector<ValueType> const& weightVector, EpochCheckingData& cachedData) {
-                auto& epochModel = rewardUnfolding.setCurrentEpoch(epoch);
-                updateCachedData(epochModel, cachedData, weightVector);
-                ++numCheckedEpochs;
-                swEqBuilding.start();
                 
+                ++numCheckedEpochs;
+                swEpochModelBuild.start();
+                auto& epochModel = rewardUnfolding.setCurrentEpoch(epoch);
+                swEpochModelBuild.stop();
+                swEpochModelAnalysis.start();
                 std::vector<typename MultiDimensionalRewardUnfolding<ValueType, false>::SolutionType> result;
                 result.reserve(epochModel.epochInStates.getNumberOfSetBits());
                 uint64_t solutionSize = this->objectives.size() + 1;
-                
-                // Formulate a min-max equation system max(A*x+b)=x for the weighted sum of the objectives
-                swAux1.start();
-                assert(cachedData.bMinMax.capacity() >= epochModel.epochMatrix.getRowCount());
-                assert(cachedData.xMinMax.size() == epochModel.epochMatrix.getRowGroupCount());
-                cachedData.bMinMax.assign(epochModel.epochMatrix.getRowCount(), storm::utility::zero<ValueType>());
-                for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) {
-                    ValueType weight = storm::solver::minimize(this->objectives[objIndex].formula->getOptimalityType()) ? -weightVector[objIndex] : weightVector[objIndex];
-                    if (!storm::utility::isZero(weight)) {
-                        std::vector<ValueType> const& objectiveReward = epochModel.objectiveRewards[objIndex];
-                        for (auto const& choice : epochModel.objectiveRewardFilter[objIndex]) {
-                            cachedData.bMinMax[choice] += weight * objectiveReward[choice];
+
+                // If the epoch matrix is empty we do not need to solve linear equation systems
+                if (epochModel.epochMatrix.getEntryCount() == 0) {
+                    std::vector<ValueType> weights = weightVector;
+                    for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) {
+                        if (storm::solver::minimize(this->objectives[objIndex].formula->getOptimalityType())) {
+                            weights[objIndex] *= -storm::utility::one<ValueType>();
                         }
                     }
-                }
-                auto stepSolutionIt = epochModel.stepSolutions.begin();
-                for (auto const& choice : epochModel.stepChoices) {
-                    cachedData.bMinMax[choice] += stepSolutionIt->front();
-                    ++stepSolutionIt;
-                }
-                swAux1.stop();
-                
-                // Invoke the min max solver
-                swEqBuilding.stop();
-                swMinMaxSolving.start();
-                cachedData.minMaxSolver->solveEquations(cachedData.xMinMax, cachedData.bMinMax);
-                swMinMaxSolving.stop();
-                swEqBuilding.start();
-                for (auto const& state : epochModel.epochInStates) {
-                    result.emplace_back();
-                    result.back().reserve(solutionSize);
-                    result.back().push_back(cachedData.xMinMax[state]);
-                }
-                
-                // Check whether the linear equation solver needs to be updated
-                auto const& choices = cachedData.minMaxSolver->getSchedulerChoices();
-                if (cachedData.schedulerChoices != choices) {
-                    std::vector<uint64_t> choicesTmp = choices;
-                    cachedData.minMaxSolver->setInitialScheduler(std::move(choicesTmp));
-                    swAux2.start();
-                    ++numSchedChanges;
-                    cachedData.schedulerChoices = choices;
-                    storm::solver::GeneralLinearEquationSolverFactory<ValueType> linEqSolverFactory;
-                    bool needEquationSystem = linEqSolverFactory.getEquationProblemFormat() == storm::solver::LinearEquationSolverProblemFormat::EquationSystem;
-                    storm::storage::SparseMatrix<ValueType> subMatrix = epochModel.epochMatrix.selectRowsFromRowGroups(choices, needEquationSystem);
-                    if (needEquationSystem) {
-                        subMatrix.convertToEquationSystem();
-                    }
-                    cachedData.linEqSolver = linEqSolverFactory.create(std::move(subMatrix));
-                    cachedData.linEqSolver->setCachingEnabled(true);
-                    swAux2.stop();
-                }
-                
-                // Formulate for each objective the linear equation system induced by the performed choices
