You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

205 lines
8.7 KiB

  1. // This file is part of Eigen, a lightweight C++ template library
  2. // for linear algebra.
  3. //
  4. // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
  5. //
  6. // This Source Code Form is subject to the terms of the Mozilla
  7. // Public License v. 2.0. If a copy of the MPL was not distributed
  8. // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
  9. #include "main.h"
  10. template<typename MatrixType> void array_for_matrix(const MatrixType& m)
  11. {
  12. typedef typename MatrixType::Index Index;
  13. typedef typename MatrixType::Scalar Scalar;
  14. typedef typename NumTraits<Scalar>::Real RealScalar;
  15. typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType;
  16. typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
  17. Index rows = m.rows();
  18. Index cols = m.cols();
  19. MatrixType m1 = MatrixType::Random(rows, cols),
  20. m2 = MatrixType::Random(rows, cols),
  21. m3(rows, cols);
  22. ColVectorType cv1 = ColVectorType::Random(rows);
  23. RowVectorType rv1 = RowVectorType::Random(cols);
  24. Scalar s1 = internal::random<Scalar>(),
  25. s2 = internal::random<Scalar>();
  26. // scalar addition
  27. VERIFY_IS_APPROX(m1.array() + s1, s1 + m1.array());
  28. VERIFY_IS_APPROX((m1.array() + s1).matrix(), MatrixType::Constant(rows,cols,s1) + m1);
  29. VERIFY_IS_APPROX(((m1*Scalar(2)).array() - s2).matrix(), (m1+m1) - MatrixType::Constant(rows,cols,s2) );
  30. m3 = m1;
  31. m3.array() += s2;
  32. VERIFY_IS_APPROX(m3, (m1.array() + s2).matrix());
  33. m3 = m1;
  34. m3.array() -= s1;
  35. VERIFY_IS_APPROX(m3, (m1.array() - s1).matrix());
  36. // reductions
  37. VERIFY_IS_MUCH_SMALLER_THAN(m1.colwise().sum().sum() - m1.sum(), m1.cwiseAbs().maxCoeff());
  38. VERIFY_IS_MUCH_SMALLER_THAN(m1.rowwise().sum().sum() - m1.sum(), m1.cwiseAbs().maxCoeff());
  39. VERIFY_IS_MUCH_SMALLER_THAN(m1.colwise().sum() + m2.colwise().sum() - (m1+m2).colwise().sum(), (m1+m2).cwiseAbs().maxCoeff());
  40. VERIFY_IS_MUCH_SMALLER_THAN(m1.rowwise().sum() - m2.rowwise().sum() - (m1-m2).rowwise().sum(), (m1-m2).cwiseAbs().maxCoeff());
  41. VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op<Scalar>()));
  42. // vector-wise ops
  43. m3 = m1;
  44. VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1);
  45. m3 = m1;
  46. VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1);
  47. m3 = m1;
  48. VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1);
  49. m3 = m1;
  50. VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1);
  51. // empty objects
  52. VERIFY_IS_APPROX(m1.block(0,0,0,cols).colwise().sum(), RowVectorType::Zero(cols));
  53. VERIFY_IS_APPROX(m1.block(0,0,rows,0).rowwise().prod(), ColVectorType::Ones(rows));
  54. // verify the const accessors exist
  55. const Scalar& ref_m1 = m.matrix().array().coeffRef(0);
  56. const Scalar& ref_m2 = m.matrix().array().coeffRef(0,0);
  57. const Scalar& ref_a1 = m.array().matrix().coeffRef(0);
  58. const Scalar& ref_a2 = m.array().matrix().coeffRef(0,0);
  59. VERIFY(&ref_a1 == &ref_m1);
  60. VERIFY(&ref_a2 == &ref_m2);
  61. }
  62. template<typename MatrixType> void comparisons(const MatrixType& m)
  63. {
  64. typedef typename MatrixType::Index Index;
  65. typedef typename MatrixType::Scalar Scalar;
  66. typedef typename NumTraits<Scalar>::Real RealScalar;
  67. typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
  68. Index rows = m.rows();
  69. Index cols = m.cols();
  70. Index r = internal::random<Index>(0, rows-1),
  71. c = internal::random<Index>(0, cols-1);
  72. MatrixType m1 = MatrixType::Random(rows, cols),
  73. m2 = MatrixType::Random(rows, cols),
  74. m3(rows, cols);
  75. VERIFY(((m1.array() + Scalar(1)) > m1.array()).all());
  76. VERIFY(((m1.array() - Scalar(1)) < m1.array()).all());
  77. if (rows*cols>1)
  78. {
  79. m3 = m1;
  80. m3(r,c) += 1;
  81. VERIFY(! (m1.array() < m3.array()).all() );
  82. VERIFY(! (m1.array() > m3.array()).all() );
  83. }
  84. // comparisons to scalar
  85. VERIFY( (m1.array() != (m1(r,c)+1) ).any() );
  86. VERIFY( (m1.array() > (m1(r,c)-1) ).any() );
  87. VERIFY( (m1.array() < (m1(r,c)+1) ).any() );
  88. VERIFY( (m1.array() == m1(r,c) ).any() );
  89. // test Select
  90. VERIFY_IS_APPROX( (m1.array()<m2.array()).select(m1,m2), m1.cwiseMin(m2) );
  91. VERIFY_IS_APPROX( (m1.array()>m2.array()).select(m1,m2), m1.cwiseMax(m2) );
  92. Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff())/Scalar(2);
