Browse Source

abstraction loop working for purely qualitative refinement

Former-commit-id: ce28ed97c2
tempestpy_adaptions
dehnert 9 years ago
parent
commit
0cd03845e8
  1. 6
      src/abstraction/AbstractionInformation.cpp
  2. 12
      src/abstraction/AbstractionInformation.h
  3. 78
      src/abstraction/prism/AbstractProgram.cpp
  4. 8
      src/abstraction/prism/AbstractProgram.h
  5. 13
      src/exceptions/InvalidModelException.h
  6. 141
      src/modelchecker/abstraction/GameBasedMdpModelChecker.cpp

6
src/abstraction/AbstractionInformation.cpp

@ -54,6 +54,7 @@ namespace storm {
allPredicateIdentities &= predicateIdentities.back();
sourceVariables.insert(newMetaVariable.first);
successorVariables.insert(newMetaVariable.second);
orderedSuccessorVariables.push_back(newMetaVariable.second);
ddVariableIndexToPredicateIndexMap[predicateIdentities.back().getIndex()] = predicateIndex;
return predicateIndex;
}
@ -249,6 +250,11 @@ namespace storm {
return successorVariables;
}
template<storm::dd::DdType DdType>
std::vector<storm::expressions::Variable> const& AbstractionInformation<DdType>::getOrderedSuccessorVariables() const {
return orderedSuccessorVariables;
}
template<storm::dd::DdType DdType>
storm::dd::Bdd<DdType> const& AbstractionInformation<DdType>::getAllPredicateIdentities() const {
return allPredicateIdentities;

12
src/abstraction/AbstractionInformation.h

@ -332,6 +332,13 @@ namespace storm {
*/
std::set<storm::expressions::Variable> const& getSuccessorVariables() const;
/*!
* Retrieves the ordered collection of successor meta variables.
*
* @return All successor meta variables.
*/
std::vector<storm::expressions::Variable> const& getOrderedSuccessorVariables() const;
/*!
* Retrieves a BDD representing the identities of all predicates.
*
@ -472,9 +479,12 @@ namespace storm {
/// The set of all source variables.
std::set<storm::expressions::Variable> sourceVariables;
/// The set of all source variables.
/// The set of all successor variables.
std::set<storm::expressions::Variable> successorVariables;
/// An ordered collection of the successor variables.
std::vector<storm::expressions::Variable> orderedSuccessorVariables;
/// The BDDs corresponding to the predicates.
std::vector<std::pair<storm::dd::Bdd<DdType>, storm::dd::Bdd<DdType>>> predicateBdds;

