|
|
// Copyright 2005, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)
//
// Tests for Google Test itself. This verifies that the basic constructs of
// Google Test work.
#include "gtest/gtest.h"
#include <vector>
#include <ostream>
// Verifies that the command line flag variables can be accessed
// in code once <gtest/gtest.h> has been #included.
// Do not move it after other #includes.
TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) { bool dummy = testing::GTEST_FLAG(also_run_disabled_tests) || testing::GTEST_FLAG(break_on_failure) || testing::GTEST_FLAG(catch_exceptions) || testing::GTEST_FLAG(color) != "unknown" || testing::GTEST_FLAG(filter) != "unknown" || testing::GTEST_FLAG(list_tests) || testing::GTEST_FLAG(output) != "unknown" || testing::GTEST_FLAG(print_time) || testing::GTEST_FLAG(random_seed) || testing::GTEST_FLAG(repeat) > 0 || testing::GTEST_FLAG(show_internal_stack_frames) || testing::GTEST_FLAG(shuffle) || testing::GTEST_FLAG(stack_trace_depth) > 0 || testing::GTEST_FLAG(stream_result_to) != "unknown" || testing::GTEST_FLAG(throw_on_failure); EXPECT_TRUE(dummy || !dummy); // Suppresses warning that dummy is unused.
}
#include "gtest/gtest-spi.h"
// Indicates that this translation unit is part of Google Test's
// implementation. It must come before gtest-internal-inl.h is
// included, or there will be a compiler error. This trick is to
// prevent a user from accidentally including gtest-internal-inl.h in
// his code.
#define GTEST_IMPLEMENTATION_ 1
#include "src/gtest-internal-inl.h"
#undef GTEST_IMPLEMENTATION_
#include <limits.h> // For INT_MAX.
#include <stdlib.h>
#include <time.h>
#include <map>
namespace testing { namespace internal {
// Provides access to otherwise private parts of the TestEventListeners class
// that are needed to test it.
class TestEventListenersAccessor { public: static TestEventListener* GetRepeater(TestEventListeners* listeners) { return listeners->repeater(); }
static void SetDefaultResultPrinter(TestEventListeners* listeners, TestEventListener* listener) { listeners->SetDefaultResultPrinter(listener); } static void SetDefaultXmlGenerator(TestEventListeners* listeners, TestEventListener* listener) { listeners->SetDefaultXmlGenerator(listener); }
static bool EventForwardingEnabled(const TestEventListeners& listeners) { return listeners.EventForwardingEnabled(); }
static void SuppressEventForwarding(TestEventListeners* listeners) { listeners->SuppressEventForwarding(); } };
} // namespace internal
} // namespace testing
using testing::AssertionFailure; using testing::AssertionResult; using testing::AssertionSuccess; using testing::DoubleLE; using testing::EmptyTestEventListener; using testing::FloatLE; using testing::GTEST_FLAG(also_run_disabled_tests); using testing::GTEST_FLAG(break_on_failure); using testing::GTEST_FLAG(catch_exceptions); using testing::GTEST_FLAG(color); using testing::GTEST_FLAG(death_test_use_fork); using testing::GTEST_FLAG(filter); using testing::GTEST_FLAG(list_tests); using testing::GTEST_FLAG(output); using testing::GTEST_FLAG(print_time); using testing::GTEST_FLAG(random_seed); using testing::GTEST_FLAG(repeat); using testing::GTEST_FLAG(show_internal_stack_frames); using testing::GTEST_FLAG(shuffle); using testing::GTEST_FLAG(stack_trace_depth); using testing::GTEST_FLAG(stream_result_to); using testing::GTEST_FLAG(throw_on_failure); using testing::IsNotSubstring; using testing::IsSubstring; using testing::Message; using testing::ScopedFakeTestPartResultReporter; using testing::StaticAssertTypeEq; using testing::Test; using testing::TestCase; using testing::TestEventListeners; using testing::TestPartResult; using testing::TestPartResultArray; using testing::TestProperty; using testing::TestResult; using testing::UnitTest; using testing::kMaxStackTraceDepth; using testing::internal::AddReference; using testing::internal::AlwaysFalse; using testing::internal::AlwaysTrue; using testing::internal::AppendUserMessage; using testing::internal::ArrayAwareFind; using testing::internal::ArrayEq; using testing::internal::CodePointToUtf8; using testing::internal::CompileAssertTypesEqual; using testing::internal::CopyArray; using testing::internal::CountIf; using testing::internal::EqFailure; using testing::internal::FloatingPoint; using testing::internal::ForEach; using testing::internal::FormatTimeInMillisAsSeconds; using testing::internal::GTestFlagSaver; using testing::internal::GetCurrentOsStackTraceExceptTop; using testing::internal::GetElementOr; using testing::internal::GetNextRandomSeed; using testing::internal::GetRandomSeedFromFlag; using testing::internal::GetTestTypeId; using testing::internal::GetTypeId; using testing::internal::GetUnitTestImpl; using testing::internal::ImplicitlyConvertible; using testing::internal::Int32; using testing::internal::Int32FromEnvOrDie; using testing::internal::IsAProtocolMessage; using testing::internal::IsContainer; using testing::internal::IsContainerTest; using testing::internal::IsNotContainer; using testing::internal::NativeArray; using testing::internal::ParseInt32Flag; using testing::internal::RemoveConst; using testing::internal::RemoveReference; using testing::internal::ShouldRunTestOnShard; using testing::internal::ShouldShard; using testing::internal::ShouldUseColor; using testing::internal::Shuffle; using testing::internal::ShuffleRange; using testing::internal::SkipPrefix; using testing::internal::StreamableToString; using testing::internal::String; using testing::internal::TestEventListenersAccessor; using testing::internal::TestResultAccessor; using testing::internal::UInt32; using testing::internal::WideStringToUtf8; using testing::internal::kCopy; using testing::internal::kMaxRandomSeed; using testing::internal::kReference; using testing::internal::kTestTypeIdInGoogleTest; using testing::internal::scoped_ptr;
#if GTEST_HAS_STREAM_REDIRECTION
using testing::internal::CaptureStdout; using testing::internal::GetCapturedStdout; #endif
#if GTEST_IS_THREADSAFE
using testing::internal::ThreadWithParam; #endif
class TestingVector : public std::vector<int> { };
::std::ostream& operator<<(::std::ostream& os, const TestingVector& vector) { os << "{ "; for (size_t i = 0; i < vector.size(); i++) { os << vector[i] << " "; } os << "}"; return os; }
// This line tests that we can define tests in an unnamed namespace.
namespace {
TEST(GetRandomSeedFromFlagTest, HandlesZero) { const int seed = GetRandomSeedFromFlag(0); EXPECT_LE(1, seed); EXPECT_LE(seed, static_cast<int>(kMaxRandomSeed)); }
TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) { EXPECT_EQ(1, GetRandomSeedFromFlag(1)); EXPECT_EQ(2, GetRandomSeedFromFlag(2)); EXPECT_EQ(kMaxRandomSeed - 1, GetRandomSeedFromFlag(kMaxRandomSeed - 1)); EXPECT_EQ(static_cast<int>(kMaxRandomSeed), GetRandomSeedFromFlag(kMaxRandomSeed)); }
TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) { const int seed1 = GetRandomSeedFromFlag(-1); EXPECT_LE(1, seed1); EXPECT_LE(seed1, static_cast<int>(kMaxRandomSeed));
const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1); EXPECT_LE(1, seed2); EXPECT_LE(seed2, static_cast<int>(kMaxRandomSeed)); }
TEST(GetNextRandomSeedTest, WorksForValidInput) { EXPECT_EQ(2, GetNextRandomSeed(1)); EXPECT_EQ(3, GetNextRandomSeed(2)); EXPECT_EQ(static_cast<int>(kMaxRandomSeed), GetNextRandomSeed(kMaxRandomSeed - 1)); EXPECT_EQ(1, GetNextRandomSeed(kMaxRandomSeed));
// We deliberately don't test GetNextRandomSeed() with invalid
// inputs, as that requires death tests, which are expensive. This
// is fine as GetNextRandomSeed() is internal and has a
// straightforward definition.
}
static void ClearCurrentTestPartResults() { TestResultAccessor::ClearTestPartResults( GetUnitTestImpl()->current_test_result()); }
// Tests GetTypeId.
TEST(GetTypeIdTest, ReturnsSameValueForSameType) { EXPECT_EQ(GetTypeId<int>(), GetTypeId<int>()); EXPECT_EQ(GetTypeId<Test>(), GetTypeId<Test>()); }
class SubClassOfTest : public Test {}; class AnotherSubClassOfTest : public Test {};
TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) { EXPECT_NE(GetTypeId<int>(), GetTypeId<const int>()); EXPECT_NE(GetTypeId<int>(), GetTypeId<char>()); EXPECT_NE(GetTypeId<int>(), GetTestTypeId()); EXPECT_NE(GetTypeId<SubClassOfTest>(), GetTestTypeId()); EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTestTypeId()); EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTypeId<SubClassOfTest>()); }
// Verifies that GetTestTypeId() returns the same value, no matter it
// is called from inside Google Test or outside of it.
TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) { EXPECT_EQ(kTestTypeIdInGoogleTest, GetTestTypeId()); }
// Tests FormatTimeInMillisAsSeconds().
TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) { EXPECT_EQ("0", FormatTimeInMillisAsSeconds(0)); }
TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) { EXPECT_EQ("0.003", FormatTimeInMillisAsSeconds(3)); EXPECT_EQ("0.01", FormatTimeInMillisAsSeconds(10)); EXPECT_EQ("0.2", FormatTimeInMillisAsSeconds(200)); EXPECT_EQ("1.2", FormatTimeInMillisAsSeconds(1200)); EXPECT_EQ("3", FormatTimeInMillisAsSeconds(3000)); }
TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) { EXPECT_EQ("-0.003", FormatTimeInMillisAsSeconds(-3)); EXPECT_EQ("-0.01", FormatTimeInMillisAsSeconds(-10)); EXPECT_EQ("-0.2", FormatTimeInMillisAsSeconds(-200)); EXPECT_EQ("-1.2", FormatTimeInMillisAsSeconds(-1200)); EXPECT_EQ("-3", FormatTimeInMillisAsSeconds(-3000)); }
#if GTEST_CAN_COMPARE_NULL
# ifdef __BORLANDC__
// Silences warnings: "Condition is always true", "Unreachable code"
# pragma option push -w-ccc -w-rch
# endif
// Tests that GTEST_IS_NULL_LITERAL_(x) is true when x is a null
// pointer literal.
