Browse Source

made qvi implementation a little bit more readable

tempestpy_adaptions
TimQu 7 years ago
parent
commit
0215258709
  1. 525
      src/storm/solver/IterativeMinMaxLinearEquationSolver.cpp

525
src/storm/solver/IterativeMinMaxLinearEquationSolver.cpp

@ -607,125 +607,99 @@ namespace storm {
return status == SolverStatus::Converged;
}
template<typename ValueType>
bool IterativeMinMaxLinearEquationSolver<ValueType>::solveEquationsQuickSoundValueIteration(Environment const& env, OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType> const& b) const {
if (!this->linEqSolverA) {
this->createLinearEquationSolver(env);
this->linEqSolverA->setCachingEnabled(true);
class QuickValueIterationHelper {
public:
QuickValueIterationHelper(std::vector<ValueType>& x, std::vector<ValueType>& y, bool relative, ValueType const& precision) : x(x), y(y), hasLowerBound(false), hasUpperBound(false), minIndex(0), maxIndex(0), relative(relative), precision(precision) {
restart();
}
// Prepare the solution vectors.
assert(x.size() == this->A->getRowGroupCount());
std::vector<ValueType>& stepBoundedX = x;
stepBoundedX.assign(this->A->getRowGroupCount(), storm::utility::zero<ValueType>());
if (!this->auxiliaryRowGroupVector) {
this->auxiliaryRowGroupVector = std::make_unique<std::vector<ValueType>>(this->A->getRowGroupCount(), storm::utility::one<ValueType>());
} else {
this->auxiliaryRowGroupVector->assign(this->A->getRowGroupCount(), storm::utility::one<ValueType>());
}
std::vector<ValueType>& stepBoundedStayProbs = *this->auxiliaryRowGroupVector;
// Get the precision
bool relative = env.solver().minMax().getRelativeTerminationCriterion();
ValueType precision = storm::utility::convertNumber<ValueType>(env.solver().minMax().getPrecision());
if (!relative) {
precision *= storm::utility::convertNumber<ValueType>(2.0);
void restart() {
x.assign(x.size(), storm::utility::zero<ValueType>());
y.assign(x.size(), storm::utility::one<ValueType>());
hasDecisionValue = false;
decisionValueBlocks = false;
convergencePhase1 = true;
firstIndexViolatingConvergence = 0;
}
this->startMeasureProgress();
uint64_t restartMaxIterations = env.solver().minMax().getQviRestartMaxIterations();
ValueType restartThreshold = storm::utility::convertNumber<ValueType>(env.solver().minMax().getQviRestartThreshold());
void setLowerBound(ValueType const& value) {
hasLowerBound = true;
lowerBound = value;
}
// Prepare some data used in the iterations.
// We store the current lower (upper) bound for the minimal (maximal) value occurring at some index (if already found)
// Moreover, we store a decisionValue: When minimizing (maximizing) this is the largest (smallest) possible lower (upper) bound
// for which the performed scheduler decisions are valid.
// All these values might not be available yet.
ValueType currentLowerBound, currentUpperBound, decisionValue;
bool hasCurrentLowerBound(false), hasCurrentUpperBound(false), hasDecisionValue(false);
if (this->hasLowerBound(AbstractEquationSolver<ValueType>::BoundType::Global)) {
currentLowerBound = this->getLowerBound();
hasCurrentLowerBound = true;
} else if (this->hasLowerBound(AbstractEquationSolver<ValueType>::BoundType::Local)) {
currentLowerBound = *std::min_element(this->getLowerBounds().begin(), this->getLowerBounds().end());
hasCurrentLowerBound = true;
void setUpperBound(ValueType const& value) {
hasUpperBound = true;
upperBound = value;
}
if (this->hasUpperBound(AbstractEquationSolver<ValueType>::BoundType::Global)) {
currentUpperBound = this->getUpperBound();
hasCurrentUpperBound = true;
} else if (this->hasUpperBound(AbstractEquationSolver<ValueType>::BoundType::Local)) {
currentUpperBound = *std::max_element(this->getUpperBounds().begin(), this->getUpperBounds().end());
hasCurrentUpperBound = true;
template<OptimizationDirection dir>
bool better(ValueType const& val1, ValueType const& val2) {
return maximize(dir) ? val1 > val2 : val1 < val2;
}
// reduce the number of case distinctions w.r.t. minimizing/maximizing optimization direction
std::function<bool(ValueType const&, ValueType const&)> better, betterEqual;
if (minimize(dir)) {
better = std::less<ValueType>();
betterEqual = std::less_equal<ValueType>();
} else {
better = std::greater<ValueType>();
betterEqual = std::greater_equal<ValueType>();
template<OptimizationDirection dir>
ValueType& getPrimaryBound() {
return maximize(dir) ? upperBound : lowerBound;
}
// If minimizing, the primary bound is the lower bound; if maximizing, the primary bound is the upper bound.