-                swAux3.start();
-                assert(cachedData.bLinEq.size() == choices.size());
-                for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) {
-                    auto const& obj = this->objectives[objIndex];
-                    std::vector<ValueType> const& objectiveReward = epochModel.objectiveRewards[objIndex];
-                    auto rowGroupIndexIt = epochModel.epochMatrix.getRowGroupIndices().begin();
-                    auto choiceIt = choices.begin();
-                    auto stepChoiceIt = epochModel.stepChoices.begin();
+
                     auto stepSolutionIt = epochModel.stepSolutions.begin();
-                    std::vector<ValueType>& x = cachedData.xLinEq[objIndex];
-                    auto xIt = x.begin();
-                    for (auto& b_i : cachedData.bLinEq) {
-                        uint64_t i = *rowGroupIndexIt + *choiceIt;
-                        if (epochModel.objectiveRewardFilter[objIndex].get(i)) {
-                            b_i = objectiveReward[i];
-                        } else {
-                            b_i = storm::utility::zero<ValueType>();
-                        }
-                        while (*stepChoiceIt < i) {
-                            ++stepChoiceIt;
-                            ++stepSolutionIt;
-                        }
-                        if (i == *stepChoiceIt) {
-                            b_i += (*stepSolutionIt)[objIndex + 1];
-                            ++stepChoiceIt;
-                            ++stepSolutionIt;
+                    auto stepChoiceIt = epochModel.stepChoices.begin();
+                    for (auto const& state : epochModel.epochInStates) {
+                        // Obtain the best choice for this state according to the weighted combination of objectives
+                        ValueType bestValue;
+                        uint64_t bestChoice = std::numeric_limits<uint64_t>::max();
+                        auto bestChoiceStepSolutionIt = epochModel.stepSolutions.end();
+                        uint64_t lastChoice = epochModel.epochMatrix.getRowGroupIndices()[state + 1];
+                        bool firstChoice = true;
+                        for (uint64_t choice = epochModel.epochMatrix.getRowGroupIndices()[state]; choice < lastChoice; ++choice) {
+                            ValueType choiceValue = storm::utility::zero<ValueType>();
+                            // Obtain the (weighted) objective rewards
+                            for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) {
+                                if (epochModel.objectiveRewardFilter[objIndex].get(choice)) {
+                                    choiceValue += weights[objIndex] * epochModel.objectiveRewards[objIndex][choice];
+                                }
+                            }
+                            
+                            // Obtain the step solution if this is a step choice
+                            while (*stepChoiceIt < choice) {
+                                ++stepChoiceIt;
+                                ++stepSolutionIt;
+                            }
+                            if (*stepChoiceIt == choice) {
+                                choiceValue += stepSolutionIt->front();
+                                // Check if this choice is better
+                                if (firstChoice || choiceValue > bestValue) {
+                                    bestValue = std::move(choiceValue);
+                                    bestChoice = choice;
+                                    bestChoiceStepSolutionIt = stepSolutionIt;
+                                }
+                            } else if (firstChoice || choiceValue > bestValue) {
+                                bestValue = std::move(choiceValue);
+                                bestChoice = choice;
+                                bestChoiceStepSolutionIt = epochModel.stepSolutions.end();
+                            }
+                            firstChoice = false;
                         }
-                        // We can already set x_i correctly if row i is empty.
-                        // Appearingly, some linear equation solvers struggle to converge otherwise.
-                        if (epochModel.epochMatrix.getRow(i).getNumberOfEntries() == 0) {
-                            *xIt = b_i;
+                        
+                        // Insert the solution w.r.t. this choice
+                        result.emplace_back();
+                        result.back().reserve(solutionSize);
+                        result.back().push_back(std::move(bestValue));
+                        
+                        if (bestChoiceStepSolutionIt != epochModel.stepSolutions.end()) {