TEST(NullLiteralTest, IsTrueForNullLiterals) { EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(NULL)); EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0)); EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0U)); EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0L));
# ifndef __BORLANDC__
// Some compilers may fail to detect some null pointer literals;
// as long as users of the framework don't use such literals, this
// is harmless.
EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(1 - 1));
# endif
}
// Tests that GTEST_IS_NULL_LITERAL_(x) is false when x is not a null
// pointer literal.
TEST(NullLiteralTest, IsFalseForNonNullLiterals) { EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(1)); EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(0.0)); EXPECT_FALSE(GTEST_IS_NULL_LITERAL_('a')); EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(static_cast<void*>(NULL))); }
# ifdef __BORLANDC__
// Restores warnings after previous "#pragma option push" suppressed them.
# pragma option pop
# endif
#endif // GTEST_CAN_COMPARE_NULL
//
// Tests CodePointToUtf8().
// Tests that the NUL character L'\0' is encoded correctly.
TEST(CodePointToUtf8Test, CanEncodeNul) { char buffer[32]; EXPECT_STREQ("", CodePointToUtf8(L'\0', buffer)); }
// Tests that ASCII characters are encoded correctly.
TEST(CodePointToUtf8Test, CanEncodeAscii) { char buffer[32]; EXPECT_STREQ("a", CodePointToUtf8(L'a', buffer)); EXPECT_STREQ("Z", CodePointToUtf8(L'Z', buffer)); EXPECT_STREQ("&", CodePointToUtf8(L'&', buffer)); EXPECT_STREQ("\x7F", CodePointToUtf8(L'\x7F', buffer)); }
// Tests that Unicode code-points that have 8 to 11 bits are encoded
// as 110xxxxx 10xxxxxx.
TEST(CodePointToUtf8Test, CanEncode8To11Bits) { char buffer[32]; // 000 1101 0011 => 110-00011 10-010011
EXPECT_STREQ("\xC3\x93", CodePointToUtf8(L'\xD3', buffer));
// 101 0111 0110 => 110-10101 10-110110
// Some compilers (e.g., GCC on MinGW) cannot handle non-ASCII codepoints
// in wide strings and wide chars. In order to accomodate them, we have to
// introduce such character constants as integers.
EXPECT_STREQ("\xD5\xB6", CodePointToUtf8(static_cast<wchar_t>(0x576), buffer)); }
// Tests that Unicode code-points that have 12 to 16 bits are encoded
// as 1110xxxx 10xxxxxx 10xxxxxx.
TEST(CodePointToUtf8Test, CanEncode12To16Bits) { char buffer[32]; // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
EXPECT_STREQ("\xE0\xA3\x93", CodePointToUtf8(static_cast<wchar_t>(0x8D3), buffer));
// 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
EXPECT_STREQ("\xEC\x9D\x8D", CodePointToUtf8(static_cast<wchar_t>(0xC74D), buffer)); }
#if !GTEST_WIDE_STRING_USES_UTF16_
// Tests in this group require a wchar_t to hold > 16 bits, and thus
// are skipped on Windows, Cygwin, and Symbian, where a wchar_t is
// 16-bit wide. This code may not compile on those systems.
// Tests that Unicode code-points that have 17 to 21 bits are encoded
// as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
TEST(CodePointToUtf8Test, CanEncode17To21Bits) { char buffer[32]; // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
EXPECT_STREQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3', buffer));
// 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000
EXPECT_STREQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400', buffer));
// 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
EXPECT_STREQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634', buffer)); }
// Tests that encoding an invalid code-point generates the expected result.
TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) { char buffer[32]; EXPECT_STREQ("(Invalid Unicode 0x1234ABCD)", CodePointToUtf8(L'\x1234ABCD', buffer)); }
#endif // !GTEST_WIDE_STRING_USES_UTF16_
// Tests WideStringToUtf8().
// Tests that the NUL character L'\0' is encoded correctly.
TEST(WideStringToUtf8Test, CanEncodeNul) { EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str()); EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str()); }
// Tests that ASCII strings are encoded correctly.
TEST(WideStringToUtf8Test, CanEncodeAscii) { EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str()); EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str()); EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str()); EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str()); }
// Tests that Unicode code-points that have 8 to 11 bits are encoded
// as 110xxxxx 10xxxxxx.
TEST(WideStringToUtf8Test, CanEncode8To11Bits) { // 000 1101 0011 => 110-00011 10-010011
EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str()); EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str());
// 101 0111 0110 => 110-10101 10-110110
const wchar_t s[] = { 0x576, '\0' }; EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, 1).c_str()); EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, -1).c_str()); }
// Tests that Unicode code-points that have 12 to 16 bits are encoded
// as 1110xxxx 10xxxxxx 10xxxxxx.
TEST(WideStringToUtf8Test, CanEncode12To16Bits) { // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
const wchar_t s1[] = { 0x8D3, '\0' }; EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, 1).c_str()); EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, -1).c_str());
// 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
const wchar_t s2[] = { 0xC74D, '\0' }; EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, 1).c_str()); EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, -1).c_str()); }
// Tests that the conversion stops when the function encounters \0 character.
TEST(WideStringToUtf8Test, StopsOnNulCharacter) { EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str()); }
// Tests that the conversion stops when the function reaches the limit
// specified by the 'length' parameter.
TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) { EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str()); }
#if !GTEST_WIDE_STRING_USES_UTF16_
// Tests that Unicode code-points that have 17 to 21 bits are encoded
// as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile
// on the systems using UTF-16 encoding.
TEST(WideStringToUtf8Test, CanEncode17To21Bits) { // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str()); EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str());
// 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str()); EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str()); }
// Tests that encoding an invalid code-point generates the expected result.
TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) { EXPECT_STREQ("(Invalid Unicode 0xABCDFF)", WideStringToUtf8(L"\xABCDFF", -1).c_str()); } #else // !GTEST_WIDE_STRING_USES_UTF16_
// Tests that surrogate pairs are encoded correctly on the systems using
// UTF-16 encoding in the wide strings.
TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) { const wchar_t s[] = { 0xD801, 0xDC00, '\0' }; EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(s, -1).c_str()); }
// Tests that encoding an invalid UTF-16 surrogate pair
// generates the expected result.
TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) { // Leading surrogate is at the end of the string.
const wchar_t s1[] = { 0xD800, '\0' }; EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(s1, -1).c_str()); // Leading surrogate is not followed by the trailing surrogate.
const wchar_t s2[] = { 0xD800, 'M', '\0' }; EXPECT_STREQ("\xED\xA0\x80M", WideStringToUtf8(s2, -1).c_str()); // Trailing surrogate appearas without a leading surrogate.
const wchar_t s3[] = { 0xDC00, 'P', 'Q', 'R', '\0' }; EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(s3, -1).c_str()); } #endif // !GTEST_WIDE_STRING_USES_UTF16_
// Tests that codepoint concatenation works correctly.
#if !GTEST_WIDE_STRING_USES_UTF16_
TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) { const wchar_t s[] = { 0x108634, 0xC74D, '\n', 0x576, 0x8D3, 0x108634, '\0'}; EXPECT_STREQ( "\xF4\x88\x98\xB4" "\xEC\x9D\x8D" "\n" "\xD5\xB6" "\xE0\xA3\x93" "\xF4\x88\x98\xB4", WideStringToUtf8(s, -1).c_str()); } #else
TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) { const wchar_t s[] = { 0xC74D, '\n', 0x576, 0x8D3, '\0'}; EXPECT_STREQ( "\xEC\x9D\x8D" "\n" "\xD5\xB6" "\xE0\xA3\x93", WideStringToUtf8(s, -1).c_str()); } #endif // !GTEST_WIDE_STRING_USES_UTF16_
// Tests the Random class.
TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) { testing::internal::Random random(42); EXPECT_DEATH_IF_SUPPORTED( random.Generate(0), "Cannot generate a number in the range \\[0, 0\\)"); EXPECT_DEATH_IF_SUPPORTED( random.Generate(testing::internal::Random::kMaxRange + 1), "Generation of a number in \\[0, 2147483649\\) was requested, " "but this can only generate numbers in \\[0, 2147483648\\)"); }
TEST(RandomTest, GeneratesNumbersWithinRange) { const UInt32 kRange = 10000; testing::internal::Random random(12345); for (int i = 0; i < 10; i++) { EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i; }
testing::internal::Random random2(testing::internal::Random::kMaxRange); for (int i = 0; i < 10; i++) { EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i; } }
TEST(RandomTest, RepeatsWhenReseeded) { const int kSeed = 123; const int kArraySize = 10; const UInt32 kRange = 10000; UInt32 values[kArraySize];
testing::internal::Random random(kSeed); for (int i = 0; i < kArraySize; i++) { values[i] = random.Generate(kRange); }
random.Reseed(kSeed); for (int i = 0; i < kArraySize; i++) { EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i; } }
// Tests STL container utilities.
// Tests CountIf().
static bool IsPositive(int n) { return n > 0; }
TEST(ContainerUtilityTest, CountIf) { std::vector<int> v; EXPECT_EQ(0, CountIf(v, IsPositive)); // Works for an empty container.
v.push_back(-1); v.push_back(0); EXPECT_EQ(0, CountIf(v, IsPositive)); // Works when no value satisfies.
v.push_back(2); v.push_back(-10); v.push_back(10); EXPECT_EQ(2, CountIf(v, IsPositive)); }
// Tests ForEach().
static int g_sum = 0; static void Accumulate(int n) { g_sum += n; }
TEST(ContainerUtilityTest, ForEach) { std::vector<int> v; g_sum = 0; ForEach(v, Accumulate); EXPECT_EQ(0, g_sum); // Works for an empty container;
g_sum = 0; v.push_back(1); ForEach(v, Accumulate); EXPECT_EQ(1, g_sum); // Works for a container with one element.
g_sum = 0; v.push_back(20); v.push_back(300); ForEach(v, Accumulate); EXPECT_EQ(321, g_sum); }
// Tests GetElementOr().
