|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "sparse.h"
template<typename Scalar> void initSPD(double density, Matrix<Scalar,Dynamic,Dynamic>& refMat, SparseMatrix<Scalar>& sparseMat) { Matrix<Scalar,Dynamic,Dynamic> aux(refMat.rows(),refMat.cols()); initSparse(density,refMat,sparseMat); refMat = refMat * refMat.adjoint(); for (int k=0; k<2; ++k) { initSparse(density,aux,sparseMat,ForceNonZeroDiag); refMat += aux * aux.adjoint(); } sparseMat.startFill(); for (int j=0 ; j<sparseMat.cols(); ++j) for (int i=j ; i<sparseMat.rows(); ++i) if (refMat(i,j)!=Scalar(0)) sparseMat.fill(i,j) = refMat(i,j); sparseMat.endFill(); }
template<typename Scalar> void sparse_solvers(int rows, int cols) { double density = std::max(8./(rows*cols), 0.01); typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; typedef Matrix<Scalar,Dynamic,1> DenseVector; // Scalar eps = 1e-6;
DenseVector vec1 = DenseVector::Random(rows);
std::vector<Vector2i> zeroCoords; std::vector<Vector2i> nonzeroCoords;
// test triangular solver
{ DenseVector vec2 = vec1, vec3 = vec1; SparseMatrix<Scalar> m2(rows, cols); DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
// lower
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, &zeroCoords, &nonzeroCoords); VERIFY_IS_APPROX(refMat2.template marked<LowerTriangular>().solveTriangular(vec2), m2.template marked<LowerTriangular>().solveTriangular(vec3));
// lower - transpose
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, &zeroCoords, &nonzeroCoords); VERIFY_IS_APPROX(refMat2.template marked<LowerTriangular>().transpose().solveTriangular(vec2), m2.template marked<LowerTriangular>().transpose().solveTriangular(vec3));
// upper
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, &zeroCoords, &nonzeroCoords); VERIFY_IS_APPROX(refMat2.template marked<UpperTriangular>().solveTriangular(vec2), m2.template marked<UpperTriangular>().solveTriangular(vec3));
// upper - transpose
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, &zeroCoords, &nonzeroCoords); VERIFY_IS_APPROX(refMat2.template marked<UpperTriangular>().transpose().solveTriangular(vec2), m2.template marked<UpperTriangular>().transpose().solveTriangular(vec3)); }
// test LLT
{ // TODO fix the issue with complex (see SparseLLT::solveInPlace)
SparseMatrix<Scalar> m2(rows, cols); DenseMatrix refMat2(rows, cols);
DenseVector b = DenseVector::Random(cols); DenseVector refX(cols), x(cols);
initSPD(density, refMat2, m2);
refMat2.llt().solve(b, &refX); typedef SparseMatrix<Scalar,LowerTriangular|SelfAdjoint> SparseSelfAdjointMatrix; if (!NumTraits<Scalar>::IsComplex) { x = b; SparseLLT<SparseSelfAdjointMatrix> (m2).solveInPlace(x); VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: default"); } #ifdef EIGEN_CHOLMOD_SUPPORT
x = b; SparseLLT<SparseSelfAdjointMatrix,Cholmod>(m2).solveInPlace(x); VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: cholmod"); #endif
if (!NumTraits<Scalar>::IsComplex) { #ifdef EIGEN_TAUCS_SUPPORT
x = b; SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,IncompleteFactorization).solveInPlace(x); VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (IncompleteFactorization)"); x = b; SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,SupernodalMultifrontal).solveInPlace(x); VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (SupernodalMultifrontal)"); x = b; SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,SupernodalLeftLooking).solveInPlace(x); VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (SupernodalLeftLooking)"); #endif
} }
// test LDLT
if (!NumTraits<Scalar>::IsComplex) { // TODO fix the issue with complex (see SparseLDLT::solveInPlace)
SparseMatrix<Scalar> m2(rows, cols); DenseMatrix refMat2(rows, cols);
DenseVector b = DenseVector::Random(cols); DenseVector refX(cols), x(cols);
//initSPD(density, refMat2, m2);
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, 0, 0); refMat2 += refMat2.adjoint(); refMat2.diagonal() *= 0.5;
refMat2.ldlt().solve(b, &refX); typedef SparseMatrix<Scalar,UpperTriangular|SelfAdjoint> SparseSelfAdjointMatrix; x = b; SparseLDLT<SparseSelfAdjointMatrix> ldlt(m2); if (ldlt.succeeded()) ldlt.solveInPlace(x); VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: default"); }
// test LU
{ static int count = 0; SparseMatrix<Scalar> m2(rows, cols); DenseMatrix refMat2(rows, cols);
DenseVector b = DenseVector::Random(cols); DenseVector refX(cols), x(cols);
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag, &zeroCoords, &nonzeroCoords);
LU<DenseMatrix> refLu(refMat2); refLu.solve(b, &refX); #if defined(EIGEN_SUPERLU_SUPPORT) || defined(EIGEN_UMFPACK_SUPPORT)
Scalar refDet = refLu.determinant(); #endif
x.setZero(); // // SparseLU<SparseMatrix<Scalar> > (m2).solve(b,&x);
// // VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: default");
#ifdef EIGEN_SUPERLU_SUPPORT
{ x.setZero(); SparseLU<SparseMatrix<Scalar>,SuperLU> slu(m2); if (slu.succeeded()) { if (slu.solve(b,&x)) { VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: SuperLU"); } // std::cerr << refDet << " == " << slu.determinant() << "\n";
if (count==0) { VERIFY_IS_APPROX(refDet,slu.determinant()); // FIXME det is not very stable for complex
} } } #endif
#ifdef EIGEN_UMFPACK_SUPPORT
{ // check solve
x.setZero(); SparseLU<SparseMatrix<Scalar>,UmfPack> slu(m2); if (slu.succeeded()) { if (slu.solve(b,&x)) { if (count==0) { VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: umfpack"); // FIXME solve is not very stable for complex
} } VERIFY_IS_APPROX(refDet,slu.determinant()); // TODO check the extracted data
//std::cerr << slu.matrixL() << "\n";
} } #endif
count++; }
}
void test_eigen2_sparse_solvers() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( sparse_solvers<double>(8, 8) ); CALL_SUBTEST_2( sparse_solvers<std::complex<double> >(16, 16) ); CALL_SUBTEST_1( sparse_solvers<double>(101, 101) ); } }
|