ValueType& primaryBound = minimize(dir) ? currentLowerBound : currentUpperBound;
bool& hasPrimaryBound = minimize(dir) ? hasCurrentLowerBound : hasCurrentUpperBound;
STORM_LOG_INFO_COND(!hasCurrentLowerBound, "Initial lower bound on the result is " << currentLowerBound);
STORM_LOG_INFO_COND(!hasCurrentUpperBound, "Initial upper bound on the result is " << currentUpperBound);
ValueType& secondaryBound = minimize(dir) ? currentUpperBound : currentLowerBound;
// Proceed with the iterations as long as the method did not converge or reach the maximum number of iterations.
SolverStatus status = SolverStatus::InProgress;
uint64_t iterations = 0;
template<OptimizationDirection dir>
bool& hasPrimaryBound() {
return maximize(dir) ? hasUpperBound : hasLowerBound;
}
std::vector<ValueType> xTmp, yTmp;
template<OptimizationDirection dir>
ValueType& getSecondaryBound() {
return maximize(dir) ? lowerBound : upperBound;
}
uint64_t minIndex(0), maxIndex(0);
uint64_t& primaryIndex = minimize(dir) ? minIndex : maxIndex;
uint64_t& secondaryIndex = minimize(dir) ? maxIndex : minIndex;
bool primaryBoundIsDecisionValue = false;
ValueType improvedPrimaryBound;
bool hasImprovedPrimaryBound = false;
uint64_t firstStayProb1Index = 0;
uint64_t firstIndexViolatingConvergence = this->hasRelevantValues() ? this->getRelevantValues().getNextSetIndex(0) : 0;
while (status == SolverStatus::InProgress && iterations < env.solver().minMax().getMaximalNumberOfIterations()) {
template<OptimizationDirection dir>
uint64_t& getPrimaryIndex() {
return maximize(dir) ? maxIndex : minIndex;
}
//Perform the iteration step
auto xIt = stepBoundedX.rbegin();
auto yIt = stepBoundedStayProbs.rbegin();
auto groupStartIt = this->A->getRowGroupIndices().rbegin();
template<OptimizationDirection dir>
uint64_t& getSecondaryIndex() {
return maximize(dir) ? minIndex : maxIndex;
}
void multiplyRow(uint64_t const& row, storm::storage::SparseMatrix<ValueType> const& A, ValueType const& bi, ValueType& xi, ValueType& yi) {
xi = bi;
yi = storm::utility::zero<ValueType>();
for (auto const& entry : A.getRow(row)) {
xi += entry.getValue() * x[entry.getColumn()];
yi += entry.getValue() * y[entry.getColumn()];
}
}
template<OptimizationDirection dir>
void performIterationStep(storm::storage::SparseMatrix<ValueType> const& A, std::vector<ValueType> const& b) {
auto xIt = x.rbegin();
auto yIt = y.rbegin();
auto groupStartIt = A.getRowGroupIndices().rbegin();
uint64_t groupEnd = *groupStartIt;
++groupStartIt;
auto groupEndIt = this->A->getRowGroupIndices().rbegin();
while (groupStartIt != this->A->getRowGroupIndices().rend()) {
for (auto groupStartIte = A.getRowGroupIndices().rend(); groupStartIt != groupStartIte; groupEnd = *(groupStartIt++), ++xIt, ++yIt) {
// Perform the iteration for the first row in the group
uint64_t row = *groupStartIt;
uint64_t rowEnd = *groupEndIt;