TEST(ContainerUtilityTest, GetElementOr) { std::vector<char> a; EXPECT_EQ('x', GetElementOr(a, 0, 'x'));
a.push_back('a'); a.push_back('b'); EXPECT_EQ('a', GetElementOr(a, 0, 'x')); EXPECT_EQ('b', GetElementOr(a, 1, 'x')); EXPECT_EQ('x', GetElementOr(a, -2, 'x')); EXPECT_EQ('x', GetElementOr(a, 2, 'x')); }
TEST(ContainerUtilityDeathTest, ShuffleRange) { std::vector<int> a; a.push_back(0); a.push_back(1); a.push_back(2); testing::internal::Random random(1);
EXPECT_DEATH_IF_SUPPORTED( ShuffleRange(&random, -1, 1, &a), "Invalid shuffle range start -1: must be in range \\[0, 3\\]"); EXPECT_DEATH_IF_SUPPORTED( ShuffleRange(&random, 4, 4, &a), "Invalid shuffle range start 4: must be in range \\[0, 3\\]"); EXPECT_DEATH_IF_SUPPORTED( ShuffleRange(&random, 3, 2, &a), "Invalid shuffle range finish 2: must be in range \\[3, 3\\]"); EXPECT_DEATH_IF_SUPPORTED( ShuffleRange(&random, 3, 4, &a), "Invalid shuffle range finish 4: must be in range \\[3, 3\\]"); }
class VectorShuffleTest : public Test { protected: static const int kVectorSize = 20;
VectorShuffleTest() : random_(1) { for (int i = 0; i < kVectorSize; i++) { vector_.push_back(i); } }
static bool VectorIsCorrupt(const TestingVector& vector) { if (kVectorSize != static_cast<int>(vector.size())) { return true; }
bool found_in_vector[kVectorSize] = { false }; for (size_t i = 0; i < vector.size(); i++) { const int e = vector[i]; if (e < 0 || e >= kVectorSize || found_in_vector[e]) { return true; } found_in_vector[e] = true; }
// Vector size is correct, elements' range is correct, no
// duplicate elements. Therefore no corruption has occurred.
return false; }
static bool VectorIsNotCorrupt(const TestingVector& vector) { return !VectorIsCorrupt(vector); }
static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) { for (int i = begin; i < end; i++) { if (i != vector[i]) { return true; } } return false; }
static bool RangeIsUnshuffled( const TestingVector& vector, int begin, int end) { return !RangeIsShuffled(vector, begin, end); }
static bool VectorIsShuffled(const TestingVector& vector) { return RangeIsShuffled(vector, 0, static_cast<int>(vector.size())); }
static bool VectorIsUnshuffled(const TestingVector& vector) { return !VectorIsShuffled(vector); }
testing::internal::Random random_; TestingVector vector_; }; // class VectorShuffleTest
const int VectorShuffleTest::kVectorSize;
TEST_F(VectorShuffleTest, HandlesEmptyRange) { // Tests an empty range at the beginning...
ShuffleRange(&random_, 0, 0, &vector_); ASSERT_PRED1(VectorIsNotCorrupt, vector_); ASSERT_PRED1(VectorIsUnshuffled, vector_);
// ...in the middle...
ShuffleRange(&random_, kVectorSize/2, kVectorSize/2, &vector_); ASSERT_PRED1(VectorIsNotCorrupt, vector_); ASSERT_PRED1(VectorIsUnshuffled, vector_);
// ...at the end...
ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1, &vector_); ASSERT_PRED1(VectorIsNotCorrupt, vector_); ASSERT_PRED1(VectorIsUnshuffled, vector_);
// ...and past the end.
ShuffleRange(&random_, kVectorSize, kVectorSize, &vector_); ASSERT_PRED1(VectorIsNotCorrupt, vector_); ASSERT_PRED1(VectorIsUnshuffled, vector_); }
TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) { // Tests a size one range at the beginning...
ShuffleRange(&random_, 0, 1, &vector_); ASSERT_PRED1(VectorIsNotCorrupt, vector_); ASSERT_PRED1(VectorIsUnshuffled, vector_);
// ...in the middle...
ShuffleRange(&random_, kVectorSize/2, kVectorSize/2 + 1, &vector_); ASSERT_PRED1(VectorIsNotCorrupt, vector_); ASSERT_PRED1(VectorIsUnshuffled, vector_);
// ...and at the end.
ShuffleRange(&random_, kVectorSize - 1, kVectorSize, &vector_); ASSERT_PRED1(VectorIsNotCorrupt, vector_); ASSERT_PRED1(VectorIsUnshuffled, vector_); }
// Because we use our own random number generator and a fixed seed,
// we can guarantee that the following "random" tests will succeed.
TEST_F(VectorShuffleTest, ShufflesEntireVector) { Shuffle(&random_, &vector_); ASSERT_PRED1(VectorIsNotCorrupt, vector_); EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_;
// Tests the first and last elements in particular to ensure that
// there are no off-by-one problems in our shuffle algorithm.
EXPECT_NE(0, vector_[0]); EXPECT_NE(kVectorSize - 1, vector_[kVectorSize - 1]); }
TEST_F(VectorShuffleTest, ShufflesStartOfVector) { const int kRangeSize = kVectorSize/2;
ShuffleRange(&random_, 0, kRangeSize, &vector_);
ASSERT_PRED1(VectorIsNotCorrupt, vector_); EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize); EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize, kVectorSize); }
TEST_F(VectorShuffleTest, ShufflesEndOfVector) { const int kRangeSize = kVectorSize / 2; ShuffleRange(&random_, kRangeSize, kVectorSize, &vector_);
ASSERT_PRED1(VectorIsNotCorrupt, vector_); EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize); EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, kVectorSize); }
TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) { int kRangeSize = kVectorSize/3; ShuffleRange(&random_, kRangeSize, 2*kRangeSize, &vector_);
ASSERT_PRED1(VectorIsNotCorrupt, vector_); EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize); EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2*kRangeSize); EXPECT_PRED3(RangeIsUnshuffled, vector_, 2*kRangeSize, kVectorSize); }
TEST_F(VectorShuffleTest, ShufflesRepeatably) { TestingVector vector2; for (int i = 0; i < kVectorSize; i++) { vector2.push_back(i); }
random_.Reseed(1234); Shuffle(&random_, &vector_); random_.Reseed(1234); Shuffle(&random_, &vector2);
ASSERT_PRED1(VectorIsNotCorrupt, vector_); ASSERT_PRED1(VectorIsNotCorrupt, vector2);
for (int i = 0; i < kVectorSize; i++) { EXPECT_EQ(vector_[i], vector2[i]) << " where i is " << i; } }
// Tests the size of the AssertHelper class.
TEST(AssertHelperTest, AssertHelperIsSmall) { // To avoid breaking clients that use lots of assertions in one
// function, we cannot grow the size of AssertHelper.
EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*)); }
// Tests the String class.
// Tests String's constructors.
TEST(StringTest, Constructors) { // Default ctor.
String s1; // We aren't using EXPECT_EQ(NULL, s1.c_str()) because comparing
// pointers with NULL isn't supported on all platforms.
EXPECT_EQ(0U, s1.length()); EXPECT_TRUE(NULL == s1.c_str());
// Implicitly constructs from a C-string.
String s2 = "Hi"; EXPECT_EQ(2U, s2.length()); EXPECT_STREQ("Hi", s2.c_str());
// Constructs from a C-string and a length.
String s3("hello", 3); EXPECT_EQ(3U, s3.length()); EXPECT_STREQ("hel", s3.c_str());
// The empty String should be created when String is constructed with
// a NULL pointer and length 0.
EXPECT_EQ(0U, String(NULL, 0).length()); EXPECT_FALSE(String(NULL, 0).c_str() == NULL);
// Constructs a String that contains '\0'.
String s4("a\0bcd", 4); EXPECT_EQ(4U, s4.length()); EXPECT_EQ('a', s4.c_str()[0]); EXPECT_EQ('\0', s4.c_str()[1]); EXPECT_EQ('b', s4.c_str()[2]); EXPECT_EQ('c', s4.c_str()[3]);
// Copy ctor where the source is NULL.
const String null_str; String s5 = null_str; EXPECT_TRUE(s5.c_str() == NULL);
// Copy ctor where the source isn't NULL.
String s6 = s3; EXPECT_EQ(3U, s6.length()); EXPECT_STREQ("hel", s6.c_str());
// Copy ctor where the source contains '\0'.
String s7 = s4; EXPECT_EQ(4U, s7.length()); EXPECT_EQ('a', s7.c_str()[0]); EXPECT_EQ('\0', s7.c_str()[1]); EXPECT_EQ('b', s7.c_str()[2]); EXPECT_EQ('c', s7.c_str()[3]); }
TEST(StringTest, ConvertsFromStdString) { // An empty std::string.
const std::string src1(""); const String dest1 = src1; EXPECT_EQ(0U, dest1.length()); EXPECT_STREQ("", dest1.c_str());
// A normal std::string.
const std::string src2("Hi"); const String dest2 = src2; EXPECT_EQ(2U, dest2.length()); EXPECT_STREQ("Hi", dest2.c_str());
// An std::string with an embedded NUL character.
const char src3[] = "a\0b"; const String dest3 = std::string(src3, sizeof(src3)); EXPECT_EQ(sizeof(src3), dest3.length()); EXPECT_EQ('a', dest3.c_str()[0]); EXPECT_EQ('\0', dest3.c_str()[1]); EXPECT_EQ('b', dest3.c_str()[2]); }
TEST(StringTest, ConvertsToStdString) { // An empty String.
const String src1(""); const std::string dest1 = src1; EXPECT_EQ("", dest1);
// A normal String.
const String src2("Hi"); const std::string dest2 = src2; EXPECT_EQ("Hi", dest2);
// A String containing a '\0'.
const String src3("x\0y", 3); const std::string dest3 = src3; EXPECT_EQ(std::string("x\0y", 3), dest3); }
#if GTEST_HAS_GLOBAL_STRING
TEST(StringTest, ConvertsFromGlobalString) { // An empty ::string.
const ::string src1(""); const String dest1 = src1; EXPECT_EQ(0U, dest1.length()); EXPECT_STREQ("", dest1.c_str());
// A normal ::string.
const ::string src2("Hi"); const String dest2 = src2; EXPECT_EQ(2U, dest2.length()); EXPECT_STREQ("Hi", dest2.c_str());
// An ::string with an embedded NUL character.
const char src3[] = "x\0y"; const String dest3 = ::string(src3, sizeof(src3)); EXPECT_EQ(sizeof(src3), dest3.length()); EXPECT_EQ('x', dest3.c_str()[0]); EXPECT_EQ('\0', dest3.c_str()[1]); EXPECT_EQ('y', dest3.c_str()[2]); }
TEST(StringTest, ConvertsToGlobalString) { // An empty String.
const String src1(""); const ::string dest1 = src1; EXPECT_EQ("", dest1);
// A normal String.
const String src2("Hi"); const ::string dest2 = src2; EXPECT_EQ("Hi", dest2);
const String src3("x\0y", 3); const ::string dest3 = src3; EXPECT_EQ(::string("x\0y", 3), dest3); }
#endif // GTEST_HAS_GLOBAL_STRING
// Tests String::ShowCStringQuoted().