+                            for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) {
+                                if (epochModel.objectiveRewardFilter[objIndex].get(bestChoice)) {
+                                    result.back().push_back((epochModel.objectiveRewards[objIndex][bestChoice] + (*bestChoiceStepSolutionIt)[objIndex + 1]));
+                                } else {
+                                    result.back().push_back((*bestChoiceStepSolutionIt)[objIndex + 1]);
+                                }
+                            }
+                        } else {
+                            for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) {
+                                if (epochModel.objectiveRewardFilter[objIndex].get(bestChoice)) {
+                                    result.back().push_back((epochModel.objectiveRewards[objIndex][bestChoice]));
+                                } else {
+                                    result.back().push_back(storm::utility::zero<ValueType>());
+                                }
+                            }
                         }
-                        ++xIt;
-                        ++rowGroupIndexIt;
-                        ++choiceIt;
                     }
-                    assert(x.size() == choices.size());
-                    auto req = cachedData.linEqSolver->getRequirements();
-                    cachedData.linEqSolver->clearBounds();
-                    if (obj.lowerResultBound) {
-                        req.clearLowerBounds();
-                        cachedData.linEqSolver->setLowerBound(*obj.lowerResultBound);
+                } else {
+                    
+                    
+                    updateCachedData(epochModel, cachedData, weightVector);
+                    
+                    
+                    // Formulate a min-max equation system max(A*x+b)=x for the weighted sum of the objectives
+                    assert(cachedData.bMinMax.capacity() >= epochModel.epochMatrix.getRowCount());
+                    assert(cachedData.xMinMax.size() == epochModel.epochMatrix.getRowGroupCount());
+                    cachedData.bMinMax.assign(epochModel.epochMatrix.getRowCount(), storm::utility::zero<ValueType>());
+                    for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) {
+                        ValueType weight = storm::solver::minimize(this->objectives[objIndex].formula->getOptimalityType()) ? -weightVector[objIndex] : weightVector[objIndex];
+                        if (!storm::utility::isZero(weight)) {
+                            std::vector<ValueType> const& objectiveReward = epochModel.objectiveRewards[objIndex];
+                            for (auto const& choice : epochModel.objectiveRewardFilter[objIndex]) {
+                                cachedData.bMinMax[choice] += weight * objectiveReward[choice];
+                            }
+                        }
                     }
-                    if (obj.upperResultBound) {
-                        cachedData.linEqSolver->setUpperBound(*obj.upperResultBound);
-                        req.clearUpperBounds();
+                    auto stepSolutionIt = epochModel.stepSolutions.begin();
+                    for (auto const& choice : epochModel.stepChoices) {
+                        cachedData.bMinMax[choice] += stepSolutionIt->front();
+                        ++stepSolutionIt;
                     }
-                    STORM_LOG_THROW(req.empty(), storm::exceptions::UncheckedRequirementException, "At least one requirement of the LinearEquationSolver was not met.");
-                    swEqBuilding.stop();
-                    swLinEqSolving.start();
-                    cachedData.linEqSolver->solveEquations(x, cachedData.bLinEq);
-                    swLinEqSolving.stop();
-                    swEqBuilding.start();
-                    auto resultIt = result.begin();
+                    
+                    // Invoke the min max solver
+                    cachedData.minMaxSolver->solveEquations(cachedData.xMinMax, cachedData.bMinMax);
                     for (auto const& state : epochModel.epochInStates) {
-                        resultIt->push_back(x[state]);
-                        ++resultIt;
+                        result.emplace_back();
+                        result.back().reserve(solutionSize);
+                        result.back().push_back(cachedData.xMinMax[state]);
+                    }
+                    
+                    // Check whether the linear equation solver needs to be updated
+                    auto const& choices = cachedData.minMaxSolver->getSchedulerChoices();
+                    if (cachedData.schedulerChoices != choices) {