ValueType xBest = b[row];
ValueType yBest = storm::utility::zero<ValueType>();
for (auto const& entry : this->A->getRow(row)) {
xBest += entry.getValue() * stepBoundedX[entry.getColumn()];
yBest += entry.getValue() * stepBoundedStayProbs[entry.getColumn()];
}
ValueType xBest, yBest;
multiplyRow(row, A, b[row], xBest, yBest);
++row;
// Only do more work if there are still rows in this row group
if (row != rowEnd) {
if (row != groupEnd) {
xTmp.clear();
yTmp.clear();
if (hasPrimaryBound) {
ValueType bestValue = xBest + yBest * primaryBound;
for (;row < *groupEndIt; ++row) {
ValueType xi, yi;
if (hasPrimaryBound<dir>()) {
ValueType bestValue = xBest + yBest * getPrimaryBound<dir>();
for (;row < groupEnd; ++row) {
// Get the multiplication results
ValueType xi = b[row];
ValueType yi = storm::utility::zero<ValueType>();
for (auto const& entry : this->A->getRow(row)) {
xi += entry.getValue() * stepBoundedX[entry.getColumn()];
yi += entry.getValue() * stepBoundedStayProbs[entry.getColumn()];
}
// Update the best choice
ValueType currentValue = xi + yi * primaryBound;
if (better(currentValue, bestValue)) {
multiplyRow(row, A, b[row], xi, yi);
ValueType currentValue = xi + yi * getPrimaryBound<dir>();
// Check if the current row is better then the previously found one
if (better<dir>(currentValue, bestValue)) {
if (yBest < yi) {
// We need to store the 'old' best value as it might be relevant for the decision value
xTmp.push_back(std::move(xBest));
yTmp.push_back(std::move(yBest));
}
@ -733,6 +707,7 @@ namespace storm {
yBest = std::move(yi);
bestValue = std::move(currentValue);
} else if (yBest > yi) {
// If the value for this row is not strictly better, it might still be equal and have a better y value
if (currentValue == bestValue) {
xBest = std::move(xi);
yBest = std::move(yi);
@ -743,16 +718,10 @@ namespace storm {
}
}
} else {
for (;row < *groupEndIt; ++row) {
// Get the multiplication results
ValueType xi = b[row];
ValueType yi = storm::utility::zero<ValueType>();
for (auto const& entry : this->A->getRow(row)) {
xi += entry.getValue() * stepBoundedX[entry.getColumn()];
yi += entry.getValue() * stepBoundedStayProbs[entry.getColumn()];
}
for (;row < groupEnd; ++row) {
multiplyRow(row, A, b[row], xi, yi);
// Update the best choice
if (yi > yBest || (yi == yBest && better(xi, xBest))) {
if (yi > yBest || (yi == yBest && better<dir>(xi, xBest))) {
xTmp.push_back(std::move(xBest));
yTmp.push_back(std::move(yBest));
xBest = std::move(xi);
@ -769,7 +738,7 @@ namespace storm {
ValueType deltaY = yBest - (*yTmpIt);
if (deltaY > storm::utility::zero<ValueType>()) {
ValueType newDecisionValue = (*xTmpIt - xBest) / deltaY;
if (!hasDecisionValue || better(newDecisionValue, decisionValue)) {
if (!hasDecisionValue || better<dir>(newDecisionValue, decisionValue)) {