TEST(StringTest, ShowCStringQuoted) { EXPECT_STREQ("(null)", String::ShowCStringQuoted(NULL).c_str()); EXPECT_STREQ("\"\"", String::ShowCStringQuoted("").c_str()); EXPECT_STREQ("\"foo\"", String::ShowCStringQuoted("foo").c_str()); }
// Tests String::empty().
TEST(StringTest, Empty) { EXPECT_TRUE(String("").empty()); EXPECT_FALSE(String().empty()); EXPECT_FALSE(String(NULL).empty()); EXPECT_FALSE(String("a").empty()); EXPECT_FALSE(String("\0", 1).empty()); }
// Tests String::Compare().
TEST(StringTest, Compare) { // NULL vs NULL.
EXPECT_EQ(0, String().Compare(String()));
// NULL vs non-NULL.
EXPECT_EQ(-1, String().Compare(String("")));
// Non-NULL vs NULL.
EXPECT_EQ(1, String("").Compare(String()));
// The following covers non-NULL vs non-NULL.
// "" vs "".
EXPECT_EQ(0, String("").Compare(String("")));
// "" vs non-"".
EXPECT_EQ(-1, String("").Compare(String("\0", 1))); EXPECT_EQ(-1, String("").Compare(" "));
// Non-"" vs "".
EXPECT_EQ(1, String("a").Compare(String("")));
// The following covers non-"" vs non-"".
// Same length and equal.
EXPECT_EQ(0, String("a").Compare(String("a")));
// Same length and different.
EXPECT_EQ(-1, String("a\0b", 3).Compare(String("a\0c", 3))); EXPECT_EQ(1, String("b").Compare(String("a")));
// Different lengths.
EXPECT_EQ(-1, String("a").Compare(String("ab"))); EXPECT_EQ(-1, String("a").Compare(String("a\0", 2))); EXPECT_EQ(1, String("abc").Compare(String("aacd"))); }
// Tests String::operator==().
TEST(StringTest, Equals) { const String null(NULL); EXPECT_TRUE(null == NULL); // NOLINT
EXPECT_FALSE(null == ""); // NOLINT
EXPECT_FALSE(null == "bar"); // NOLINT
const String empty(""); EXPECT_FALSE(empty == NULL); // NOLINT
EXPECT_TRUE(empty == ""); // NOLINT
EXPECT_FALSE(empty == "bar"); // NOLINT
const String foo("foo"); EXPECT_FALSE(foo == NULL); // NOLINT
EXPECT_FALSE(foo == ""); // NOLINT
EXPECT_FALSE(foo == "bar"); // NOLINT
EXPECT_TRUE(foo == "foo"); // NOLINT
const String bar("x\0y", 3); EXPECT_FALSE(bar == "x"); }
// Tests String::operator!=().
TEST(StringTest, NotEquals) { const String null(NULL); EXPECT_FALSE(null != NULL); // NOLINT
EXPECT_TRUE(null != ""); // NOLINT
EXPECT_TRUE(null != "bar"); // NOLINT
const String empty(""); EXPECT_TRUE(empty != NULL); // NOLINT
EXPECT_FALSE(empty != ""); // NOLINT
EXPECT_TRUE(empty != "bar"); // NOLINT
const String foo("foo"); EXPECT_TRUE(foo != NULL); // NOLINT
EXPECT_TRUE(foo != ""); // NOLINT
EXPECT_TRUE(foo != "bar"); // NOLINT
EXPECT_FALSE(foo != "foo"); // NOLINT
const String bar("x\0y", 3); EXPECT_TRUE(bar != "x"); }
// Tests String::length().
TEST(StringTest, Length) { EXPECT_EQ(0U, String().length()); EXPECT_EQ(0U, String("").length()); EXPECT_EQ(2U, String("ab").length()); EXPECT_EQ(3U, String("a\0b", 3).length()); }
// Tests String::EndsWith().
TEST(StringTest, EndsWith) { EXPECT_TRUE(String("foobar").EndsWith("bar")); EXPECT_TRUE(String("foobar").EndsWith("")); EXPECT_TRUE(String("").EndsWith(""));
EXPECT_FALSE(String("foobar").EndsWith("foo")); EXPECT_FALSE(String("").EndsWith("foo")); }
// Tests String::EndsWithCaseInsensitive().
TEST(StringTest, EndsWithCaseInsensitive) { EXPECT_TRUE(String("foobar").EndsWithCaseInsensitive("BAR")); EXPECT_TRUE(String("foobaR").EndsWithCaseInsensitive("bar")); EXPECT_TRUE(String("foobar").EndsWithCaseInsensitive("")); EXPECT_TRUE(String("").EndsWithCaseInsensitive(""));
EXPECT_FALSE(String("Foobar").EndsWithCaseInsensitive("foo")); EXPECT_FALSE(String("foobar").EndsWithCaseInsensitive("Foo")); EXPECT_FALSE(String("").EndsWithCaseInsensitive("foo")); }
// C++Builder's preprocessor is buggy; it fails to expand macros that
// appear in macro parameters after wide char literals. Provide an alias
// for NULL as a workaround.
static const wchar_t* const kNull = NULL;
// Tests String::CaseInsensitiveWideCStringEquals
TEST(StringTest, CaseInsensitiveWideCStringEquals) { EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(NULL, NULL)); EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"")); EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", kNull)); EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"foobar")); EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", kNull)); EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar")); EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR")); EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar")); }
// Tests that NULL can be assigned to a String.
TEST(StringTest, CanBeAssignedNULL) { const String src(NULL); String dest;
dest = src; EXPECT_STREQ(NULL, dest.c_str()); }
// Tests that the empty string "" can be assigned to a String.
TEST(StringTest, CanBeAssignedEmpty) { const String src(""); String dest;
dest = src; EXPECT_STREQ("", dest.c_str()); }
// Tests that a non-empty string can be assigned to a String.
TEST(StringTest, CanBeAssignedNonEmpty) { const String src("hello"); String dest; dest = src; EXPECT_EQ(5U, dest.length()); EXPECT_STREQ("hello", dest.c_str());
const String src2("x\0y", 3); String dest2; dest2 = src2; EXPECT_EQ(3U, dest2.length()); EXPECT_EQ('x', dest2.c_str()[0]); EXPECT_EQ('\0', dest2.c_str()[1]); EXPECT_EQ('y', dest2.c_str()[2]); }
// Tests that a String can be assigned to itself.
TEST(StringTest, CanBeAssignedSelf) { String dest("hello");
// Use explicit function call notation here to suppress self-assign warning.
dest.operator=(dest); EXPECT_STREQ("hello", dest.c_str()); }
// Sun Studio < 12 incorrectly rejects this code due to an overloading
// ambiguity.
#if !(defined(__SUNPRO_CC) && __SUNPRO_CC < 0x590)
// Tests streaming a String.
TEST(StringTest, Streams) { EXPECT_EQ(StreamableToString(String()), "(null)"); EXPECT_EQ(StreamableToString(String("")), ""); EXPECT_EQ(StreamableToString(String("a\0b", 3)), "a\\0b"); } #endif
// Tests that String::Format() works.
TEST(StringTest, FormatWorks) { // Normal case: the format spec is valid, the arguments match the
// spec, and the result is < 4095 characters.
EXPECT_STREQ("Hello, 42", String::Format("%s, %d", "Hello", 42).c_str());
// Edge case: the result is 4095 characters.
char buffer[4096]; const size_t kSize = sizeof(buffer); memset(buffer, 'a', kSize - 1); buffer[kSize - 1] = '\0'; EXPECT_STREQ(buffer, String::Format("%s", buffer).c_str());
// The result needs to be 4096 characters, exceeding Format()'s limit.
EXPECT_STREQ("<formatting error or buffer exceeded>", String::Format("x%s", buffer).c_str());
#if GTEST_OS_LINUX
// On Linux, invalid format spec should lead to an error message.
// In other environment (e.g. MSVC on Windows), String::Format() may
// simply ignore a bad format spec, so this assertion is run on
// Linux only.
EXPECT_STREQ("<formatting error or buffer exceeded>", String::Format("%").c_str()); #endif
}
#if GTEST_OS_WINDOWS
// Tests String::ShowWideCString().
TEST(StringTest, ShowWideCString) { EXPECT_STREQ("(null)", String::ShowWideCString(NULL).c_str()); EXPECT_STREQ("", String::ShowWideCString(L"").c_str()); EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str()); }
// Tests String::ShowWideCStringQuoted().
TEST(StringTest, ShowWideCStringQuoted) { EXPECT_STREQ("(null)", String::ShowWideCStringQuoted(NULL).c_str()); EXPECT_STREQ("L\"\"", String::ShowWideCStringQuoted(L"").c_str()); EXPECT_STREQ("L\"foo\"", String::ShowWideCStringQuoted(L"foo").c_str()); }
# if GTEST_OS_WINDOWS_MOBILE
TEST(StringTest, AnsiAndUtf16Null) { EXPECT_EQ(NULL, String::AnsiToUtf16(NULL)); EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL)); }
TEST(StringTest, AnsiAndUtf16ConvertBasic) { const char* ansi = String::Utf16ToAnsi(L"str"); EXPECT_STREQ("str", ansi); delete [] ansi; const WCHAR* utf16 = String::AnsiToUtf16("str"); EXPECT_EQ(0, wcsncmp(L"str", utf16, 3)); delete [] utf16; }
TEST(StringTest, AnsiAndUtf16ConvertPathChars) { const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?"); EXPECT_STREQ(".:\\ \"*?", ansi); delete [] ansi; const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?"); EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3)); delete [] utf16; } # endif // GTEST_OS_WINDOWS_MOBILE
#endif // GTEST_OS_WINDOWS
// Tests TestProperty construction.
TEST(TestPropertyTest, StringValue) { TestProperty property("key", "1"); EXPECT_STREQ("key", property.key()); EXPECT_STREQ("1", property.value()); }
// Tests TestProperty replacing a value.
TEST(TestPropertyTest, ReplaceStringValue) { TestProperty property("key", "1"); EXPECT_STREQ("1", property.value()); property.SetValue("2"); EXPECT_STREQ("2", property.value()); }
// AddFatalFailure() and AddNonfatalFailure() must be stand-alone
// functions (i.e. their definitions cannot be inlined at the call
// sites), or C++Builder won't compile the code.
static void AddFatalFailure() { FAIL() << "Expected fatal failure."; }
static void AddNonfatalFailure() { ADD_FAILURE() << "Expected non-fatal failure."; }
class ScopedFakeTestPartResultReporterTest : public Test { public: // Must be public and not protected due to a bug in g++ 3.4.2.
enum FailureMode { FATAL_FAILURE, NONFATAL_FAILURE }; static void AddFailure(FailureMode failure) { if (failure == FATAL_FAILURE) { AddFatalFailure(); } else { AddNonfatalFailure(); } } };
// Tests that ScopedFakeTestPartResultReporter intercepts test
// failures.
TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) { TestPartResultArray results; { ScopedFakeTestPartResultReporter reporter( ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD, &results); AddFailure(NONFATAL_FAILURE); AddFailure(FATAL_FAILURE); }
EXPECT_EQ(2, results.size()); EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed()); EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed()); }
TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) { TestPartResultArray results; { // Tests, that the deprecated constructor still works.
ScopedFakeTestPartResultReporter reporter(&results); AddFailure(NONFATAL_FAILURE); } EXPECT_EQ(1, results.size()); }
#if GTEST_IS_THREADSAFE
class ScopedFakeTestPartResultReporterWithThreadsTest : public ScopedFakeTestPartResultReporterTest { protected: static void AddFailureInOtherThread(FailureMode failure) { ThreadWithParam<FailureMode> thread(&AddFailure, failure, NULL); thread.Join(); } };
TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest, InterceptsTestFailuresInAllThreads) { TestPartResultArray results; { ScopedFakeTestPartResultReporter reporter( ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, &results); AddFailure(NONFATAL_FAILURE); AddFailure(FATAL_FAILURE); AddFailureInOtherThread(NONFATAL_FAILURE); AddFailureInOtherThread(FATAL_FAILURE); }
EXPECT_EQ(4, results.size()); EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed()); EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed()); EXPECT_TRUE(results.GetTestPartResult(2).nonfatally_failed()); EXPECT_TRUE(results.GetTestPartResult(3).fatally_failed()); }
#endif // GTEST_IS_THREADSAFE
// Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}. Makes sure that they
// work even if the failure is generated in a called function rather than
// the current context.
typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest;
TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) { EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure."); }
#if GTEST_HAS_GLOBAL_STRING
TEST_F(ExpectFatalFailureTest, AcceptsStringObject) { EXPECT_FATAL_FAILURE(AddFatalFailure(), ::string("Expected fatal failure.")); } #endif
TEST_F(ExpectFatalFailureTest, AcceptsStdStringObject) { EXPECT_FATAL_FAILURE(AddFatalFailure(), ::std::string("Expected fatal failure.")); }
TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) { // We have another test below to verify that the macro catches fatal
// failures generated on another thread.
EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(), "Expected fatal failure."); }
#ifdef __BORLANDC__
// Silences warnings: "Condition is always true"
# pragma option push -w-ccc
#endif
// Tests that EXPECT_FATAL_FAILURE() can be used in a non-void
// function even when the statement in it contains ASSERT_*.
int NonVoidFunction() { EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), ""); EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), ""); return 0; }
TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) { NonVoidFunction(); }
// Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the
// current function even though 'statement' generates a fatal failure.
void DoesNotAbortHelper(bool* aborted) { EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), ""); EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
*aborted = false; }
#ifdef __BORLANDC__
// Restores warnings after previous "#pragma option push" suppressed them.
# pragma option pop
#endif
TEST_F(ExpectFatalFailureTest, DoesNotAbort) { bool aborted = true; DoesNotAbortHelper(&aborted); EXPECT_FALSE(aborted); }
// Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a
// statement that contains a macro which expands to code containing an
// unprotected comma.
static int global_var = 0; #define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++
TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) { #ifndef __BORLANDC__
// ICE's in C++Builder.
EXPECT_FATAL_FAILURE({ GTEST_USE_UNPROTECTED_COMMA_; AddFatalFailure(); }, ""); #endif
EXPECT_FATAL_FAILURE_ON_ALL_THREADS({ GTEST_USE_UNPROTECTED_COMMA_; AddFatalFailure(); }, ""); }
// Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}.
typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest;
TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) { EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(), "Expected non-fatal failure."); }
#if GTEST_HAS_GLOBAL_STRING
TEST_F(ExpectNonfatalFailureTest, AcceptsStringObject) { EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(), ::string("Expected non-fatal failure.")); } #endif
TEST_F(ExpectNonfatalFailureTest, AcceptsStdStringObject) { EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(), ::std::string("Expected non-fatal failure.")); }
TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) { // We have another test below to verify that the macro catches
// non-fatal failures generated on another thread.
EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(), "Expected non-fatal failure."); }
// Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a
// statement that contains a macro which expands to code containing an
// unprotected comma.
TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) { EXPECT_NONFATAL_FAILURE({ GTEST_USE_UNPROTECTED_COMMA_; AddNonfatalFailure(); }, "");
EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS({ GTEST_USE_UNPROTECTED_COMMA_; AddNonfatalFailure(); }, ""); }
#if GTEST_IS_THREADSAFE
typedef ScopedFakeTestPartResultReporterWithThreadsTest ExpectFailureWithThreadsTest;
TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) { EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE), "Expected fatal failure."); }
TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) { EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS( AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure."); }
#endif // GTEST_IS_THREADSAFE
// Tests the TestProperty class.
TEST(TestPropertyTest, ConstructorWorks) { const TestProperty property("key", "value"); EXPECT_STREQ("key", property.key()); EXPECT_STREQ("value", property.value()); }
TEST(TestPropertyTest, SetValue) { TestProperty property("key", "value_1"); EXPECT_STREQ("key", property.key()); property.SetValue("value_2"); EXPECT_STREQ("key", property.key()); EXPECT_STREQ("value_2", property.value()); }
// Tests the TestResult class
// The test fixture for testing TestResult.
class TestResultTest : public Test { protected: typedef std::vector<TestPartResult> TPRVector;
// We make use of 2 TestPartResult objects,
TestPartResult * pr1, * pr2;
// ... and 3 TestResult objects.
TestResult * r0, * r1, * r2;
virtual void SetUp() { // pr1 is for success.
pr1 = new TestPartResult(TestPartResult::kSuccess, "foo/bar.cc", 10, "Success!");
// pr2 is for fatal failure.
pr2 = new TestPartResult(TestPartResult::kFatalFailure, "foo/bar.cc", -1, // This line number means "unknown"
"Failure!");
// Creates the TestResult objects.
r0 = new TestResult(); r1 = new TestResult(); r2 = new TestResult();
// In order to test TestResult, we need to modify its internal
// state, in particular the TestPartResult vector it holds.
// test_part_results() returns a const reference to this vector.
// We cast it to a non-const object s.t. it can be modified (yes,
// this is a hack).
TPRVector* results1 = const_cast<TPRVector*>( &TestResultAccessor::test_part_results(*r1)); TPRVector* results2 = const_cast<TPRVector*>( &TestResultAccessor::test_part_results(*r2));
// r0 is an empty TestResult.
// r1 contains a single SUCCESS TestPartResult.
results1->push_back(*pr1);
// r2 contains a SUCCESS, and a FAILURE.
results2->push_back(*pr1); results2->push_back(*pr2); }
virtual void TearDown() { delete pr1; delete pr2;
delete r0; delete r1; delete r2; }
// Helper that compares two two TestPartResults.
static void CompareTestPartResult(const TestPartResult& expected, const TestPartResult& actual) { EXPECT_EQ(expected.type(), actual.type()); EXPECT_STREQ(expected.file_name(), actual.file_name()); EXPECT_EQ(expected.line_number(), actual.line_number()); EXPECT_STREQ(expected.summary(), actual.summary()); EXPECT_STREQ(expected.message(), actual.message()); EXPECT_EQ(expected.passed(), actual.passed()); EXPECT_EQ(expected.failed(), actual.failed()); EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed()); EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed()); } };
// Tests TestResult::total_part_count().
TEST_F(TestResultTest, total_part_count) { ASSERT_EQ(0, r0->total_part_count()); ASSERT_EQ(1, r1->total_part_count()); ASSERT_EQ(2, r2->total_part_count()); }
// Tests TestResult::Passed().
TEST_F(TestResultTest, Passed) { ASSERT_TRUE(r0->Passed()); ASSERT_TRUE(r1->Passed()); ASSERT_FALSE(r2->Passed()); }
// Tests TestResult::Failed().
TEST_F(TestResultTest, Failed) { ASSERT_FALSE(r0->Failed()); ASSERT_FALSE(r1->Failed()); ASSERT_TRUE(r2->Failed()); }
// Tests TestResult::GetTestPartResult().
typedef TestResultTest TestResultDeathTest;
TEST_F(TestResultDeathTest, GetTestPartResult) { CompareTestPartResult(*pr1, r2->GetTestPartResult(0)); CompareTestPartResult(*pr2, r2->GetTestPartResult(1)); EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(2), ""); EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(-1), ""); }
// Tests TestResult has no properties when none are added.
TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) { TestResult test_result; ASSERT_EQ(0, test_result.test_property_count()); }
// Tests TestResult has the expected property when added.
TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) { TestResult test_result; TestProperty property("key_1", "1"); TestResultAccessor::RecordProperty(&test_result, property); ASSERT_EQ(1, test_result.test_property_count()); const TestProperty& actual_property = test_result.GetTestProperty(0); EXPECT_STREQ("key_1", actual_property.key()); EXPECT_STREQ("1", actual_property.value()); }
// Tests TestResult has multiple properties when added.
TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) { TestResult test_result; TestProperty property_1("key_1", "1"); TestProperty property_2("key_2", "2"); TestResultAccessor::RecordProperty(&test_result, property_1); TestResultAccessor::RecordProperty(&test_result, property_2); ASSERT_EQ(2, test_result.test_property_count()); const TestProperty& actual_property_1 = test_result.GetTestProperty(0); EXPECT_STREQ("key_1", actual_property_1.key()); EXPECT_STREQ("1", actual_property_1.value());
const TestProperty& actual_property_2 = test_result.GetTestProperty(1); EXPECT_STREQ("key_2", actual_property_2.key()); EXPECT_STREQ("2", actual_property_2.value()); }
// Tests TestResult::RecordProperty() overrides values for duplicate keys.
TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) { TestResult test_result; TestProperty property_1_1("key_1", "1"); TestProperty property_2_1("key_2", "2"); TestProperty property_1_2("key_1", "12"); TestProperty property_2_2("key_2", "22"); TestResultAccessor::RecordProperty(&test_result, property_1_1); TestResultAccessor::RecordProperty(&test_result, property_2_1); TestResultAccessor::RecordProperty(&test_result, property_1_2); TestResultAccessor::RecordProperty(&test_result, property_2_2);
ASSERT_EQ(2, test_result.test_property_count()); const TestProperty& actual_property_1 = test_result.GetTestProperty(0); EXPECT_STREQ("key_1", actual_property_1.key()); EXPECT_STREQ("12", actual_property_1.value());
const TestProperty& actual_property_2 = test_result.GetTestProperty(1); EXPECT_STREQ("key_2", actual_property_2.key()); EXPECT_STREQ("22", actual_property_2.value()); }
// Tests TestResult::GetTestProperty().