+                        std::vector<uint64_t> choicesTmp = choices;
+                        cachedData.minMaxSolver->setInitialScheduler(std::move(choicesTmp));
+                        ++numSchedChanges;
+                        cachedData.schedulerChoices = choices;
+                        storm::solver::GeneralLinearEquationSolverFactory<ValueType> linEqSolverFactory;
+                        bool needEquationSystem = linEqSolverFactory.getEquationProblemFormat() == storm::solver::LinearEquationSolverProblemFormat::EquationSystem;
+                        storm::storage::SparseMatrix<ValueType> subMatrix = epochModel.epochMatrix.selectRowsFromRowGroups(choices, needEquationSystem);
+                        if (needEquationSystem) {
+                            subMatrix.convertToEquationSystem();
+                        }
+                        cachedData.linEqSolver = linEqSolverFactory.create(std::move(subMatrix));
+                        cachedData.linEqSolver->setCachingEnabled(true);
+                    }
+                    
+                    // Formulate for each objective the linear equation system induced by the performed choices
+                    assert(cachedData.bLinEq.size() == choices.size());
+                    for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) {
+                        auto const& obj = this->objectives[objIndex];
+                        std::vector<ValueType> const& objectiveReward = epochModel.objectiveRewards[objIndex];
+                        auto rowGroupIndexIt = epochModel.epochMatrix.getRowGroupIndices().begin();
+                        auto choiceIt = choices.begin();
+                        auto stepChoiceIt = epochModel.stepChoices.begin();
+                        auto stepSolutionIt = epochModel.stepSolutions.begin();
+                        std::vector<ValueType>& x = cachedData.xLinEq[objIndex];
+                        auto xIt = x.begin();
+                        for (auto& b_i : cachedData.bLinEq) {
+                            uint64_t i = *rowGroupIndexIt + *choiceIt;
+                            if (epochModel.objectiveRewardFilter[objIndex].get(i)) {
+                                b_i = objectiveReward[i];
+                            } else {
+                                b_i = storm::utility::zero<ValueType>();
+                            }
+                            while (*stepChoiceIt < i) {
+                                ++stepChoiceIt;
+                                ++stepSolutionIt;
+                            }
+                            if (i == *stepChoiceIt) {
+                                b_i += (*stepSolutionIt)[objIndex + 1];
+                                ++stepChoiceIt;
+                                ++stepSolutionIt;
+                            }
+                            // We can already set x_i correctly if row i is empty.
+                            // Appearingly, some linear equation solvers struggle to converge otherwise.
+                            if (epochModel.epochMatrix.getRow(i).getNumberOfEntries() == 0) {
+                                *xIt = b_i;
+                            }
+                            ++xIt;
+                            ++rowGroupIndexIt;
+                            ++choiceIt;
+                        }
+                        assert(x.size() == choices.size());
+                        auto req = cachedData.linEqSolver->getRequirements();
+                        cachedData.linEqSolver->clearBounds();
+                        if (obj.lowerResultBound) {
+                            req.clearLowerBounds();
+                            cachedData.linEqSolver->setLowerBound(*obj.lowerResultBound);
+                        }
+                        if (obj.upperResultBound) {
+                            cachedData.linEqSolver->setUpperBound(*obj.upperResultBound);
+                            req.clearUpperBounds();
+                        }
+                        STORM_LOG_THROW(req.empty(), storm::exceptions::UncheckedRequirementException, "At least one requirement of the LinearEquationSolver was not met.");
+                        cachedData.linEqSolver->solveEquations(x, cachedData.bLinEq);
+                        auto resultIt = result.begin();
+                        for (auto const& state : epochModel.epochInStates) {
+                            resultIt->push_back(x[state]);
+                            ++resultIt;
+                        }
                     }
                 }
-                swEqBuilding.stop();
-                swAux3.stop();
                 rewardUnfolding.setSolutionForCurrentEpoch(std::move(result));
+                swEpochModelAnalysis.stop();
             }
 