// std::cout << "Updating decision value in Iteration " << iterations << " to " << newDecisionValue << ", where deltaX = " << xTmp[choice] << " - " << *xIt << " = " << (xTmp[choice] - *xIt) << " and deltaY= " << *yIt << " - " << yTmp[choice] << " = " << deltaY << "." << std::endl;
decisionValue = std::move(newDecisionValue);
hasDecisionValue = true;
@ -779,165 +748,251 @@ namespace storm {
}
*xIt = std::move(xBest);
*yIt = std::move(yBest);
++groupStartIt;
++groupEndIt;
++xIt;
++yIt;
}
}
bool checkRestartCriterion() {
return false;
// iterations <= restartMaxIterations && (minimize(dir) ? restartThreshold * improvedPrimaryBound > primaryBound : restartThreshold * primaryBound > improvedPrimaryBound
}
bool isPreciseEnough(ValueType const& xi, ValueType const& yi, ValueType const& lb, ValueType const& ub) {
return yi * (ub - lb) <= (relative ? (precision * xi) : (precision * storm::utility::convertNumber<ValueType>(2.0)));
}
template<OptimizationDirection dir>
bool checkConvergenceUpdateBounds(uint64_t const& iterations, storm::storage::BitVector const* relevantValues = nullptr) {
// Update bounds and check for convergence
// Phase 1: the probability to 'stay within the matrix' has to be < 1 at every state
for (; firstStayProb1Index != stepBoundedStayProbs.size(); ++firstStayProb1Index) {
static_assert(NumberTraits<ValueType>::IsExact || std::is_same<ValueType, double>::value, "Considered ValueType not handled.");
if (NumberTraits<ValueType>::IsExact) {
if (storm::utility::isOne(stepBoundedStayProbs[firstStayProb1Index])) {
break;
if (convergencePhase1) {
if (checkConvergencePhase1()) {
firstIndexViolatingConvergence = 0;
if (relevantValues != nullptr) {
firstIndexViolatingConvergence = relevantValues->getNextSetIndex(firstIndexViolatingConvergence);
}
} else {
if (storm::utility::isAlmostOne(storm::utility::convertNumber<double>(stepBoundedStayProbs[firstStayProb1Index]))) {
break;
}
return false;
}
}
if (firstStayProb1Index == stepBoundedStayProbs.size()) {
STORM_LOG_ASSERT(!std::any_of(stepBoundedStayProbs.begin(), stepBoundedStayProbs.end(), [](ValueType value){return storm::utility::isOne(value);}), "Did not expect staying-probability 1 at this point.");
// Phase 2: the difference between lower and upper bound has to be < precision at every (relevant) value
ValueType const& stayProb = stepBoundedStayProbs[firstIndexViolatingConvergence];
// The maximal allowed error (possibly respecting relative precision)
// Note: We implement the relative convergence criterion in a way that avoids division by zero in the case where stepBoundedX[i] is zero.
ValueType maxAllowedError = relative ? (precision * stepBoundedX[firstIndexViolatingConvergence]) : precision;
ValueType oldLowerBound = currentLowerBound;
ValueType oldUpperBound = currentUpperBound;
// First check with (possibly too tight) bounds from a previous iteration. Only compute the actual bounds if this first check passes.