TEST(TestResultPropertyDeathTest, GetTestProperty) { TestResult test_result; TestProperty property_1("key_1", "1"); TestProperty property_2("key_2", "2"); TestProperty property_3("key_3", "3"); TestResultAccessor::RecordProperty(&test_result, property_1); TestResultAccessor::RecordProperty(&test_result, property_2); TestResultAccessor::RecordProperty(&test_result, property_3);
const TestProperty& fetched_property_1 = test_result.GetTestProperty(0); const TestProperty& fetched_property_2 = test_result.GetTestProperty(1); const TestProperty& fetched_property_3 = test_result.GetTestProperty(2);
EXPECT_STREQ("key_1", fetched_property_1.key()); EXPECT_STREQ("1", fetched_property_1.value());
EXPECT_STREQ("key_2", fetched_property_2.key()); EXPECT_STREQ("2", fetched_property_2.value());
EXPECT_STREQ("key_3", fetched_property_3.key()); EXPECT_STREQ("3", fetched_property_3.value());
EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(3), ""); EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(-1), ""); }
// When a property using a reserved key is supplied to this function, it tests
// that a non-fatal failure is added, a fatal failure is not added, and that the
// property is not recorded.
void ExpectNonFatalFailureRecordingPropertyWithReservedKey(const char* key) { TestResult test_result; TestProperty property(key, "1"); EXPECT_NONFATAL_FAILURE( TestResultAccessor::RecordProperty(&test_result, property), "Reserved key"); ASSERT_EQ(0, test_result.test_property_count()) << "Not recorded"; }
// Attempting to recording a property with the Reserved literal "name"
// should add a non-fatal failure and the property should not be recorded.
TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledName) { ExpectNonFatalFailureRecordingPropertyWithReservedKey("name"); }
// Attempting to recording a property with the Reserved literal "status"
// should add a non-fatal failure and the property should not be recorded.
TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledStatus) { ExpectNonFatalFailureRecordingPropertyWithReservedKey("status"); }
// Attempting to recording a property with the Reserved literal "time"
// should add a non-fatal failure and the property should not be recorded.
TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledTime) { ExpectNonFatalFailureRecordingPropertyWithReservedKey("time"); }
// Attempting to recording a property with the Reserved literal "classname"
// should add a non-fatal failure and the property should not be recorded.
TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledClassname) { ExpectNonFatalFailureRecordingPropertyWithReservedKey("classname"); }
// Tests that GTestFlagSaver works on Windows and Mac.
class GTestFlagSaverTest : public Test { protected: // Saves the Google Test flags such that we can restore them later, and
// then sets them to their default values. This will be called
// before the first test in this test case is run.
static void SetUpTestCase() { saver_ = new GTestFlagSaver;
GTEST_FLAG(also_run_disabled_tests) = false; GTEST_FLAG(break_on_failure) = false; GTEST_FLAG(catch_exceptions) = false; GTEST_FLAG(death_test_use_fork) = false; GTEST_FLAG(color) = "auto"; GTEST_FLAG(filter) = ""; GTEST_FLAG(list_tests) = false; GTEST_FLAG(output) = ""; GTEST_FLAG(print_time) = true; GTEST_FLAG(random_seed) = 0; GTEST_FLAG(repeat) = 1; GTEST_FLAG(shuffle) = false; GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth; GTEST_FLAG(stream_result_to) = ""; GTEST_FLAG(throw_on_failure) = false; }
// Restores the Google Test flags that the tests have modified. This will
// be called after the last test in this test case is run.
static void TearDownTestCase() { delete saver_; saver_ = NULL; }
// Verifies that the Google Test flags have their default values, and then
// modifies each of them.
void VerifyAndModifyFlags() { EXPECT_FALSE(GTEST_FLAG(also_run_disabled_tests)); EXPECT_FALSE(GTEST_FLAG(break_on_failure)); EXPECT_FALSE(GTEST_FLAG(catch_exceptions)); EXPECT_STREQ("auto", GTEST_FLAG(color).c_str()); EXPECT_FALSE(GTEST_FLAG(death_test_use_fork)); EXPECT_STREQ("", GTEST_FLAG(filter).c_str()); EXPECT_FALSE(GTEST_FLAG(list_tests)); EXPECT_STREQ("", GTEST_FLAG(output).c_str()); EXPECT_TRUE(GTEST_FLAG(print_time)); EXPECT_EQ(0, GTEST_FLAG(random_seed)); EXPECT_EQ(1, GTEST_FLAG(repeat)); EXPECT_FALSE(GTEST_FLAG(shuffle)); EXPECT_EQ(kMaxStackTraceDepth, GTEST_FLAG(stack_trace_depth)); EXPECT_STREQ("", GTEST_FLAG(stream_result_to).c_str()); EXPECT_FALSE(GTEST_FLAG(throw_on_failure));
GTEST_FLAG(also_run_disabled_tests) = true; GTEST_FLAG(break_on_failure) = true; GTEST_FLAG(catch_exceptions) = true; GTEST_FLAG(color) = "no"; GTEST_FLAG(death_test_use_fork) = true; GTEST_FLAG(filter) = "abc"; GTEST_FLAG(list_tests) = true; GTEST_FLAG(output) = "xml:foo.xml"; GTEST_FLAG(print_time) = false; GTEST_FLAG(random_seed) = 1; GTEST_FLAG(repeat) = 100; GTEST_FLAG(shuffle) = true; GTEST_FLAG(stack_trace_depth) = 1; GTEST_FLAG(stream_result_to) = "localhost:1234"; GTEST_FLAG(throw_on_failure) = true; } private: // For saving Google Test flags during this test case.
static GTestFlagSaver* saver_; };
GTestFlagSaver* GTestFlagSaverTest::saver_ = NULL;
// Google Test doesn't guarantee the order of tests. The following two
// tests are designed to work regardless of their order.
// Modifies the Google Test flags in the test body.
TEST_F(GTestFlagSaverTest, ModifyGTestFlags) { VerifyAndModifyFlags(); }
// Verifies that the Google Test flags in the body of the previous test were
// restored to their original values.
TEST_F(GTestFlagSaverTest, VerifyGTestFlags) { VerifyAndModifyFlags(); }
// Sets an environment variable with the given name to the given
// value. If the value argument is "", unsets the environment
// variable. The caller must ensure that both arguments are not NULL.
static void SetEnv(const char* name, const char* value) { #if GTEST_OS_WINDOWS_MOBILE
// Environment variables are not supported on Windows CE.
return; #elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9)
// C++Builder's putenv only stores a pointer to its parameter; we have to
// ensure that the string remains valid as long as it might be needed.
// We use an std::map to do so.
static std::map<String, String*> added_env;
// Because putenv stores a pointer to the string buffer, we can't delete the
// previous string (if present) until after it's replaced.
String *prev_env = NULL; if (added_env.find(name) != added_env.end()) { prev_env = added_env[name]; } added_env[name] = new String((Message() << name << "=" << value).GetString());
// The standard signature of putenv accepts a 'char*' argument. Other
// implementations, like C++Builder's, accept a 'const char*'.
// We cast away the 'const' since that would work for both variants.
putenv(const_cast<char*>(added_env[name]->c_str())); delete prev_env; #elif GTEST_OS_WINDOWS // If we are on Windows proper.
_putenv((Message() << name << "=" << value).GetString().c_str()); #else
if (*value == '\0') { unsetenv(name); } else { setenv(name, value, 1); } #endif // GTEST_OS_WINDOWS_MOBILE
}
#if !GTEST_OS_WINDOWS_MOBILE
// Environment variables are not supported on Windows CE.
using testing::internal::Int32FromGTestEnv;
// Tests Int32FromGTestEnv().
// Tests that Int32FromGTestEnv() returns the default value when the
// environment variable is not set.
TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) { SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", ""); EXPECT_EQ(10, Int32FromGTestEnv("temp", 10)); }
// Tests that Int32FromGTestEnv() returns the default value when the
// environment variable overflows as an Int32.
TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) { printf("(expecting 2 warnings)\n");
SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321"); EXPECT_EQ(20, Int32FromGTestEnv("temp", 20));
SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321"); EXPECT_EQ(30, Int32FromGTestEnv("temp", 30)); }
// Tests that Int32FromGTestEnv() returns the default value when the
// environment variable does not represent a valid decimal integer.
TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) { printf("(expecting 2 warnings)\n");
SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1"); EXPECT_EQ(40, Int32FromGTestEnv("temp", 40));
SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X"); EXPECT_EQ(50, Int32FromGTestEnv("temp", 50)); }
// Tests that Int32FromGTestEnv() parses and returns the value of the
// environment variable when it represents a valid decimal integer in
// the range of an Int32.
TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) { SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123"); EXPECT_EQ(123, Int32FromGTestEnv("temp", 0));
SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321"); EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0)); } #endif // !GTEST_OS_WINDOWS_MOBILE
// Tests ParseInt32Flag().
// Tests that ParseInt32Flag() returns false and doesn't change the
// output value when the flag has wrong format
TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) { Int32 value = 123; EXPECT_FALSE(ParseInt32Flag("--a=100", "b", &value)); EXPECT_EQ(123, value);
EXPECT_FALSE(ParseInt32Flag("a=100", "a", &value)); EXPECT_EQ(123, value); }
// Tests that ParseInt32Flag() returns false and doesn't change the
// output value when the flag overflows as an Int32.
TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) { printf("(expecting 2 warnings)\n");
Int32 value = 123; EXPECT_FALSE(ParseInt32Flag("--abc=12345678987654321", "abc", &value)); EXPECT_EQ(123, value);
EXPECT_FALSE(ParseInt32Flag("--abc=-12345678987654321", "abc", &value)); EXPECT_EQ(123, value); }
// Tests that ParseInt32Flag() returns false and doesn't change the
// output value when the flag does not represent a valid decimal
// integer.
TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) { printf("(expecting 2 warnings)\n");
Int32 value = 123; EXPECT_FALSE(ParseInt32Flag("--abc=A1", "abc", &value)); EXPECT_EQ(123, value);
EXPECT_FALSE(ParseInt32Flag("--abc=12X", "abc", &value)); EXPECT_EQ(123, value); }
// Tests that ParseInt32Flag() parses the value of the flag and
// returns true when the flag represents a valid decimal integer in
// the range of an Int32.
TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) { Int32 value = 123; EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value)); EXPECT_EQ(456, value);
EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=-789", "abc", &value)); EXPECT_EQ(-789, value); }
// Tests that Int32FromEnvOrDie() parses the value of the var or
// returns the correct default.
// Environment variables are not supported on Windows CE.
#if !GTEST_OS_WINDOWS_MOBILE
TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) { EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333)); SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123"); EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333)); SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123"); EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333)); } #endif // !GTEST_OS_WINDOWS_MOBILE
// Tests that Int32FromEnvOrDie() aborts with an error message
// if the variable is not an Int32.
TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) { SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx"); EXPECT_DEATH_IF_SUPPORTED( Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123), ".*"); }
// Tests that Int32FromEnvOrDie() aborts with an error message
// if the variable cannot be represnted by an Int32.
TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) { SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234"); EXPECT_DEATH_IF_SUPPORTED( Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123), ".*"); }
// Tests that ShouldRunTestOnShard() selects all tests
// where there is 1 shard.
TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) { EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 0)); EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 1)); EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 2)); EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 3)); EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 4)); }
class ShouldShardTest : public testing::Test { protected: virtual void SetUp() { index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX"; total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL"; }
virtual void TearDown() { SetEnv(index_var_, ""); SetEnv(total_var_, ""); }
const char* index_var_; const char* total_var_; };
// Tests that sharding is disabled if neither of the environment variables
// are set.
TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) { SetEnv(index_var_, ""); SetEnv(total_var_, "");
EXPECT_FALSE(ShouldShard(total_var_, index_var_, false)); EXPECT_FALSE(ShouldShard(total_var_, index_var_, true)); }
// Tests that sharding is not enabled if total_shards == 1.
TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) { SetEnv(index_var_, "0"); SetEnv(total_var_, "1"); EXPECT_FALSE(ShouldShard(total_var_, index_var_, false)); EXPECT_FALSE(ShouldShard(total_var_, index_var_, true)); }
// Tests that sharding is enabled if total_shards > 1 and
// we are not in a death test subprocess.
// Environment variables are not supported on Windows CE.
#if !GTEST_OS_WINDOWS_MOBILE
TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) { SetEnv(index_var_, "4"); SetEnv(total_var_, "22"); EXPECT_TRUE(ShouldShard(total_var_, index_var_, false)); EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
SetEnv(index_var_, "8"); SetEnv(total_var_, "9"); EXPECT_TRUE(ShouldShard(total_var_, index_var_, false)); EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
SetEnv(index_var_, "0"); SetEnv(total_var_, "9"); EXPECT_TRUE(ShouldShard(total_var_, index_var_, false)); EXPECT_FALSE(ShouldShard(total_var_, index_var_, true)); } #endif // !GTEST_OS_WINDOWS_MOBILE
// Tests that we exit in error if the sharding values are not valid.
typedef ShouldShardTest ShouldShardDeathTest;
TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) { SetEnv(index_var_, "4"); SetEnv(total_var_, "4"); EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
SetEnv(index_var_, "4"); SetEnv(total_var_, "-2"); EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
SetEnv(index_var_, "5"); SetEnv(total_var_, ""); EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
SetEnv(index_var_, ""); SetEnv(total_var_, "5"); EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*"); }
// Tests that ShouldRunTestOnShard is a partition when 5
// shards are used.
TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) { // Choose an arbitrary number of tests and shards.
const int num_tests = 17; const int num_shards = 5;
// Check partitioning: each test should be on exactly 1 shard.
for (int test_id = 0; test_id < num_tests; test_id++) { int prev_selected_shard_index = -1; for (int shard_index = 0; shard_index < num_shards; shard_index++) { if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) { if (prev_selected_shard_index < 0) { prev_selected_shard_index = shard_index; } else { ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and " << shard_index << " are both selected to run test " << test_id; } } } }
// Check balance: This is not required by the sharding protocol, but is a
// desirable property for performance.
for (int shard_index = 0; shard_index < num_shards; shard_index++) { int num_tests_on_shard = 0; for (int test_id = 0; test_id < num_tests; test_id++) { num_tests_on_shard += ShouldRunTestOnShard(num_shards, shard_index, test_id); } EXPECT_GE(num_tests_on_shard, num_tests / num_shards); } }
// For the same reason we are not explicitly testing everything in the
// Test class, there are no separate tests for the following classes
// (except for some trivial cases):
//
// TestCase, UnitTest, UnitTestResultPrinter.
//
// Similarly, there are no separate tests for the following macros:
//
// TEST, TEST_F, RUN_ALL_TESTS
TEST(UnitTestTest, CanGetOriginalWorkingDir) { ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != NULL); EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), ""); }
// This group of tests is for predicate assertions (ASSERT_PRED*, etc)
// of various arities. They do not attempt to be exhaustive. Rather,
// view them as smoke tests that can be easily reviewed and verified.
// A more complete set of tests for predicate assertions can be found
// in gtest_pred_impl_unittest.cc.
// First, some predicates and predicate-formatters needed by the tests.
// Returns true iff the argument is an even number.
bool IsEven(int n) { return (n % 2) == 0; }
// A functor that returns true iff the argument is an even number.
struct IsEvenFunctor { bool operator()(int n) { return IsEven(n); } };
// A predicate-formatter function that asserts the argument is an even
// number.
AssertionResult AssertIsEven(const char* expr, int n) { if (IsEven(n)) { return AssertionSuccess(); }
Message msg; msg << expr << " evaluates to " << n << ", which is not even."; return AssertionFailure(msg); }
// A predicate function that returns AssertionResult for use in
// EXPECT/ASSERT_TRUE/FALSE.
AssertionResult ResultIsEven(int n) { if (IsEven(n)) return AssertionSuccess() << n << " is even"; else return AssertionFailure() << n << " is odd"; }
// A predicate function that returns AssertionResult but gives no
// explanation why it succeeds. Needed for testing that
// EXPECT/ASSERT_FALSE handles such functions correctly.
AssertionResult ResultIsEvenNoExplanation(int n) { if (IsEven(n)) return AssertionSuccess(); else return AssertionFailure() << n << " is odd"; }
// A predicate-formatter functor that asserts the argument is an even
// number.
struct AssertIsEvenFunctor { AssertionResult operator()(const char* expr, int n) { return AssertIsEven(expr, n); } };
// Returns true iff the sum of the arguments is an even number.
bool SumIsEven2(int n1, int n2) { return IsEven(n1 + n2); }
// A functor that returns true iff the sum of the arguments is an even
// number.
struct SumIsEven3Functor { bool operator()(int n1, int n2, int n3) { return IsEven(n1 + n2 + n3); } };
// A predicate-formatter function that asserts the sum of the
// arguments is an even number.
AssertionResult AssertSumIsEven4( const char* e1, const char* e2, const char* e3, const char* e4, int n1, int n2, int n3, int n4) { const int sum = n1 + n2 + n3 + n4; if (IsEven(sum)) { return AssertionSuccess(); }
Message msg; msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4 << ") evaluates to " << sum << ", which is not even."; return AssertionFailure(msg); }
// A predicate-formatter functor that asserts the sum of the arguments
// is an even number.
struct AssertSumIsEven5Functor { AssertionResult operator()( const char* e1, const char* e2, const char* e3, const char* e4, const char* e5, int n1, int n2, int n3, int n4, int n5) { const int sum = n1 + n2 + n3 + n4 + n5; if (IsEven(sum)) { return AssertionSuccess(); }
Message msg; msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5 << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + " << n5 << ") evaluates to " << sum << ", which is not even."; return AssertionFailure(msg); } };
// Tests unary predicate assertions.
// Tests unary predicate assertions that don't use a custom formatter.
TEST(Pred1Test, WithoutFormat) { // Success cases.
EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!"; ASSERT_PRED1(IsEven, 4);
// Failure cases.
EXPECT_NONFATAL_FAILURE({ // NOLINT
EXPECT_PRED1(IsEven, 5) << "This failure is expected."; }, "This failure is expected."); EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5), "evaluates to false"); }
// Tests unary predicate assertions that use a custom formatter.
TEST(Pred1Test, WithFormat) { // Success cases.
EXPECT_PRED_FORMAT1(AssertIsEven, 2); ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4) << "This failure is UNEXPECTED!";
// Failure cases.
const int n = 5; EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n), "n evaluates to 5, which is not even."); EXPECT_FATAL_FAILURE({ // NOLINT
ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected."; }, "This failure is expected."); }
// Tests that unary predicate assertions evaluates their arguments
// exactly once.
TEST(Pred1Test, SingleEvaluationOnFailure) { // A success case.
static int n = 0; EXPECT_PRED1(IsEven, n++); EXPECT_EQ(1, n) << "The argument is not evaluated exactly once.";
// A failure case.
EXPECT_FATAL_FAILURE({ // NOLINT
ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++) << "This failure is expected."; }, "This failure is expected."); EXPECT_EQ(2, n) << "The argument is not evaluated exactly once."; }
// Tests predicate assertions whose arity is >= 2.
// Tests predicate assertions that don't use a custom formatter.
TEST(PredTest, WithoutFormat) { // Success cases.
ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!"; EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8);
// Failure cases.
const int n1 = 1; const int n2 = 2; EXPECT_NONFATAL_FAILURE({ // NOLINT
EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected."; }, "This failure is expected."); EXPECT_FATAL_FAILURE({ // NOLINT
ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4); }, "evaluates to false"); }
// Tests predicate assertions that use a custom formatter.
TEST(PredTest, WithFormat) { // Success cases.
ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10) << "This failure is UNEXPECTED!"; EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10);
// Failure cases.
const int n1 = 1; const int n2 = 2; const int n3 = 4; const int n4 = 6; EXPECT_NONFATAL_FAILURE({ // NOLINT
EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4); }, "evaluates to 13, which is not even."); EXPECT_FATAL_FAILURE({ // NOLINT
ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8) << "This failure is expected."; }, "This failure is expected."); }
// Tests that predicate assertions evaluates their arguments
// exactly once.
