You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

81 lines
2.7 KiB

  1. // This file is part of Eigen, a lightweight C++ template library
  2. // for linear algebra.
  3. //
  4. // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
  5. // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
  6. //
  7. // This Source Code Form is subject to the terms of the Mozilla
  8. // Public License v. 2.0. If a copy of the MPL was not distributed
  9. // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
  10. #include "main.h"
  11. #include <Eigen/SVD>
  12. template<typename MatrixType, typename JacobiScalar>
  13. void jacobi(const MatrixType& m = MatrixType())
  14. {
  15. typedef typename MatrixType::Scalar Scalar;
  16. typedef typename MatrixType::Index Index;
  17. Index rows = m.rows();
  18. Index cols = m.cols();
  19. enum {
  20. RowsAtCompileTime = MatrixType::RowsAtCompileTime,
  21. ColsAtCompileTime = MatrixType::ColsAtCompileTime
  22. };
  23. typedef Matrix<JacobiScalar, 2, 1> JacobiVector;
  24. const MatrixType a(MatrixType::Random(rows, cols));
  25. JacobiVector v = JacobiVector::Random().normalized();
  26. JacobiScalar c = v.x(), s = v.y();
  27. JacobiRotation<JacobiScalar> rot(c, s);
  28. {
  29. Index p = internal::random<Index>(0, rows-1);
  30. Index q;
  31. do {
  32. q = internal::random<Index>(0, rows-1);
  33. } while (q == p);
  34. MatrixType b = a;
  35. b.applyOnTheLeft(p, q, rot);
  36. VERIFY_IS_APPROX(b.row(p), c * a.row(p) + internal::conj(s) * a.row(q));
  37. VERIFY_IS_APPROX(b.row(q), -s * a.row(p) + internal::conj(c) * a.row(q));
  38. }
  39. {
  40. Index p = internal::random<Index>(0, cols-1);
  41. Index q;
  42. do {
  43. q = internal::random<Index>(0, cols-1);
  44. } while (q == p);
  45. MatrixType b = a;
  46. b.applyOnTheRight(p, q, rot);
  47. VERIFY_IS_APPROX(b.col(p), c * a.col(p) - s * a.col(q));
  48. VERIFY_IS_APPROX(b.col(q), internal::conj(s) * a.col(p) + internal::conj(c) * a.col(q));
  49. }
  50. }
  51. void test_jacobi()
  52. {
  53. for(int i = 0; i < g_repeat; i++) {
  54. CALL_SUBTEST_1(( jacobi<Matrix3f, float>() ));
  55. CALL_SUBTEST_2(( jacobi<Matrix4d, double>() ));
  56. CALL_SUBTEST_3(( jacobi<Matrix4cf, float>() ));
  57. CALL_SUBTEST_3(( jacobi<Matrix4cf, std::complex<float> >() ));
  58. int r = internal::random<int>(2, internal::random<int>(1,EIGEN_TEST_MAX_SIZE)/2),
  59. c = internal::random<int>(2, internal::random<int>(1,EIGEN_TEST_MAX_SIZE)/2);
  60. CALL_SUBTEST_4(( jacobi<MatrixXf, float>(MatrixXf(r,c)) ));
  61. CALL_SUBTEST_5(( jacobi<MatrixXcd, double>(MatrixXcd(r,c)) ));
  62. CALL_SUBTEST_5(( jacobi<MatrixXcd, std::complex<double> >(MatrixXcd(r,c)) ));
  63. // complex<float> is really important to test as it is the only way to cover conjugation issues in certain unaligned paths
  64. CALL_SUBTEST_6(( jacobi<MatrixXcf, float>(MatrixXcf(r,c)) ));
  65. CALL_SUBTEST_6(( jacobi<MatrixXcf, std::complex<float> >(MatrixXcf(r,c)) ));
  66. (void) r;
  67. (void) c;
  68. }
  69. }