secondaryBound = stepBoundedX[secondaryIndex] / (storm::utility::one<ValueType>() - stepBoundedStayProbs[secondaryIndex]);
bool computeActualBounds;
if (primaryBoundIsDecisionValue) {
improvedPrimaryBound = stepBoundedX[primaryIndex] + primaryBound * stepBoundedStayProbs[primaryIndex];
assert(better(primaryBound, improvedPrimaryBound));
computeActualBounds = iterations <= restartMaxIterations && (minimize(dir) ? restartThreshold * improvedPrimaryBound > primaryBound : restartThreshold * primaryBound > improvedPrimaryBound);
STORM_LOG_ASSERT(!std::any_of(y.begin(), y.end(), [](ValueType value){return storm::utility::isOne(value);}), "Did not expect staying-probability 1 at this point.");
// Reaching this point means that we are in Phase 2:
// The difference between lower and upper bound has to be < precision at every (relevant) value
// For efficiency reasons we first check whether it is worth to compute the actual bounds. We do so by considering possibly too tight bounds
ValueType lowerBoundCandidate = x[minIndex] / (storm::utility::one<ValueType>() - y[minIndex]);
ValueType upperBoundCandidate = x[maxIndex] / (storm::utility::one<ValueType>() - y[maxIndex]);
// Make sure that these candidates are at least as tight as the already known bounds
if (hasLowerBound && lowerBoundCandidate < lowerBound) {
lowerBoundCandidate = lowerBound;
}
if (hasUpperBound && upperBoundCandidate > upperBound) {
upperBoundCandidate = upperBound;
}
bool computeActualBounds = isPreciseEnough(x[firstIndexViolatingConvergence], y[firstIndexViolatingConvergence], lowerBoundCandidate, upperBoundCandidate);
if (!computeActualBounds) {
if (decisionValueBlocks) {
ValueType improvedPrimaryBound = x[getPrimaryIndex<dir>()] + getPrimaryBound<dir>() * y[getPrimaryIndex<dir>()];
assert(better<dir>(getPrimaryBound<dir>(), improvedPrimaryBound));
computeActualBounds = checkRestartCriterion();
} else {
primaryBound = stepBoundedX[primaryIndex] / (storm::utility::one<ValueType>() - stepBoundedStayProbs[primaryIndex]);
computeActualBounds = hasDecisionValue && better(decisionValue, primaryBound);
computeActualBounds = hasDecisionValue && better<dir>(decisionValue, getPrimaryBound<dir>());
}
}
if (computeActualBounds) {
auto xIt = x.begin();
auto xIte = x.end();
auto yIt = y.begin();
ValueType improvedPrimaryBound;
bool computedImprovedPrimaryBound = false;
for (uint64_t index = 0; xIt != xIte; ++xIt, ++yIt, ++index) {
ValueType currentBound = *xIt / (storm::utility::one<ValueType>() - *yIt);
if (decisionValueBlocks) {
ValueType currentImprovedBound = *xIt + getPrimaryBound<dir>() * (*yIt);
if (!computedImprovedPrimaryBound || better<dir>(currentImprovedBound, improvedPrimaryBound)) {
computedImprovedPrimaryBound = true;
getPrimaryIndex<dir>() = index;
improvedPrimaryBound = std::move(currentImprovedBound);
}
if (better<dir>(getSecondaryBound<dir>(), currentBound)) {
getSecondaryIndex<dir>() = index;
getSecondaryBound<dir>() = std::move(currentBound);
}
} else {
if (currentBound < lowerBoundCandidate) {
minIndex = index;
lowerBoundCandidate = std::move(currentBound);
} else if (currentBound > upperBoundCandidate) {
maxIndex = index;
upperBoundCandidate = std::move(currentBound);
}
}
}
// If the old bounds where tighter, use them instead.
if (hasCurrentLowerBound && oldLowerBound > currentLowerBound) {
currentLowerBound = oldLowerBound;
if ((maximize(dir) || !decisionValueBlocks) && (!hasLowerBound || lowerBoundCandidate > lowerBound)) {
setLowerBound(lowerBoundCandidate);
}
if (hasCurrentUpperBound && oldUpperBound < currentUpperBound) {
currentUpperBound = oldUpperBound;
if ((minimize(dir) || !decisionValueBlocks) && (!hasUpperBound || upperBoundCandidate < upperBound)) {
setUpperBound(upperBoundCandidate);
}
computeActualBounds = computeActualBounds || stayProb * (currentUpperBound - currentLowerBound) <= maxAllowedError;
if (computeActualBounds) {
// Compute the actual bounds now
auto valIt = stepBoundedX.begin();
auto valIte = stepBoundedX.end();
auto probIt = stepBoundedStayProbs.begin();
for (uint64_t index = 0; valIt != valIte; ++valIt, ++probIt, ++index) {
ValueType currentBound = *valIt / (storm::utility::one<ValueType>() - *probIt);
if (primaryBoundIsDecisionValue) {
ValueType currentImprovedBound = *valIt + primaryBound * (*probIt);
if (better(currentImprovedBound, improvedPrimaryBound)) {
primaryIndex = index;
improvedPrimaryBound = std::move(currentImprovedBound);
}
if (better(secondaryBound, currentBound)) {
secondaryIndex = index;
secondaryBound = std::move(currentBound);
}
} else {
if (currentBound < currentLowerBound) {
minIndex = index;
currentLowerBound = std::move(currentBound);
} else if (currentBound > currentUpperBound) {
maxIndex = index;
currentUpperBound = std::move(currentBound);
}
// Check whether the decision value blocks now (i.e. further improvement of the primary bound would lead to a non-optimal scheduler).