             template <class SparseMdpModelType>
             void SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::updateCachedData(typename MultiDimensionalRewardUnfolding<ValueType, false>::EpochModel const& epochModel, EpochCheckingData& cachedData, std::vector<ValueType> const& weightVector) {
                 if (epochModel.epochMatrixChanged) {
-                    swDataUpdate.start();
                 
                     // Update the cached MinMaxSolver data
                     cachedData.bMinMax.resize(epochModel.epochMatrix.getRowCount());
@@ -249,7 +313,6 @@ namespace storm {
                     for (auto& x_o : cachedData.xLinEq) {
                         x_o.assign(epochModel.epochMatrix.getRowGroupCount(), storm::utility::zero<ValueType>());
                     }
-                    swDataUpdate.stop();
                 }
             }
             
diff --git a/src/storm/modelchecker/multiobjective/pcaa/SparseMdpRewardBoundedPcaaWeightVectorChecker.h b/src/storm/modelchecker/multiobjective/pcaa/SparseMdpRewardBoundedPcaaWeightVectorChecker.h
index 836aafce6..77a4d89b8 100644
--- a/src/storm/modelchecker/multiobjective/pcaa/SparseMdpRewardBoundedPcaaWeightVectorChecker.h
+++ b/src/storm/modelchecker/multiobjective/pcaa/SparseMdpRewardBoundedPcaaWeightVectorChecker.h
@@ -30,17 +30,13 @@ namespace storm {
                 virtual ~SparseMdpRewardBoundedPcaaWeightVectorChecker() {
                     swAll.stop();
                     std::cout << "WVC statistics: " << std::endl;
-                    std::cout << "           overall: " <<  swAll << " seconds." << std::endl;
+                    std::cout << "                overall Time: " <<  swAll << " seconds." << std::endl;
                     std::cout << "---------------------------------------------" << std::endl;
-                    std::cout << " Sched changed " << numSchedChanges << "/" << numCheckedEpochs << " times." << std::endl;
-                    std::cout << "        dataUpdate: "  << swDataUpdate << " seconds." << std::endl;
-                    std::cout << "     eqSysBuilding: "  << swEqBuilding << " seconds." << std::endl;
-                    std::cout << "     MinMaxSolving: "  << swMinMaxSolving << " seconds." << std::endl;
-                    std::cout << "      LinEqSolving: "  << swLinEqSolving << " seconds." << std::endl;
-                    std::cout << "     Aux1StopWatch: "  << swAux1 << " seconds." << std::endl;
-                    std::cout << "     Aux2StopWatch: "  << swAux2 << " seconds." << std::endl;
-                    std::cout << "     Aux3StopWatch: "  << swAux3 << " seconds." << std::endl;
-
+                    std::cout << "     #checked weight vectors:" << numChecks << "." << std::endl;
+                    std::cout << "             #checked epochs:" << numCheckedEpochs << "." << std::endl;
+                    std::cout << "#Sched reused from prev. ep.: " << (numCheckedEpochs - numSchedChanges) << "." << std::endl;
+                    std::cout << "   Epoch Model building time: "  << swEpochModelBuild << " seconds." << std::endl;
+                    std::cout << "   Epoch Model checking time: "  << swEpochModelAnalysis << " seconds." << std::endl;
                 }
                 
 
@@ -81,7 +77,7 @@ namespace storm {
                 
                 void updateCachedData(typename MultiDimensionalRewardUnfolding<ValueType, false>::EpochModel const& epochModel, EpochCheckingData& cachedData, std::vector<ValueType> const& weightVector);
                 
-                storm::utility::Stopwatch swAll, swDataUpdate, swEqBuilding, swLinEqSolving, swMinMaxSolving, swAux1, swAux2, swAux3;
+                storm::utility::Stopwatch swAll, swEpochModelBuild, swEpochModelAnalysis;
                 uint64_t numSchedChanges, numCheckedEpochs, numChecks;
                 