  93. for (int j=0; j<cols; ++j)
  94. for (int i=0; i<rows; ++i)
  95. m3(i,j) = internal::abs(m1(i,j))<mid ? 0 : m1(i,j);
  96. VERIFY_IS_APPROX( (m1.array().abs()<MatrixType::Constant(rows,cols,mid).array())
  97. .select(MatrixType::Zero(rows,cols),m1), m3);
  98. // shorter versions:
  99. VERIFY_IS_APPROX( (m1.array().abs()<MatrixType::Constant(rows,cols,mid).array())
  100. .select(0,m1), m3);
  101. VERIFY_IS_APPROX( (m1.array().abs()>=MatrixType::Constant(rows,cols,mid).array())
  102. .select(m1,0), m3);
  103. // even shorter version:
  104. VERIFY_IS_APPROX( (m1.array().abs()<mid).select(0,m1), m3);
  105. // count
  106. VERIFY(((m1.array().abs()+1)>RealScalar(0.1)).count() == rows*cols);
  107. typedef Matrix<typename MatrixType::Index, Dynamic, 1> VectorOfIndices;
  108. // TODO allows colwise/rowwise for array
  109. VERIFY_IS_APPROX(((m1.array().abs()+1)>RealScalar(0.1)).matrix().colwise().count(), VectorOfIndices::Constant(cols,rows).transpose());
  110. VERIFY_IS_APPROX(((m1.array().abs()+1)>RealScalar(0.1)).matrix().rowwise().count(), VectorOfIndices::Constant(rows, cols));
  111. }
  112. template<typename VectorType> void lpNorm(const VectorType& v)
  113. {
  114. VectorType u = VectorType::Random(v.size());
  115. VERIFY_IS_APPROX(u.template lpNorm<Infinity>(), u.cwiseAbs().maxCoeff());
  116. VERIFY_IS_APPROX(u.template lpNorm<1>(), u.cwiseAbs().sum());
  117. VERIFY_IS_APPROX(u.template lpNorm<2>(), internal::sqrt(u.array().abs().square().sum()));
  118. VERIFY_IS_APPROX(internal::pow(u.template lpNorm<5>(), typename VectorType::RealScalar(5)), u.array().abs().pow(5).sum());
  119. }
  120. template<typename MatrixType> void cwise_min_max(const MatrixType& m)
  121. {
  122. typedef typename MatrixType::Index Index;
  123. typedef typename MatrixType::Scalar Scalar;
  124. Index rows = m.rows();
  125. Index cols = m.cols();
  126. MatrixType m1 = MatrixType::Random(rows, cols);
  127. // min/max with array
  128. Scalar maxM1 = m1.maxCoeff();
  129. Scalar minM1 = m1.minCoeff();
  130. VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, minM1), m1.cwiseMin(MatrixType::Constant(rows,cols, minM1)));
  131. VERIFY_IS_APPROX(m1, m1.cwiseMin(MatrixType::Constant(rows,cols, maxM1)));
  132. VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, maxM1), m1.cwiseMax(MatrixType::Constant(rows,cols, maxM1)));
  133. VERIFY_IS_APPROX(m1, m1.cwiseMax(MatrixType::Constant(rows,cols, minM1)));
  134. // min/max with scalar input
  135. VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, minM1), m1.cwiseMin( minM1));
  136. VERIFY_IS_APPROX(m1, m1.cwiseMin( maxM1));
  137. VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, maxM1), m1.cwiseMax( maxM1));
  138. VERIFY_IS_APPROX(m1, m1.cwiseMax( minM1));
  139. }
  140. void test_array_for_matrix()
  141. {
  142. for(int i = 0; i < g_repeat; i++) {
  143. CALL_SUBTEST_1( array_for_matrix(Matrix<float, 1, 1>()) );
  144. CALL_SUBTEST_2( array_for_matrix(Matrix2f()) );
  145. CALL_SUBTEST_3( array_for_matrix(Matrix4d()) );
  146. CALL_SUBTEST_4( array_for_matrix(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  147. CALL_SUBTEST_5( array_for_matrix(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  148. CALL_SUBTEST_6( array_for_matrix(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  149. }
  150. for(int i = 0; i < g_repeat; i++) {
  151. CALL_SUBTEST_1( comparisons(Matrix<float, 1, 1>()) );
  152. CALL_SUBTEST_2( comparisons(Matrix2f()) );
  153. CALL_SUBTEST_3( comparisons(Matrix4d()) );
  154. CALL_SUBTEST_5( comparisons(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  155. CALL_SUBTEST_6( comparisons(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  156. }
  157. for(int i = 0; i < g_repeat; i++) {
  158. CALL_SUBTEST_1( cwise_min_max(Matrix<float, 1, 1>()) );
  159. CALL_SUBTEST_2( cwise_min_max(Matrix2f()) );
  160. CALL_SUBTEST_3( cwise_min_max(Matrix4d()) );
  161. CALL_SUBTEST_5( cwise_min_max(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  162. CALL_SUBTEST_6( cwise_min_max(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  163. }
  164. for(int i = 0; i < g_repeat; i++) {
  165. CALL_SUBTEST_1( lpNorm(Matrix<float, 1, 1>()) );
  166. CALL_SUBTEST_2( lpNorm(Vector2f()) );
  167. CALL_SUBTEST_7( lpNorm(Vector3d()) );
  168. CALL_SUBTEST_8( lpNorm(Vector4f()) );
  169. CALL_SUBTEST_5( lpNorm(VectorXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  170. CALL_SUBTEST_4( lpNorm(VectorXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  171. }
  172. }