if (!decisionValueBlocks && hasDecisionValue && better<dir>(decisionValue, getPrimaryBound<dir>())) {
getPrimaryBound<dir>() = decisionValue;
decisionValueBlocks = true;
}
// Check whether the desired precision is reached
if (isPreciseEnough(x[firstIndexViolatingConvergence], y[firstIndexViolatingConvergence], lowerBound, upperBound)) {
// The current index satisfies the desired bound. We now move to the next index that violates it
while (true) {
++firstIndexViolatingConvergence;
if (relevantValues != nullptr) {
firstIndexViolatingConvergence = relevantValues->getNextSetIndex(firstIndexViolatingConvergence);
}
}
if (primaryBoundIsDecisionValue) {
hasImprovedPrimaryBound = true;
}
// If the old bounds where tighter, use them instead.
if (hasCurrentLowerBound && oldLowerBound > currentLowerBound) {
currentLowerBound = oldLowerBound;
}
if (hasCurrentUpperBound && oldUpperBound < currentUpperBound) {
currentUpperBound = oldUpperBound;
}
// Potentially correct the primary bound so that scheduler choices remain valid
if (!primaryBoundIsDecisionValue && hasDecisionValue && better(decisionValue, primaryBound)) {
primaryBound = decisionValue;
primaryBoundIsDecisionValue = true;
}
hasCurrentUpperBound = true;
hasCurrentLowerBound = true;
// Check whether the desired precision is reached
ValueType absoluteError = stayProb * (currentUpperBound - currentLowerBound);
if (absoluteError <= maxAllowedError) {
// The current index satisfies the desired bound. We now move to the next index that violates it
while (true) {
++firstIndexViolatingConvergence;
if (this->hasRelevantValues()) {
firstIndexViolatingConvergence = this->getRelevantValues().getNextSetIndex(firstIndexViolatingConvergence);
}
if (firstIndexViolatingConvergence == stepBoundedStayProbs.size()) {
status = SolverStatus::Converged;
if (firstIndexViolatingConvergence == x.size()) {
// Converged!
return true;
} else {
if (!isPreciseEnough(x[firstIndexViolatingConvergence], y[firstIndexViolatingConvergence], lowerBound, upperBound)) {
// not converged yet
break;
} else {
absoluteError = stepBoundedStayProbs[firstIndexViolatingConvergence] * (currentUpperBound - currentLowerBound);
maxAllowedError = relative ? (precision * stepBoundedX[firstIndexViolatingConvergence]) : precision;
if (absoluteError > maxAllowedError) {
// not converged yet
break;
}
}
}
}
// Check whether we should restart
if (primaryBoundIsDecisionValue && hasImprovedPrimaryBound && iterations <= restartMaxIterations && (minimize(dir) ? restartThreshold * improvedPrimaryBound > primaryBound : restartThreshold * primaryBound > improvedPrimaryBound)) {
STORM_LOG_INFO("Restarting QVI after " << iterations << " iterations. Improved bound from " << primaryBound << " to " << improvedPrimaryBound << ".");
stepBoundedStayProbs.assign(this->A->getRowGroupCount(), storm::utility::one<ValueType>());
