|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
template<typename MatrixType> void product_selfadjoint(const MatrixType& m) { typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; typedef Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> RowVectorType;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, Dynamic, RowMajor> RhsMatrixType;
Index rows = m.rows(); Index cols = m.cols();
MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3; VectorType v1 = VectorType::Random(rows), v2 = VectorType::Random(rows), v3(rows); RowVectorType r1 = RowVectorType::Random(rows), r2 = RowVectorType::Random(rows); RhsMatrixType m4 = RhsMatrixType::Random(rows,10);
Scalar s1 = internal::random<Scalar>(), s2 = internal::random<Scalar>(), s3 = internal::random<Scalar>();
m1 = (m1.adjoint() + m1).eval();
// rank2 update
m2 = m1.template triangularView<Lower>(); m2.template selfadjointView<Lower>().rankUpdate(v1,v2); VERIFY_IS_APPROX(m2, (m1 + v1 * v2.adjoint()+ v2 * v1.adjoint()).template triangularView<Lower>().toDenseMatrix());
m2 = m1.template triangularView<Upper>(); m2.template selfadjointView<Upper>().rankUpdate(-v1,s2*v2,s3); VERIFY_IS_APPROX(m2, (m1 + (s3*(-v1)*(s2*v2).adjoint()+numext::conj(s3)*(s2*v2)*(-v1).adjoint())).template triangularView<Upper>().toDenseMatrix());
m2 = m1.template triangularView<Upper>(); m2.template selfadjointView<Upper>().rankUpdate(-s2*r1.adjoint(),r2.adjoint()*s3,s1); VERIFY_IS_APPROX(m2, (m1 + s1*(-s2*r1.adjoint())*(r2.adjoint()*s3).adjoint() + numext::conj(s1)*(r2.adjoint()*s3) * (-s2*r1.adjoint()).adjoint()).template triangularView<Upper>().toDenseMatrix());
if (rows>1) { m2 = m1.template triangularView<Lower>(); m2.block(1,1,rows-1,cols-1).template selfadjointView<Lower>().rankUpdate(v1.tail(rows-1),v2.head(cols-1)); m3 = m1; m3.block(1,1,rows-1,cols-1) += v1.tail(rows-1) * v2.head(cols-1).adjoint()+ v2.head(cols-1) * v1.tail(rows-1).adjoint(); VERIFY_IS_APPROX(m2, m3.template triangularView<Lower>().toDenseMatrix()); } }
void test_product_selfadjoint() { int s = 0; for(int i = 0; i < g_repeat ; i++) { CALL_SUBTEST_1( product_selfadjoint(Matrix<float, 1, 1>()) ); CALL_SUBTEST_2( product_selfadjoint(Matrix<float, 2, 2>()) ); CALL_SUBTEST_3( product_selfadjoint(Matrix3d()) ); s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2); CALL_SUBTEST_4( product_selfadjoint(MatrixXcf(s, s)) ); s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2); CALL_SUBTEST_5( product_selfadjoint(MatrixXcd(s,s)) ); s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE); CALL_SUBTEST_6( product_selfadjoint(MatrixXd(s,s)) ); s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE); CALL_SUBTEST_7( product_selfadjoint(Matrix<float,Dynamic,Dynamic,RowMajor>(s,s)) ); } TEST_SET_BUT_UNUSED_VARIABLE(s) }
|