                 MultiDimensionalRewardUnfolding<ValueType, false> rewardUnfolding;
diff --git a/src/storm/modelchecker/multiobjective/rewardbounded/MultiDimensionalRewardUnfolding.cpp b/src/storm/modelchecker/multiobjective/rewardbounded/MultiDimensionalRewardUnfolding.cpp
index 248d1ee8b..ad680f154 100644
--- a/src/storm/modelchecker/multiobjective/rewardbounded/MultiDimensionalRewardUnfolding.cpp
+++ b/src/storm/modelchecker/multiobjective/rewardbounded/MultiDimensionalRewardUnfolding.cpp
@@ -58,12 +58,10 @@ namespace storm {
                 
                 maxSolutionsStored = 0;
                 
-                swInit.start();
                 STORM_LOG_ASSERT(!SingleObjectiveMode || (this->objectives.size() == 1), "Enabled single objective mode but there are multiple objectives.");
                 std::vector<Epoch> epochSteps;
                 initializeObjectives(epochSteps);
                 initializeMemoryProduct(epochSteps);
-                swInit.stop();
             }
             
             template<typename ValueType, bool SingleObjectiveMode>
@@ -291,7 +289,6 @@ namespace storm {
                     epochModel.epochMatrixChanged = false;
                 }
                 
-                swSetEpoch.start();
                 bool containsLowerBoundedObjective = false;
                 for (auto const& dimension : dimensions) {
                     if (!dimension.isUpperBounded) {
@@ -364,7 +361,6 @@ namespace storm {
                 assert(epochModel.stepChoices.getNumberOfSetBits() == epochModel.stepSolutions.size());
                 
                 currentEpoch = epoch;
-                swSetEpoch.stop();
                 /*
                 std::cout << "Epoch model for epoch " << storm::utility::vector::toString(epoch) << std::endl;
                 std::cout << "Matrix: " << std::endl << epochModel.epochMatrix << std::endl;
@@ -384,7 +380,6 @@ namespace storm {
             void MultiDimensionalRewardUnfolding<ValueType, SingleObjectiveMode>::setCurrentEpochClass(Epoch const& epoch) {
                 EpochClass epochClass = epochManager.getEpochClass(epoch);
                 // std::cout << "Setting epoch class for epoch " << epochManager.toString(epoch) << std::endl;
-                swSetEpochClass.start();
                 auto productObjectiveRewards = productModel->computeObjectiveRewards(epochClass, objectives);
                 
                 storm::storage::BitVector stepChoices(productModel->getProduct().getNumberOfChoices(), false);
@@ -455,34 +450,25 @@ namespace storm {
                     epochModel.objectiveRewards.push_back(std::move(reducedModelObjRewards));
                 }
                 
-                swAux4.start();
-                swAux1.start();
                 epochModel.epochInStates = storm::storage::BitVector(epochModel.epochMatrix.getRowGroupCount(), false);
                 for (auto const& productState : productInStates) {
                     STORM_LOG_ASSERT(ecElimResult.oldToNewStateMapping[productState] < epochModel.epochMatrix.getRowGroupCount(), "Selected product state does not exist in the epoch model.");
                     epochModel.epochInStates.set(ecElimResult.oldToNewStateMapping[productState], true);
                 }
-                swAux1.stop();
                 
-                swAux2.start();
                 std::vector<uint64_t> toEpochModelInStatesMap(productModel->getProduct().getNumberOfStates(), std::numeric_limits<uint64_t>::max());
                 std::vector<uint64_t> epochModelStateToInStateMap = epochModel.epochInStates.getNumberOfSetBitsBeforeIndices();
                 for (auto const& productState : productInStates) {
                     toEpochModelInStatesMap[productState] = epochModelStateToInStateMap[ecElimResult.oldToNewStateMapping[productState]];
                 }
                 productStateToEpochModelInStateMap = std::make_shared<std::vector<uint64_t> const>(std::move(toEpochModelInStatesMap));
-                swAux2.stop();
                 