stepBoundedX.assign(this->A->getRowGroupCount(), storm::utility::zero<ValueType>());
primaryBound = improvedPrimaryBound;
hasDecisionValue = false;
primaryBoundIsDecisionValue = false;
firstStayProb1Index = 0;
firstIndexViolatingConvergence = this->hasRelevantValues() ? this->getRelevantValues().getNextSetIndex(0) : 0;
}
}
// Check whether we should restart
if (computedImprovedPrimaryBound && checkRestartCriterion()) {
STORM_LOG_INFO("Restarting QVI after " << iterations << " iterations. Improved bound from " << getPrimaryBound<dir>() << " to " << improvedPrimaryBound << ".");
getPrimaryBound<dir>() = improvedPrimaryBound;
restart();
}
}
return false;
}
void setSolutionVector() {
STORM_LOG_WARN_COND(hasLowerBound && hasUpperBound, "No lower or upper result bound could be computed within the given number of Iterations.");
ValueType meanBound = (upperBound + lowerBound) / storm::utility::convertNumber<ValueType>(2.0);
storm::utility::vector::applyPointwise(x, y, x, [&meanBound] (ValueType const& xi, ValueType const& yi) { return xi + yi * meanBound; });
STORM_LOG_INFO("Quick Value Iteration terminated with lower value bound "
<< (hasLowerBound ? lowerBound : storm::utility::zero<ValueType>()) << (hasLowerBound ? "" : "(none)")
<< " and upper value bound "
<< (hasUpperBound ? upperBound : storm::utility::zero<ValueType>()) << (hasUpperBound ? "" : "(none)")
<< ". Decision value is "
<< (hasDecisionValue ? decisionValue : storm::utility::zero<ValueType>()) << (hasDecisionValue ? "" : "(none)")
<< ".");
}
private:
bool checkConvergencePhase1() {
// Return true if y ('the probability to stay within the matrix') is < 1 at every entry
for (; firstIndexViolatingConvergence != y.size(); ++firstIndexViolatingConvergence) {
static_assert(NumberTraits<ValueType>::IsExact || std::is_same<ValueType, double>::value, "Considered ValueType not handled.");
if (NumberTraits<ValueType>::IsExact) {
if (storm::utility::isOne(y[firstIndexViolatingConvergence])) {
return false;
}
} else {
if (storm::utility::isAlmostOne(storm::utility::convertNumber<double>(y[firstIndexViolatingConvergence]))) {
return false;
}
}
}
convergencePhase1 = false;
return true;
}
std::vector<ValueType>& x;
std::vector<ValueType>& y;
std::vector<ValueType> xTmp, yTmp;
ValueType lowerBound, upperBound, decisionValue;
bool hasLowerBound, hasUpperBound, hasDecisionValue;
uint64_t minIndex, maxIndex;
bool convergencePhase1;
bool decisionValueBlocks;
uint64_t firstIndexViolatingConvergence;
bool relative;
ValueType precision;
};
template<typename ValueType>
bool IterativeMinMaxLinearEquationSolver<ValueType>::solveEquationsQuickSoundValueIteration(Environment const& env, OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType> const& b) const {
// Prepare the solution vectors.
