You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

253 lines
10 KiB

  1. // This file is part of Eigen, a lightweight C++ template library
  2. // for linear algebra.
  3. //
  4. // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
  5. //
  6. // This Source Code Form is subject to the terms of the Mozilla
  7. // Public License v. 2.0. If a copy of the MPL was not distributed
  8. // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
  9. #include "main.h"
  10. template<typename MatrixType> void array_for_matrix(const MatrixType& m)
  11. {
  12. typedef typename MatrixType::Index Index;
  13. typedef typename MatrixType::Scalar Scalar;
  14. typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType;
  15. typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
  16. Index rows = m.rows();
  17. Index cols = m.cols();
  18. MatrixType m1 = MatrixType::Random(rows, cols),
  19. m2 = MatrixType::Random(rows, cols),
  20. m3(rows, cols);
  21. ColVectorType cv1 = ColVectorType::Random(rows);
  22. RowVectorType rv1 = RowVectorType::Random(cols);
  23. Scalar s1 = internal::random<Scalar>(),
  24. s2 = internal::random<Scalar>();
  25. // scalar addition
  26. VERIFY_IS_APPROX(m1.array() + s1, s1 + m1.array());
  27. VERIFY_IS_APPROX((m1.array() + s1).matrix(), MatrixType::Constant(rows,cols,s1) + m1);
  28. VERIFY_IS_APPROX(((m1*Scalar(2)).array() - s2).matrix(), (m1+m1) - MatrixType::Constant(rows,cols,s2) );
  29. m3 = m1;
  30. m3.array() += s2;
  31. VERIFY_IS_APPROX(m3, (m1.array() + s2).matrix());
  32. m3 = m1;
  33. m3.array() -= s1;
  34. VERIFY_IS_APPROX(m3, (m1.array() - s1).matrix());
  35. // reductions
  36. VERIFY_IS_MUCH_SMALLER_THAN(m1.colwise().sum().sum() - m1.sum(), m1.squaredNorm());
  37. VERIFY_IS_MUCH_SMALLER_THAN(m1.rowwise().sum().sum() - m1.sum(), m1.squaredNorm());
  38. VERIFY_IS_MUCH_SMALLER_THAN(m1.colwise().sum() + m2.colwise().sum() - (m1+m2).colwise().sum(), (m1+m2).squaredNorm());
  39. VERIFY_IS_MUCH_SMALLER_THAN(m1.rowwise().sum() - m2.rowwise().sum() - (m1-m2).rowwise().sum(), (m1-m2).squaredNorm());
  40. VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op<Scalar>()));
  41. // vector-wise ops
  42. m3 = m1;
  43. VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1);
  44. m3 = m1;
  45. VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1);
  46. m3 = m1;
  47. VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1);
  48. m3 = m1;
  49. VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1);
  50. // empty objects
  51. VERIFY_IS_APPROX(m1.block(0,0,0,cols).colwise().sum(), RowVectorType::Zero(cols));
  52. VERIFY_IS_APPROX(m1.block(0,0,rows,0).rowwise().prod(), ColVectorType::Ones(rows));
  53. // verify the const accessors exist
  54. const Scalar& ref_m1 = m.matrix().array().coeffRef(0);
  55. const Scalar& ref_m2 = m.matrix().array().coeffRef(0,0);
  56. const Scalar& ref_a1 = m.array().matrix().coeffRef(0);
  57. const Scalar& ref_a2 = m.array().matrix().coeffRef(0,0);
  58. VERIFY(&ref_a1 == &ref_m1);
  59. VERIFY(&ref_a2 == &ref_m2);
  60. }
  61. template<typename MatrixType> void comparisons(const MatrixType& m)
  62. {
  63. using std::abs;
  64. typedef typename MatrixType::Index Index;
  65. typedef typename MatrixType::Scalar Scalar;
  66. typedef typename NumTraits<Scalar>::Real RealScalar;
  67. Index rows = m.rows();
  68. Index cols = m.cols();
  69. Index r = internal::random<Index>(0, rows-1),
  70. c = internal::random<Index>(0, cols-1);
  71. MatrixType m1 = MatrixType::Random(rows, cols),
  72. m2 = MatrixType::Random(rows, cols),
  73. m3(rows, cols);