-                swAux3.start();
                 epochModel.objectiveRewardFilter.clear();
                 for (auto const& objRewards : epochModel.objectiveRewards) {
                     epochModel.objectiveRewardFilter.push_back(storm::utility::vector::filterZero(objRewards));
                     epochModel.objectiveRewardFilter.back().complement();
                 }
-                swAux3.stop();
 
-                swAux4.stop();
-                swSetEpochClass.stop();
                 epochModelSizes.push_back(epochModel.epochMatrix.getRowGroupCount());
             }
             
@@ -544,7 +530,6 @@ namespace storm {
             
             template<typename ValueType, bool SingleObjectiveMode>
             void MultiDimensionalRewardUnfolding<ValueType, SingleObjectiveMode>::setSolutionForCurrentEpoch(std::vector<SolutionType>&& inStateSolutions) {
-                swInsertSol.start();
                 STORM_LOG_ASSERT(currentEpoch, "Tried to set a solution for the current epoch, but no epoch was specified before.");
                 STORM_LOG_ASSERT(inStateSolutions.size() == epochModel.epochInStates.getNumberOfSetBits(), "Invalid number of solutions.");
 
@@ -575,7 +560,6 @@ namespace storm {
                 epochSolutions[currentEpoch.get()] = std::move(solution);
                 
                 maxSolutionsStored = std::max((uint64_t) epochSolutions.size(), maxSolutionsStored);
-                swInsertSol.stop();
                 
             }
             
diff --git a/src/storm/modelchecker/multiobjective/rewardbounded/MultiDimensionalRewardUnfolding.h b/src/storm/modelchecker/multiobjective/rewardbounded/MultiDimensionalRewardUnfolding.h
index ea30c7923..a269ab1e9 100644
--- a/src/storm/modelchecker/multiobjective/rewardbounded/MultiDimensionalRewardUnfolding.h
+++ b/src/storm/modelchecker/multiobjective/rewardbounded/MultiDimensionalRewardUnfolding.h
@@ -47,20 +47,10 @@ namespace storm {
                 MultiDimensionalRewardUnfolding(storm::models::sparse::Mdp<ValueType> const& model, std::shared_ptr<storm::logic::OperatorFormula const> objectiveFormula);
                 
                 ~MultiDimensionalRewardUnfolding() {
-                    std::cout << "Unfolding statistics: " << std::endl;
-                    std::cout << "              init: "  << swInit << " seconds." << std::endl;
-                    std::cout << "          setEpoch: " <<  swSetEpoch << " seconds." << std::endl;
-                    std::cout << "     setEpochClass: " << swSetEpochClass << " seconds." << std::endl;
-                    std::cout << "     findSolutions: " << swFindSol << " seconds." << std::endl;
-                    std::cout << "   insertSolutions: " << swInsertSol << " seconds." << std::endl;
-                    std::cout << "     aux1StopWatch: " << swAux1 << " seconds." << std::endl;
-                    std::cout << "     aux2StopWatch: " << swAux2 << " seconds." << std::endl;
-                    std::cout << "     aux3StopWatch: " << swAux3 << " seconds." << std::endl;
-                    std::cout << "     aux4StopWatch: " << swAux4 << " seconds." << std::endl;
-                    std::cout << "---------------------------------------------" << std::endl;
-                    std::cout << "      Product size: " << productModel->getProduct().getNumberOfStates() << std::endl;
-                    std::cout << "maxSolutionsStored: " << maxSolutionsStored << std::endl;
-                    std::cout << " Epoch model sizes: ";
+                    std::cout << "Implicit unfolding statistics: " << std::endl;
+                    std::cout << " Memory Product size: " << productModel->getProduct().getNumberOfStates() << std::endl;
+                    std::cout << "  maxSolutionsStored: " << maxSolutionsStored << std::endl;
+                    std::cout << "Occurring Epoch model sizes: ";
                     for (auto const& i : epochModelSizes) {
                         std::cout << i << " ";
                     }