78
src/abstraction/prism/AbstractProgram.cpp

@ -2,6 +2,8 @@
#include "src/abstraction/BottomStateResult.h"
#include "src/storage/BitVector.h"
#include "src/storage/prism/Program.h"
#include "src/storage/dd/DdManager.h"
@ -110,30 +112,80 @@ namespace storm {
}
template <storm::dd::DdType DdType, typename ValueType>
void AbstractProgram<DdType, ValueType>::refine(storm::dd::Bdd<DdType> const& pivotState, storm::dd::Bdd<DdType> const& player1Choice, storm::dd::Bdd<DdType> const& lowerChoice, storm::dd::Bdd<DdType> const& upperChoice) {
// std::cout << "refining in program!" << std::endl;
// lowerChoice.template toAdd<ValueType>().exportToDot("lchoice.dot");
// upperChoice.template toAdd<ValueType>().exportToDot("uchoice.dot");
// player1Choice.template toAdd<ValueType>().exportToDot("pl1_choice.dot");
// pivotState.template toAdd<ValueType>().exportToDot("pivotstate.dot");
std::map<uint_fast64_t, storm::storage::BitVector> AbstractProgram<DdType, ValueType>::decodeChoiceToUpdateSuccessorMapping(storm::dd::Bdd<DdType> const& choice) const {
std::map<uint_fast64_t, storm::storage::BitVector> result;
storm::dd::Add<DdType, ValueType> lowerChoiceAsAdd = choice.template toAdd<ValueType>();
for (auto const& successorValuePair : lowerChoiceAsAdd) {
uint_fast64_t updateIndex = abstractionInformation.decodeAux(successorValuePair.first, 0, currentGame->getProbabilisticBranchingVariables().size());
storm::storage::BitVector successor(abstractionInformation.getNumberOfPredicates());
for (uint_fast64_t index = 0; index < abstractionInformation.getOrderedSuccessorVariables().size(); ++index) {
auto const& successorVariable = abstractionInformation.getOrderedSuccessorVariables()[index];
if (successorValuePair.first.getBooleanValue(successorVariable)) {
successor.set(index);
}
}
result[updateIndex] = successor;
}
return result;
}
template <storm::dd::DdType DdType, typename ValueType>
void AbstractProgram<DdType, ValueType>::refine(storm::dd::Bdd<DdType> const& pivotState, storm::dd::Bdd<DdType> const& player1Choice, storm::dd::Bdd<DdType> const& lowerChoice, storm::dd::Bdd<DdType> const& upperChoice) {
// Decode the index of the command chosen by player 1.
storm::dd::Add<DdType, ValueType> player1ChoiceAsAdd = player1Choice.template toAdd<ValueType>();
auto pl1It = player1ChoiceAsAdd.begin();
uint_fast64_t commandIndex = abstractionInformation.decodePlayer1Choice((*pl1It).first, abstractionInformation.getPlayer1VariableCount());
storm::abstraction::prism::AbstractCommand<DdType, ValueType>& abstractCommand = modules.front().getCommands()[commandIndex];
storm::prism::Command const& concreteCommand = abstractCommand.getConcreteCommand();
// Check whether there are bottom states in the game and whether one of the choices actually picks the
// bottom state as the successor.
bool buttomStateSuccessor = false;
if (!currentGame->getBottomStates().isZero()) {
buttomStateSuccessor = !((abstractionInformation.getBottomStateBdd(false, false) && lowerChoice) || (abstractionInformation.getBottomStateBdd(false, false) && upperChoice)).isZero();
}
bool bottomSuccessor = !((abstractionInformation.getBottomStateBdd(false, false) && lowerChoice) || (abstractionInformation.getBottomStateBdd(false, false) && upperChoice)).isZero();
if (bottomSuccessor) {
storm::abstraction::prism::AbstractCommand<DdType, ValueType>& abstractCommand = modules.front().getCommands()[commandIndex];
// If one of the choices picks the bottom state, the new predicate is based on the guard of the appropriate
// command (that is the player 1 choice).
if (buttomStateSuccessor) {
STORM_LOG_DEBUG("One of the successors is a bottom state, taking a guard as a new predicate.");
abstractCommand.notifyGuardIsPredicate();
storm::expressions::Expression newPredicate = abstractCommand.getConcreteCommand().getGuardExpression();
storm::expressions::Expression newPredicate = concreteCommand.getGuardExpression();
STORM_LOG_DEBUG("Derived new predicate: " << newPredicate);
this->refine({newPredicate});
} else {
exit(-1);
STORM_LOG_DEBUG("No bottom state successor. Deriving a new predicate using weakest precondition.");
// Decode both choices to explicit mappings.
std::map<uint_fast64_t, storm::storage::BitVector> lowerChoiceUpdateToSuccessorMapping = decodeChoiceToUpdateSuccessorMapping(lowerChoice);
std::map<uint_fast64_t, storm::storage::BitVector> upperChoiceUpdateToSuccessorMapping = decodeChoiceToUpdateSuccessorMapping(upperChoice);
STORM_LOG_ASSERT(lowerChoiceUpdateToSuccessorMapping.size() == upperChoiceUpdateToSuccessorMapping.size(), "Mismatching sizes after decode.");
// Now go through the mappings and find points of deviation. Currently, we take the first deviation.
storm::expressions::Expression newPredicate;
auto lowerIt = lowerChoiceUpdateToSuccessorMapping.begin();
auto lowerIte = lowerChoiceUpdateToSuccessorMapping.end();
auto upperIt = upperChoiceUpdateToSuccessorMapping.begin();
for (; lowerIt != lowerIte; ++lowerIt, ++upperIt) {
STORM_LOG_ASSERT(lowerIt->first == upperIt->first, "Update indices mismatch.");
uint_fast64_t updateIndex = lowerIt->first;
bool deviates = lowerIt->second != upperIt->second;
if (deviates) {
for (uint_fast64_t predicateIndex = 0; predicateIndex < lowerIt->second.size(); ++predicateIndex) {
if (lowerIt->second.get(predicateIndex) != upperIt->second.get(predicateIndex)) {
// Now we know the point of the deviation (command, update, predicate).
newPredicate = abstractionInformation.getPredicateByIndex(predicateIndex).substitute(concreteCommand.getUpdate(updateIndex).getAsVariableToExpressionMap());
break;
}
}
}
}
this->refine({newPredicate});
}
storm::dd::Add<DdType, ValueType> lowerChoiceAsAdd = lowerChoice.template toAdd<ValueType>();
}
template <storm::dd::DdType DdType, typename ValueType>

