Browse Source

Fixed an issue where time-bounded properties were wrongly computed on a ctmc that only consists of goal-states.

tempestpy_adaptions
TimQu 6 years ago
parent
commit
0c905e2323
  1. 100
      src/storm/modelchecker/csl/helper/SparseCtmcCslHelper.cpp

100
src/storm/modelchecker/csl/helper/SparseCtmcCslHelper.cpp

@ -52,7 +52,7 @@ namespace storm {
storm::storage::BitVector statesWithProbabilityGreater0NonPsi = statesWithProbabilityGreater0 & ~psiStates;
STORM_LOG_INFO("Found " << statesWithProbabilityGreater0NonPsi.getNumberOfSetBits() << " 'maybe' states.");
if (!statesWithProbabilityGreater0NonPsi.empty()) {
if (!statesWithProbabilityGreater0.empty()) {
if (storm::utility::isZero(upperBound)) {
// In this case, the interval is of the form [0, 0].
result = std::vector<ValueType>(numberOfStates, storm::utility::zero<ValueType>());
@ -62,30 +62,31 @@ namespace storm {
// In this case, the interval is of the form [0, t].
// Note that this excludes [0, inf] since this is untimed reachability and we considered this case earlier.
// Find the maximal rate of all 'maybe' states to take it as the uniformization rate.
ValueType uniformizationRate = 0;
for (auto const& state : statesWithProbabilityGreater0NonPsi) {
uniformizationRate = std::max(uniformizationRate, exitRates[state]);
}
uniformizationRate *= 1.02;
STORM_LOG_THROW(uniformizationRate > 0, storm::exceptions::InvalidStateException, "The uniformization rate must be positive.");
// Compute the uniformized matrix.
storm::storage::SparseMatrix<ValueType> uniformizedMatrix = computeUniformizedMatrix(rateMatrix, statesWithProbabilityGreater0NonPsi, uniformizationRate, exitRates);
// Compute the vector that is to be added as a compensation for removing the absorbing states.
std::vector<ValueType> b = rateMatrix.getConstrainedRowSumVector(statesWithProbabilityGreater0NonPsi, psiStates);
for (auto& element : b) {
element /= uniformizationRate;
}
// Finally compute the transient probabilities.
std::vector<ValueType> values(statesWithProbabilityGreater0NonPsi.getNumberOfSetBits(), storm::utility::zero<ValueType>());
std::vector<ValueType> subresult = computeTransientProbabilities(env, uniformizedMatrix, &b, upperBound, uniformizationRate, values);
result = std::vector<ValueType>(numberOfStates, storm::utility::zero<ValueType>());
storm::utility::vector::setVectorValues(result, statesWithProbabilityGreater0NonPsi, subresult);
storm::utility::vector::setVectorValues(result, psiStates, storm::utility::one<ValueType>());
storm::utility::vector::setVectorValues<ValueType>(result, psiStates, storm::utility::one<ValueType>());
if (!statesWithProbabilityGreater0NonPsi.empty()) {
// Find the maximal rate of all 'maybe' states to take it as the uniformization rate.
ValueType uniformizationRate = 0;
for (auto const& state : statesWithProbabilityGreater0NonPsi) {
uniformizationRate = std::max(uniformizationRate, exitRates[state]);
}
uniformizationRate *= 1.02;
STORM_LOG_THROW(uniformizationRate > 0, storm::exceptions::InvalidStateException, "The uniformization rate must be positive.");
// Compute the uniformized matrix.
storm::storage::SparseMatrix<ValueType> uniformizedMatrix = computeUniformizedMatrix(rateMatrix, statesWithProbabilityGreater0NonPsi, uniformizationRate, exitRates);
// Compute the vector that is to be added as a compensation for removing the absorbing states.
std::vector<ValueType> b = rateMatrix.getConstrainedRowSumVector(statesWithProbabilityGreater0NonPsi, psiStates);
for (auto& element : b) {
element /= uniformizationRate;
}
// Finally compute the transient probabilities.
std::vector<ValueType> values(statesWithProbabilityGreater0NonPsi.getNumberOfSetBits(), storm::utility::zero<ValueType>());
std::vector<ValueType> subresult = computeTransientProbabilities(env, uniformizedMatrix, &b, upperBound, uniformizationRate, values);
storm::utility::vector::setVectorValues(result, statesWithProbabilityGreater0NonPsi, subresult);
}
} else if (upperBound == storm::utility::infinity<ValueType>()) {
// In this case, the interval is of the form [t, inf] with t != 0.
@ -120,35 +121,38 @@ namespace storm {
if (lowerBound != upperBound) {
// In this case, the interval is of the form [t, t'] with t != 0, t' != inf and t != t'.
// Find the maximal rate of all 'maybe' states to take it as the uniformization rate.