  74. VERIFY(((m1.array() + Scalar(1)) > m1.array()).all());
  75. VERIFY(((m1.array() - Scalar(1)) < m1.array()).all());
  76. if (rows*cols>1)
  77. {
  78. m3 = m1;
  79. m3(r,c) += 1;
  80. VERIFY(! (m1.array() < m3.array()).all() );
  81. VERIFY(! (m1.array() > m3.array()).all() );
  82. }
  83. // comparisons to scalar
  84. VERIFY( (m1.array() != (m1(r,c)+1) ).any() );
  85. VERIFY( (m1.array() > (m1(r,c)-1) ).any() );
  86. VERIFY( (m1.array() < (m1(r,c)+1) ).any() );
  87. VERIFY( (m1.array() == m1(r,c) ).any() );
  88. // test Select
  89. VERIFY_IS_APPROX( (m1.array()<m2.array()).select(m1,m2), m1.cwiseMin(m2) );
  90. VERIFY_IS_APPROX( (m1.array()>m2.array()).select(m1,m2), m1.cwiseMax(m2) );
  91. Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff())/Scalar(2);
  92. for (int j=0; j<cols; ++j)
  93. for (int i=0; i<rows; ++i)
  94. m3(i,j) = abs(m1(i,j))<mid ? 0 : m1(i,j);
  95. VERIFY_IS_APPROX( (m1.array().abs()<MatrixType::Constant(rows,cols,mid).array())
  96. .select(MatrixType::Zero(rows,cols),m1), m3);
  97. // shorter versions:
  98. VERIFY_IS_APPROX( (m1.array().abs()<MatrixType::Constant(rows,cols,mid).array())
  99. .select(0,m1), m3);
  100. VERIFY_IS_APPROX( (m1.array().abs()>=MatrixType::Constant(rows,cols,mid).array())
  101. .select(m1,0), m3);
  102. // even shorter version:
  103. VERIFY_IS_APPROX( (m1.array().abs()<mid).select(0,m1), m3);
  104. // count
  105. VERIFY(((m1.array().abs()+1)>RealScalar(0.1)).count() == rows*cols);
  106. typedef Matrix<typename MatrixType::Index, Dynamic, 1> VectorOfIndices;
  107. // TODO allows colwise/rowwise for array
  108. VERIFY_IS_APPROX(((m1.array().abs()+1)>RealScalar(0.1)).matrix().colwise().count(), VectorOfIndices::Constant(cols,rows).transpose());
  109. VERIFY_IS_APPROX(((m1.array().abs()+1)>RealScalar(0.1)).matrix().rowwise().count(), VectorOfIndices::Constant(rows, cols));
  110. }
  111. template<typename VectorType> void lpNorm(const VectorType& v)
  112. {
  113. using std::sqrt;
  114. VectorType u = VectorType::Random(v.size());
  115. VERIFY_IS_APPROX(u.template lpNorm<Infinity>(), u.cwiseAbs().maxCoeff());
  116. VERIFY_IS_APPROX(u.template lpNorm<1>(), u.cwiseAbs().sum());
  117. VERIFY_IS_APPROX(u.template lpNorm<2>(), sqrt(u.array().abs().square().sum()));
  118. VERIFY_IS_APPROX(numext::pow(u.template lpNorm<5>(), typename VectorType::RealScalar(5)), u.array().abs().pow(5).sum());
  119. }
  120. template<typename MatrixType> void cwise_min_max(const MatrixType& m)
  121. {
  122. typedef typename MatrixType::Index Index;
  123. typedef typename MatrixType::Scalar Scalar;
  124. Index rows = m.rows();
  125. Index cols = m.cols();
  126. MatrixType m1 = MatrixType::Random(rows, cols);
  127. // min/max with array
  128. Scalar maxM1 = m1.maxCoeff();
  129. Scalar minM1 = m1.minCoeff();
  130. VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, minM1), m1.cwiseMin(MatrixType::Constant(rows,cols, minM1)));
  131. VERIFY_IS_APPROX(m1, m1.cwiseMin(MatrixType::Constant(rows,cols, maxM1)));
  132. VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, maxM1), m1.cwiseMax(MatrixType::Constant(rows,cols, maxM1)));
  133. VERIFY_IS_APPROX(m1, m1.cwiseMax(MatrixType::Constant(rows,cols, minM1)));
  134. // min/max with scalar input
  135. VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, minM1), m1.cwiseMin( minM1));
  136. VERIFY_IS_APPROX(m1, m1.cwiseMin(maxM1));
  137. VERIFY_IS_APPROX(-m1, (-m1).cwiseMin(-minM1));
  138. VERIFY_IS_APPROX(-m1.array(), ((-m1).array().min)( -minM1));
  139. VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, maxM1), m1.cwiseMax( maxM1));
  140. VERIFY_IS_APPROX(m1, m1.cwiseMax(minM1));