8
src/abstraction/prism/AbstractProgram.h

@ -100,6 +100,14 @@ namespace storm {
*/
std::unique_ptr<MenuGame<DdType, ValueType>> buildGame();
/*!
* Decodes the given choice over the auxiliary and successor variables to a mapping from update indices
* to bit vectors representing the successors under these updates.
*
* @param choice The choice to decode.
*/
std::map<uint_fast64_t, storm::storage::BitVector> decodeChoiceToUpdateSuccessorMapping(storm::dd::Bdd<DdType> const& choice) const;
// The concrete program this abstract program refers to.
std::reference_wrapper<storm::prism::Program const> program;

13
src/exceptions/InvalidModelException.h

@ -0,0 +1,13 @@
#pragma once
#include "src/exceptions/BaseException.h"
#include "src/exceptions/ExceptionMacros.h"
namespace storm {
namespace exceptions {
STORM_NEW_EXCEPTION(InvalidModelException)
} // namespace exceptions
} // namespace storm

141
src/modelchecker/abstraction/GameBasedMdpModelChecker.cpp

@ -1,7 +1,7 @@
#include "src/modelchecker/abstraction/GameBasedMdpModelChecker.h"
#include "src/modelchecker/results/SymbolicQuantitativeCheckResult.h"
#include "src/modelchecker/results/SymbolicQualitativeCheckResult.h"
#include "src/modelchecker/results/ExplicitQuantitativeCheckResult.h"
#include "src/modelchecker/results/ExplicitQualitativeCheckResult.h"
#include "src/models/symbolic/StandardRewardModel.h"
@ -18,6 +18,7 @@
#include "src/exceptions/NotSupportedException.h"
#include "src/exceptions/InvalidPropertyException.h"
#include "src/exceptions/InvalidModelException.h"
#include "src/modelchecker/results/CheckResult.h"
@ -57,7 +58,7 @@ namespace storm {
template<storm::dd::DdType Type, typename ValueType>
std::unique_ptr<CheckResult> GameBasedMdpModelChecker<Type, ValueType>::computeUntilProbabilities(CheckTask<storm::logic::UntilFormula> const& checkTask) {
storm::logic::UntilFormula const& pathFormula = checkTask.getFormula();
return performGameBasedAbstractionRefinement(CheckTask<storm::logic::Formula>(pathFormula), getExpression(pathFormula.getLeftSubformula()), getExpression(pathFormula.getRightSubformula()));
return performGameBasedAbstractionRefinement(checkTask.substituteFormula<storm::logic::Formula>(pathFormula), getExpression(pathFormula.getLeftSubformula()), getExpression(pathFormula.getRightSubformula()));
}
template<storm::dd::DdType Type, typename ValueType>
@ -85,12 +86,7 @@ namespace storm {
template<storm::dd::DdType Type, typename ValueType>
std::unique_ptr<CheckResult> getResultAfterQualitativeCheck(CheckTask<storm::logic::Formula> const& checkTask, storm::dd::DdManager<Type> const& ddManager, storm::dd::Bdd<Type> const& reachableStates, storm::dd::Bdd<Type> const& initialStates, bool prob0) {
if (checkTask.isBoundSet()) {
bool result = getResultConsideringBound(prob0 ? storm::utility::zero<ValueType>() : storm::utility::one<ValueType>(), checkTask.getBound());
return std::make_unique<storm::modelchecker::SymbolicQualitativeCheckResult<Type>>(reachableStates, initialStates, result ? initialStates : ddManager.getBddZero());
} else {
return std::make_unique<storm::modelchecker::SymbolicQuantitativeCheckResult<Type>>(reachableStates, initialStates, prob0 ? ddManager.template getAddZero<ValueType>() : initialStates.template toAdd<ValueType>());
}
return std::make_unique<storm::modelchecker::ExplicitQuantitativeCheckResult<ValueType>>(storm::storage::sparse::state_type(0), prob0 ? storm::utility::zero<ValueType>() : storm::utility::one<ValueType>());
}
template<storm::dd::DdType Type>
@ -143,17 +139,17 @@ namespace storm {
bool lowerChoicesDifferent = !lowerChoice1.exclusiveOr(lowerChoice2).isZero();
if (lowerChoicesDifferent) {