assert(x.size() == this->A->getRowGroupCount());
if (!this->auxiliaryRowGroupVector) {
this->auxiliaryRowGroupVector = std::make_unique<std::vector<ValueType>>();
}
QuickValueIterationHelper<ValueType> helper(x, *this->auxiliaryRowGroupVector, env.solver().minMax().getRelativeTerminationCriterion(), storm::utility::convertNumber<ValueType>(env.solver().minMax().getPrecision()));
// Get the precision
uint64_t restartMaxIterations = env.solver().minMax().getQviRestartMaxIterations();
ValueType restartThreshold = storm::utility::convertNumber<ValueType>(env.solver().minMax().getQviRestartThreshold());
// Prepare initial bounds for the solution (if given)
if (this->hasLowerBound(AbstractEquationSolver<ValueType>::BoundType::Global)) {
helper.setLowerBound(this->getLowerBound());
} else if (this->hasLowerBound(AbstractEquationSolver<ValueType>::BoundType::Local)) {
helper.setLowerBound(*std::min_element(this->getLowerBounds().begin(), this->getLowerBounds().end()));
}
if (this->hasUpperBound(AbstractEquationSolver<ValueType>::BoundType::Global)) {
helper.setUpperBound(this->getUpperBound());
} else if (this->hasUpperBound(AbstractEquationSolver<ValueType>::BoundType::Local)) {
helper.setUpperBound(*std::max_element(this->getUpperBounds().begin(), this->getUpperBounds().end()));
}
//STORM_LOG_INFO_COND(!hasCurrentLowerBound, "Initial lower bound on the result is " << currentLowerBound);
//STORM_LOG_INFO_COND(!hasCurrentUpperBound, "Initial upper bound on the result is " << currentUpperBound);
storm::storage::BitVector const* relevantValuesPtr = nullptr;
if (this->hasRelevantValues()) {
relevantValuesPtr = &this->getRelevantValues();
}
SolverStatus status = SolverStatus::InProgress;
this->startMeasureProgress();
uint64_t iterations = 0;
while (status == SolverStatus::InProgress && iterations < env.solver().minMax().getMaximalNumberOfIterations()) {
if (minimize(dir)) {
helper.template performIterationStep<OptimizationDirection::Minimize>(*this->A, b);
if (helper.template checkConvergenceUpdateBounds<OptimizationDirection::Minimize>(iterations, relevantValuesPtr)) {
status = SolverStatus::Converged;
}
} else {
assert(maximize(dir));
helper.template performIterationStep<OptimizationDirection::Maximize>(*this->A, b);
if (helper.template checkConvergenceUpdateBounds<OptimizationDirection::Maximize>(iterations, relevantValuesPtr)) {
status = SolverStatus::Converged;
}
}
// Update environment variables.
++iterations;
// TODO: Implement custom termination criterion. We would need to add our errors to the stepBoundedX values (only if in second phase)
status = updateStatusIfNotConverged(status, stepBoundedX, iterations, env.solver().minMax().getMaximalNumberOfIterations(), SolverGuarantee::None);
status = updateStatusIfNotConverged(status, x, iterations, env.solver().minMax().getMaximalNumberOfIterations(), SolverGuarantee::None);
// Potentially show progress.
this->showProgressIterative(iterations);
}
reportStatus(status, iterations);
STORM_LOG_WARN_COND(hasCurrentLowerBound && hasCurrentUpperBound, "No lower or upper result bound could be computed within the given number of Iterations.");
// Finally set up the solution vector
ValueType meanBound = (currentUpperBound + currentLowerBound) / storm::utility::convertNumber<ValueType>(2.0);
storm::utility::vector::applyPointwise(stepBoundedX, stepBoundedStayProbs, x, [&meanBound] (ValueType const& v, ValueType const& p) { return v + p * meanBound; });
helper.setSolutionVector();
// If requested, we store the scheduler for retrieval.
if (this->isTrackSchedulerSet()) {
this->schedulerChoices = std::vector<uint_fast64_t>(this->A->getRowGroupCount());
this->linEqSolverA->multiplyAndReduce(dir, this->A->getRowGroupIndices(), x, &b, *this->auxiliaryRowGroupVector, &this->schedulerChoices.get());
this->A->multiplyAndReduce(dir, this->A->getRowGroupIndices(), x, &b, *this->auxiliaryRowGroupVector, &this->schedulerChoices.get());
}
STORM_LOG_INFO("Quick Value Iteration terminated with lower value bound "
<< (hasCurrentLowerBound ? currentLowerBound : storm::utility::zero<ValueType>()) << (hasCurrentLowerBound ? "" : "(none)")
<< " and upper value bound "
<< (hasCurrentUpperBound ? currentUpperBound : storm::utility::zero<ValueType>()) << (hasCurrentUpperBound ? "" : "(none)")
<< ". Decision value is "
<< (hasDecisionValue ? decisionValue : storm::utility::zero<ValueType>()) << (hasDecisionValue ? "" : "(none)")
<< ".");
reportStatus(status, iterations);
if (!this->isCachingEnabled()) {
clearCache();
}

Loading…
Cancel
Save