  141. VERIFY_IS_APPROX(-m1, (-m1).cwiseMax(-maxM1));
  142. VERIFY_IS_APPROX(-m1.array(), ((-m1).array().max)(-maxM1));
  143. VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, minM1).array(), (m1.array().min)( minM1));
  144. VERIFY_IS_APPROX(m1.array(), (m1.array().min)( maxM1));
  145. VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, maxM1).array(), (m1.array().max)( maxM1));
  146. VERIFY_IS_APPROX(m1.array(), (m1.array().max)( minM1));
  147. }
  148. template<typename MatrixTraits> void resize(const MatrixTraits& t)
  149. {
  150. typedef typename MatrixTraits::Index Index;
  151. typedef typename MatrixTraits::Scalar Scalar;
  152. typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
  153. typedef Array<Scalar,Dynamic,Dynamic> Array2DType;
  154. typedef Matrix<Scalar,Dynamic,1> VectorType;
  155. typedef Array<Scalar,Dynamic,1> Array1DType;
  156. Index rows = t.rows(), cols = t.cols();
  157. MatrixType m(rows,cols);
  158. VectorType v(rows);
  159. Array2DType a2(rows,cols);
  160. Array1DType a1(rows);
  161. m.array().resize(rows+1,cols+1);
  162. VERIFY(m.rows()==rows+1 && m.cols()==cols+1);
  163. a2.matrix().resize(rows+1,cols+1);
  164. VERIFY(a2.rows()==rows+1 && a2.cols()==cols+1);
  165. v.array().resize(cols);
  166. VERIFY(v.size()==cols);
  167. a1.matrix().resize(cols);
  168. VERIFY(a1.size()==cols);
  169. }
  170. void regression_bug_654()
  171. {
  172. ArrayXf a = RowVectorXf(3);
  173. VectorXf v = Array<float,1,Dynamic>(3);
  174. }
  175. void test_array_for_matrix()
  176. {
  177. for(int i = 0; i < g_repeat; i++) {
  178. CALL_SUBTEST_1( array_for_matrix(Matrix<float, 1, 1>()) );
  179. CALL_SUBTEST_2( array_for_matrix(Matrix2f()) );
  180. CALL_SUBTEST_3( array_for_matrix(Matrix4d()) );
  181. CALL_SUBTEST_4( array_for_matrix(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  182. CALL_SUBTEST_5( array_for_matrix(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  183. CALL_SUBTEST_6( array_for_matrix(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  184. }
  185. for(int i = 0; i < g_repeat; i++) {
  186. CALL_SUBTEST_1( comparisons(Matrix<float, 1, 1>()) );
  187. CALL_SUBTEST_2( comparisons(Matrix2f()) );
  188. CALL_SUBTEST_3( comparisons(Matrix4d()) );
  189. CALL_SUBTEST_5( comparisons(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  190. CALL_SUBTEST_6( comparisons(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  191. }
  192. for(int i = 0; i < g_repeat; i++) {
  193. CALL_SUBTEST_1( cwise_min_max(Matrix<float, 1, 1>()) );
  194. CALL_SUBTEST_2( cwise_min_max(Matrix2f()) );
  195. CALL_SUBTEST_3( cwise_min_max(Matrix4d()) );
  196. CALL_SUBTEST_5( cwise_min_max(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  197. CALL_SUBTEST_6( cwise_min_max(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  198. }
  199. for(int i = 0; i < g_repeat; i++) {
  200. CALL_SUBTEST_1( lpNorm(Matrix<float, 1, 1>()) );
  201. CALL_SUBTEST_2( lpNorm(Vector2f()) );
  202. CALL_SUBTEST_7( lpNorm(Vector3d()) );
  203. CALL_SUBTEST_8( lpNorm(Vector4f()) );
  204. CALL_SUBTEST_5( lpNorm(VectorXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  205. CALL_SUBTEST_4( lpNorm(VectorXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  206. }
  207. for(int i = 0; i < g_repeat; i++) {
  208. CALL_SUBTEST_4( resize(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  209. CALL_SUBTEST_5( resize(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  210. CALL_SUBTEST_6( resize(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  211. }
  212. CALL_SUBTEST_6( regression_bug_654() );
  213. }