abstractor.refine(pivotState, (pivotState && prob01.min.first.getPlayer1Strategy()).existsAbstract(game.getRowVariables()), lowerChoice1, lowerChoice2);
}
storm::dd::Bdd<Type> upperChoice = pivotState && game.getExtendedTransitionMatrix().toBdd() && prob01.max.second.getPlayer1Strategy();
storm::dd::Bdd<Type> upperChoice1 = (upperChoice && prob01.min.first.getPlayer2Strategy()).existsAbstract(variablesToAbstract);
storm::dd::Bdd<Type> upperChoice2 = (upperChoice && prob01.max.second.getPlayer2Strategy()).existsAbstract(variablesToAbstract);
upperChoice1.template toAdd<ValueType>().exportToDot("uchoice1.dot");
upperChoice2.template toAdd<ValueType>().exportToDot("uchoice2.dot");
bool upperChoicesDifferent = !upperChoice1.exclusiveOr(upperChoice2).isZero();
if (upperChoicesDifferent) {
abstractor.refine(pivotState, (pivotState && prob01.max.second.getPlayer1Strategy()).existsAbstract(game.getRowVariables()), upperChoice1, upperChoice2);
} else {
storm::dd::Bdd<Type> upperChoice = pivotState && game.getExtendedTransitionMatrix().toBdd() && prob01.max.second.getPlayer1Strategy();
storm::dd::Bdd<Type> upperChoice1 = (upperChoice && prob01.min.first.getPlayer2Strategy()).existsAbstract(variablesToAbstract);
storm::dd::Bdd<Type> upperChoice2 = (upperChoice && prob01.max.second.getPlayer2Strategy()).existsAbstract(variablesToAbstract);
bool upperChoicesDifferent = !upperChoice1.exclusiveOr(upperChoice2).isZero();
if (upperChoicesDifferent) {
abstractor.refine(pivotState, (pivotState && prob01.max.second.getPlayer1Strategy()).existsAbstract(game.getRowVariables()), upperChoice1, upperChoice2);
} else {
STORM_LOG_ASSERT(false, "Did not find choices from which to derive predicates.");
}
}
}
@ -171,56 +167,67 @@ namespace storm {
}
// Derive the optimization direction for player 1 (assuming menu-game abstraction).
storm::OptimizationDirection player1Direction = checkTask.isOptimizationDirectionSet() ? checkTask.getOptimizationDirection() : storm::OptimizationDirection::Maximize;
storm::OptimizationDirection player1Direction;
if (checkTask.isOptimizationDirectionSet()) {
player1Direction = checkTask.getOptimizationDirection();
} else if (checkTask.isBoundSet() && !originalProgram.isDeterministicModel()) {
player1Direction = storm::logic::isLowerBound(checkTask.getBoundComparisonType()) ? storm::OptimizationDirection::Minimize : storm::OptimizationDirection::Maximize;
} else {
STORM_LOG_THROW(originalProgram.isDeterministicModel(), storm::exceptions::InvalidPropertyException, "Requiring either min or max annotation in property for nondeterministic models.");
player1Direction = storm::OptimizationDirection::Maximize;
}
storm::abstraction::prism::PrismMenuGameAbstractor<Type, ValueType> abstractor(preprocessedProgram, initialPredicates, smtSolverFactory);
// 1. build initial abstraction based on the the constraint expression (if not 'true') and the target state expression.
storm::abstraction::MenuGame<Type, ValueType> game = abstractor.abstract();
STORM_LOG_DEBUG("Initial abstraction has " << game.getNumberOfStates() << " (player 1) states and " << game.getNumberOfTransitions() << " transitions.");
// 1.5 build a BDD from the transition matrix for various later uses.
storm::dd::Bdd<Type> transitionMatrixBdd = game.getTransitionMatrix().toBdd();
for (uint_fast64_t iterations = 0; iterations < 10000; ++iterations) {
STORM_LOG_TRACE("Starting iteration " << iterations);
abstractor.exportToDot("game" + std::to_string(iterations) + ".dot");
// 2. compute all states with probability 0/1 wrt. to the two different player 2 goals (min/max).
detail::GameProb01Result<Type> prob01 = computeProb01States(player1Direction, game, transitionMatrixBdd, constraintExpression, targetStateExpression);