ValueType uniformizationRate = storm::utility::zero<ValueType>();
for (auto const& state : statesWithProbabilityGreater0NonPsi) {
uniformizationRate = std::max(uniformizationRate, exitRates[state]);
}
uniformizationRate *= 1.02;
STORM_LOG_THROW(uniformizationRate > 0, storm::exceptions::InvalidStateException, "The uniformization rate must be positive.");
// Compute the (first) uniformized matrix.
storm::storage::SparseMatrix<ValueType> uniformizedMatrix = computeUniformizedMatrix(rateMatrix, statesWithProbabilityGreater0NonPsi, uniformizationRate, exitRates);
// Compute the vector that is to be added as a compensation for removing the absorbing states.
std::vector<ValueType> b = rateMatrix.getConstrainedRowSumVector(statesWithProbabilityGreater0NonPsi, psiStates);
for (auto& element : b) {
element /= uniformizationRate;
}
// Start by computing the transient probabilities of reaching a psi state in time t' - t.
std::vector<ValueType> values(statesWithProbabilityGreater0NonPsi.getNumberOfSetBits(), storm::utility::zero<ValueType>());
std::vector<ValueType> subresult = computeTransientProbabilities(env, uniformizedMatrix, &b, upperBound - lowerBound, uniformizationRate, values);
storm::storage::BitVector relevantStates = statesWithProbabilityGreater0 & phiStates;
std::vector<ValueType> newSubresult = std::vector<ValueType>(relevantStates.getNumberOfSetBits());
storm::utility::vector::setVectorValues(newSubresult, statesWithProbabilityGreater0NonPsi % relevantStates, subresult);
std::vector<ValueType> newSubresult(relevantStates.getNumberOfSetBits(), storm::utility::zero<ValueType>());
storm::utility::vector::setVectorValues(newSubresult, psiStates % relevantStates, storm::utility::one<ValueType>());
if (!statesWithProbabilityGreater0NonPsi.empty()) {
// Find the maximal rate of all 'maybe' states to take it as the uniformization rate.
ValueType uniformizationRate = storm::utility::zero<ValueType>();
for (auto const& state : statesWithProbabilityGreater0NonPsi) {
uniformizationRate = std::max(uniformizationRate, exitRates[state]);
}
uniformizationRate *= 1.02;
STORM_LOG_THROW(uniformizationRate > 0, storm::exceptions::InvalidStateException, "The uniformization rate must be positive.");
// Compute the (first) uniformized matrix.
storm::storage::SparseMatrix<ValueType> uniformizedMatrix = computeUniformizedMatrix(rateMatrix, statesWithProbabilityGreater0NonPsi, uniformizationRate, exitRates);
// Compute the vector that is to be added as a compensation for removing the absorbing states.
std::vector<ValueType> b = rateMatrix.getConstrainedRowSumVector(statesWithProbabilityGreater0NonPsi, psiStates);
for (auto& element : b) {
element /= uniformizationRate;
}
// Start by computing the transient probabilities of reaching a psi state in time t' - t.
std::vector<ValueType> values(statesWithProbabilityGreater0NonPsi.getNumberOfSetBits(), storm::utility::zero<ValueType>());
std::vector<ValueType> subresult = computeTransientProbabilities(env, uniformizedMatrix, &b, upperBound - lowerBound, uniformizationRate, values);
newSubresult = std::vector<ValueType>(relevantStates.getNumberOfSetBits());
storm::utility::vector::setVectorValues(newSubresult, statesWithProbabilityGreater0NonPsi % relevantStates, subresult);
}
// Then compute the transient probabilities of being in such a state after t time units. For this,
// we must re-uniformize the CTMC, so we need to compute the second uniformized matrix.
uniformizationRate = storm::utility::zero<ValueType>();
ValueType uniformizationRate = storm::utility::zero<ValueType>();
for (auto const& state : relevantStates) {
uniformizationRate = std::max(uniformizationRate, exitRates[state]);
}
@ -156,7 +160,7 @@ namespace storm {
STORM_LOG_THROW(uniformizationRate > 0, storm::exceptions::InvalidStateException, "The uniformization rate must be positive.");
// Finally, we compute the second set of transient probabilities.
uniformizedMatrix = computeUniformizedMatrix(rateMatrix, relevantStates, uniformizationRate, exitRates);
storm::storage::SparseMatrix<ValueType> uniformizedMatrix = computeUniformizedMatrix(rateMatrix, relevantStates, uniformizationRate, exitRates);
newSubresult = computeTransientProbabilities<ValueType>(env, uniformizedMatrix, nullptr, lowerBound, uniformizationRate, newSubresult);
// Fill in the correct values.

Loading…
Cancel
Save