// 3. compute the states for which we know the result/for which we know there is more work to be done.
storm::dd::Bdd<Type> maybeMin = !(prob01.min.first.states || prob01.min.second.states) && game.getReachableStates();
storm::dd::Bdd<Type> maybeMax = !(prob01.max.first.states || prob01.max.second.states) && game.getReachableStates();
// 4. if the initial states are not maybe states, then we can refine at this point.
storm::dd::Bdd<Type> initialMaybeStates = game.getInitialStates() && (maybeMin || maybeMax);
if (initialMaybeStates.isZero()) {
// In this case, we know the result for the initial states for both player 2 minimizing and maximizing.
// 1. build initial abstraction based on the the constraint expression (if not 'true') and the target state expression.
storm::abstraction::MenuGame<Type, ValueType> game = abstractor.abstract();
STORM_LOG_DEBUG("Abstraction in iteration " << iterations << " has " << game.getNumberOfStates() << " (player 1) states and " << game.getNumberOfTransitions() << " transitions.");
STORM_LOG_THROW(game.getInitialStates().getNonZeroCount(), storm::exceptions::InvalidModelException, "Cannot treat models with more than one (abstract) initial state.");
// If the result is 0 independent of the player 2 strategy, then we know the final result and can return it.
storm::dd::Bdd<Type> tmp = game.getInitialStates() && prob01.min.first.states && prob01.max.first.states;
if (tmp == game.getInitialStates()) {
getResultAfterQualitativeCheck<Type, ValueType>(checkTask, game.getManager(), game.getReachableStates(), game.getInitialStates(), true);
}
// 1.5 build a BDD from the transition matrix for various later uses.
storm::dd::Bdd<Type> transitionMatrixBdd = game.getTransitionMatrix().toBdd();
// If the result is 1 independent of the player 2 strategy, then we know the final result and can return it.
tmp = game.getInitialStates() && prob01.min.second.states && prob01.max.second.states;
if (tmp == game.getInitialStates()) {
getResultAfterQualitativeCheck<Type, ValueType>(checkTask, game.getManager(), game.getReachableStates(), game.getInitialStates(), false);
}
// 2. compute all states with probability 0/1 wrt. to the two different player 2 goals (min/max).
detail::GameProb01Result<Type> prob01 = computeProb01States(player1Direction, game, transitionMatrixBdd, constraintExpression, targetStateExpression);
// 3. compute the states for which we know the result/for which we know there is more work to be done.
storm::dd::Bdd<Type> maybeMin = !(prob01.min.first.states || prob01.min.second.states) && game.getReachableStates();
storm::dd::Bdd<Type> maybeMax = !(prob01.max.first.states || prob01.max.second.states) && game.getReachableStates();
// If we get here, the initial states were all identified as prob0/1 states, but the value (0 or 1)
// depends on whether player 2 is minimizing or maximizing. Therefore, we need to find a place to refine.
refineAfterQualitativeCheck(abstractor, game, prob01, transitionMatrixBdd);
// 4. if the initial states are not maybe states, then we can refine at this point.
storm::dd::Bdd<Type> initialMaybeStates = game.getInitialStates() && (maybeMin || maybeMax);
if (initialMaybeStates.isZero()) {
// In this case, we know the result for the initial states for both player 2 minimizing and maximizing.
STORM_LOG_TRACE("No initial state is a 'maybe' state. Refining abstraction based on qualitative check.");
// If the result is 0 independent of the player 2 strategy, then we know the final result and can return it.
storm::dd::Bdd<Type> tmp = game.getInitialStates() && prob01.min.first.states && prob01.max.first.states;
if (tmp == game.getInitialStates()) {
return getResultAfterQualitativeCheck<Type, ValueType>(checkTask, game.getManager(), game.getReachableStates(), game.getInitialStates(), true);
}
// If the result is 1 independent of the player 2 strategy, then we know the final result and can return it.
tmp = game.getInitialStates() && prob01.min.second.states && prob01.max.second.states;
if (tmp == game.getInitialStates()) {
return getResultAfterQualitativeCheck<Type, ValueType>(checkTask, game.getManager(), game.getReachableStates(), game.getInitialStates(), false);
}
// If we get here, the initial states were all identified as prob0/1 states, but the value (0 or 1)
// depends on whether player 2 is minimizing or maximizing. Therefore, we need to find a place to refine.
refineAfterQualitativeCheck(abstractor, game, prob01, transitionMatrixBdd);
} else {
// Do not numerically solve the game if there is a qualitative bound around.
STORM_LOG_ASSERT(false, "Quantiative refinement not yet there. :)");
}
}
// std::unique_ptr<storm::utility::solver::SymbolicGameSolverFactory<Type, ValueType>> gameSolverFactory = std::make_unique<storm::utility::solver::SymbolicGameSolverFactory<Type, ValueType>>();
// gameSolverFactory->create(game.getTransitionMatrix(), game.getReachableStates());
// storm::dd::Add<Type, ValueType> const& A, storm::dd::Bdd<Type> const& allRows, std::set<storm::expressions::Variable> const& rowMetaVariables, std::set<storm::expressions::Variable> const& columnMetaVariables, std::vector<std::pair<storm::expressions::Variable, storm::expressions::Variable>> const& rowColumnMetaVariablePairs, std::set<storm::expressions::Variable> const& player1Variables, std::set<storm::expressions::Variable> const& player2Variables
// 3. if the bounds suffice to complete checkTask, return result now.
// 4. if the bounds do not suffice
STORM_LOG_ASSERT(false, "This point must not be reached.");
return nullptr;
}
@ -247,20 +254,22 @@ namespace storm {
STORM_LOG_ASSERT(prob1Max.hasPlayer1Strategy(), "Unable to proceed without strategy.");
STORM_LOG_ASSERT(prob1Max.hasPlayer2Strategy(), "Unable to proceed without strategy.");
STORM_LOG_DEBUG("Min: " << prob0Min.states.getNonZeroCount() << " no states, " << prob1Min.states.getNonZeroCount() << " yes states.");
STORM_LOG_DEBUG("Max: " << prob0Max.states.getNonZeroCount() << " no states, " << prob1Max.states.getNonZeroCount() << " yes states.");
STORM_LOG_TRACE("Min: " << prob0Min.states.getNonZeroCount() << " no states, " << prob1Min.states.getNonZeroCount() << " yes states.");
STORM_LOG_TRACE("Max: " << prob0Max.states.getNonZeroCount() << " no states, " << prob1Max.states.getNonZeroCount() << " yes states.");
return detail::GameProb01Result<Type>(prob0Min, prob1Min, prob0Max, prob1Max);
}
template<storm::dd::DdType Type, typename ValueType>
storm::expressions::Expression GameBasedMdpModelChecker<Type, ValueType>::getExpression(storm::logic::Formula const& formula) {
STORM_LOG_THROW(formula.isAtomicExpressionFormula() || formula.isAtomicLabelFormula(), storm::exceptions::InvalidPropertyException, "The target states have to be given as label or an expression.");
STORM_LOG_THROW(formula.isBooleanLiteralFormula() || formula.isAtomicExpressionFormula() || formula.isAtomicLabelFormula(), storm::exceptions::InvalidPropertyException, "The target states have to be given as label or an expression.");
storm::expressions::Expression result;
if (formula.isAtomicLabelFormula()) {
result = preprocessedProgram.getLabelExpression(formula.asAtomicLabelFormula().getLabel());
} else {
} else if (formula.isAtomicExpressionFormula()) {
result = formula.asAtomicExpressionFormula().getExpression();
} else {
result = formula.asBooleanLiteralFormula().isTrueFormula() ? originalProgram.getManager().boolean(true) : originalProgram.getManager().boolean(false);
}
return result;
}

Loading…
Cancel
Save