TEST(PredTest, SingleEvaluationOnFailure) { // A success case.
int n1 = 0; int n2 = 0; EXPECT_PRED2(SumIsEven2, n1++, n2++); EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once."; EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
// Another success case.
n1 = n2 = 0; int n3 = 0; int n4 = 0; int n5 = 0; ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), n1++, n2++, n3++, n4++, n5++) << "This failure is UNEXPECTED!"; EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once."; EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once."; EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once."; EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once."; EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once.";
// A failure case.
n1 = n2 = n3 = 0; EXPECT_NONFATAL_FAILURE({ // NOLINT
EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++) << "This failure is expected."; }, "This failure is expected."); EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once."; EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once."; EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
// Another failure case.
n1 = n2 = n3 = n4 = 0; EXPECT_NONFATAL_FAILURE({ // NOLINT
EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++); }, "evaluates to 1, which is not even."); EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once."; EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once."; EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once."; EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once."; }
// Some helper functions for testing using overloaded/template
// functions with ASSERT_PREDn and EXPECT_PREDn.
bool IsPositive(double x) { return x > 0; }
template <typename T> bool IsNegative(T x) { return x < 0; }
template <typename T1, typename T2> bool GreaterThan(T1 x1, T2 x2) { return x1 > x2; }
// Tests that overloaded functions can be used in *_PRED* as long as
// their types are explicitly specified.
TEST(PredicateAssertionTest, AcceptsOverloadedFunction) { // C++Builder requires C-style casts rather than static_cast.
EXPECT_PRED1((bool (*)(int))(IsPositive), 5); // NOLINT
ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0); // NOLINT
}
// Tests that template functions can be used in *_PRED* as long as
// their types are explicitly specified.
TEST(PredicateAssertionTest, AcceptsTemplateFunction) { EXPECT_PRED1(IsNegative<int>, -5); // Makes sure that we can handle templates with more than one
// parameter.
ASSERT_PRED2((GreaterThan<int, int>), 5, 0); }
// Some helper functions for testing using overloaded/template
// functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn.
AssertionResult IsPositiveFormat(const char* /* expr */, int n) { return n > 0 ? AssertionSuccess() : AssertionFailure(Message() << "Failure"); }
AssertionResult IsPositiveFormat(const char* /* expr */, double x) { return x > 0 ? AssertionSuccess() : AssertionFailure(Message() << "Failure"); }
template <typename T> AssertionResult IsNegativeFormat(const char* /* expr */, T x) { return x < 0 ? AssertionSuccess() : AssertionFailure(Message() << "Failure"); }
template <typename T1, typename T2> AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */, const T1& x1, const T2& x2) { return x1 == x2 ? AssertionSuccess() : AssertionFailure(Message() << "Failure"); }
// Tests that overloaded functions can be used in *_PRED_FORMAT*
// without explicitly specifying their types.
TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) { EXPECT_PRED_FORMAT1(IsPositiveFormat, 5); ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0); }
// Tests that template functions can be used in *_PRED_FORMAT* without
// explicitly specifying their types.
TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) { EXPECT_PRED_FORMAT1(IsNegativeFormat, -5); ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3); }
// Tests string assertions.
// Tests ASSERT_STREQ with non-NULL arguments.
TEST(StringAssertionTest, ASSERT_STREQ) { const char * const p1 = "good"; ASSERT_STREQ(p1, p1);
// Let p2 have the same content as p1, but be at a different address.
const char p2[] = "good"; ASSERT_STREQ(p1, p2);
EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"), "Expected: \"bad\""); }
// Tests ASSERT_STREQ with NULL arguments.
TEST(StringAssertionTest, ASSERT_STREQ_Null) { ASSERT_STREQ(static_cast<const char *>(NULL), NULL); EXPECT_FATAL_FAILURE(ASSERT_STREQ(NULL, "non-null"), "non-null"); }
// Tests ASSERT_STREQ with NULL arguments.
TEST(StringAssertionTest, ASSERT_STREQ_Null2) { EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", NULL), "non-null"); }
// Tests ASSERT_STRNE.
TEST(StringAssertionTest, ASSERT_STRNE) { ASSERT_STRNE("hi", "Hi"); ASSERT_STRNE("Hi", NULL); ASSERT_STRNE(NULL, "Hi"); ASSERT_STRNE("", NULL); ASSERT_STRNE(NULL, ""); ASSERT_STRNE("", "Hi"); ASSERT_STRNE("Hi", ""); EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"), "\"Hi\" vs \"Hi\""); }
// Tests ASSERT_STRCASEEQ.
TEST(StringAssertionTest, ASSERT_STRCASEEQ) { ASSERT_STRCASEEQ("hi", "Hi"); ASSERT_STRCASEEQ(static_cast<const char *>(NULL), NULL);
ASSERT_STRCASEEQ("", ""); EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"), "(ignoring case)"); }
// Tests ASSERT_STRCASENE.
TEST(StringAssertionTest, ASSERT_STRCASENE) { ASSERT_STRCASENE("hi1", "Hi2"); ASSERT_STRCASENE("Hi", NULL); ASSERT_STRCASENE(NULL, "Hi"); ASSERT_STRCASENE("", NULL); ASSERT_STRCASENE(NULL, ""); ASSERT_STRCASENE("", "Hi"); ASSERT_STRCASENE("Hi", ""); EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"), "(ignoring case)"); }
// Tests *_STREQ on wide strings.
TEST(StringAssertionTest, STREQ_Wide) { // NULL strings.
ASSERT_STREQ(static_cast<const wchar_t *>(NULL), NULL);
// Empty strings.
ASSERT_STREQ(L"", L"");
// Non-null vs NULL.
EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", NULL), "non-null");
// Equal strings.
EXPECT_STREQ(L"Hi", L"Hi");
// Unequal strings.
EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"), "Abc");
// Strings containing wide characters.
EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"), "abc"); }
// Tests *_STRNE on wide strings.
TEST(StringAssertionTest, STRNE_Wide) { // NULL strings.
EXPECT_NONFATAL_FAILURE({ // NOLINT
EXPECT_STRNE(static_cast<const wchar_t *>(NULL), NULL); }, "");
// Empty strings.
EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""), "L\"\"");
// Non-null vs NULL.
ASSERT_STRNE(L"non-null", NULL);
// Equal strings.
EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"), "L\"Hi\"");
// Unequal strings.
EXPECT_STRNE(L"abc", L"Abc");
// Strings containing wide characters.
EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"), "abc"); }
// Tests for ::testing::IsSubstring().
// Tests that IsSubstring() returns the correct result when the input
// argument type is const char*.
TEST(IsSubstringTest, ReturnsCorrectResultForCString) { EXPECT_FALSE(IsSubstring("", "", NULL, "a")); EXPECT_FALSE(IsSubstring("", "", "b", NULL)); EXPECT_FALSE(IsSubstring("", "", "needle", "haystack"));
EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(NULL), NULL)); EXPECT_TRUE(IsSubstring("", "", "needle", "two needles")); }
// Tests that IsSubstring() returns the correct result when the input
// argument type is const wchar_t*.
TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) { EXPECT_FALSE(IsSubstring("", "", kNull, L"a")); EXPECT_FALSE(IsSubstring("", "", L"b", kNull)); EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack"));
EXPECT_TRUE(IsSubstring("", "", static_cast<const wchar_t*>(NULL), NULL)); EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles")); }
// Tests that IsSubstring() generates the correct message when the input
// argument type is const char*.
TEST(IsSubstringTest, GeneratesCorrectMessageForCString) { EXPECT_STREQ("Value of: needle_expr\n" " Actual: \"needle\"\n" "Expected: a substring of haystack_expr\n" "Which is: \"haystack\"", IsSubstring("needle_expr", "haystack_expr", "needle", "haystack").failure_message()); }
// Tests that IsSubstring returns the correct result when the input
// argument type is ::std::string.
TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) { EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob")); EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world"))); }
#if GTEST_HAS_STD_WSTRING
// Tests that IsSubstring returns the correct result when the input
// argument type is ::std::wstring.
TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) { EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles")); EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack"))); }
// Tests that IsSubstring() generates the correct message when the input
// argument type is ::std::wstring.
TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) { EXPECT_STREQ("Value of: needle_expr\n" " Actual: L\"needle\"\n" "Expected: a substring of haystack_expr\n" "Which is: L\"haystack\"", IsSubstring( "needle_expr", "haystack_expr", ::std::wstring(L"needle"), L"haystack").failure_message()); }
#endif // GTEST_HAS_STD_WSTRING
// Tests for ::testing::IsNotSubstring().
// Tests that IsNotSubstring() returns the correct result when the input
// argument type is const char*.
TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) { EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack")); EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles")); }
// Tests that IsNotSubstring() returns the correct result when the input
// argument type is const wchar_t*.
TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) { EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack")); EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles")); }
// Tests that IsNotSubstring() generates the correct message when the input
// argument type is const wchar_t*.
TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) { EXPECT_STREQ("Value of: needle_expr\n" " Actual: L\"needle\"\n" "Expected: not a substring of haystack_expr\n" "Which is: L\"two needles\"", IsNotSubstring( "needle_expr", "haystack_expr", L"needle", L"two needles").failure_message()); }
// Tests that IsNotSubstring returns the correct result when the input
// argument type is ::std::string.
TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) { EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob")); EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world"))); }
// Tests that IsNotSubstring() generates the correct message when the input
// argument type is ::std::string.
TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) { EXPECT_STREQ("Value of: needle_expr\n" " Actual: \"needle\"\n" "Expected: not a substring of haystack_expr\n" "Which is: \"two needles\"", IsNotSubstring( "needle_expr", "haystack_expr", ::std::string("needle"), "two needles").failure_message()); }
#if GTEST_HAS_STD_WSTRING
// Tests that IsNotSubstring returns the correct result when the input
// argument type is ::std::wstring.
TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) { EXPECT_FALSE( IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles")); EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack"))); }
#endif // GTEST_HAS_STD_WSTRING
// Tests floating-point assertions.
template <typename RawType> class FloatingPointTest : public Test { protected:
// Pre-calculated numbers to be used by the tests.
struct TestValues { RawType close_to_positive_zero; RawType close_to_negative_zero; RawType further_from_negative_zero;
RawType close_to_one; RawType further_from_one;
RawType infinity; RawType close_to_infinity; RawType further_from_infinity;
RawType nan1; RawType nan2; };
typedef typename testing::internal::FloatingPoint<RawType> Floating; typedef typename Floating::Bits Bits;
virtual void SetUp() { const size_t max_ulps = Floating::kMaxUlps;
// The bits that represent 0.0.
const Bits zero_bits = Floating(0).bits();
// Makes some numbers close to 0.0.
values_.close_to_positive_zero = Floating::ReinterpretBits( zero_bits + max_ulps/2); values_.close_to_negative_zero = -Floating::ReinterpretBits( zero_bits + max_ulps - max_ulps/2); values_.further_from_negative_zero = -Floating::ReinterpretBits( zero_bits + max_ulps + 1 - max_ulps/2);
// The bits that represent 1.0.
const Bits one_bits = Floating(1).bits();
// Makes some numbers close to 1.0.
values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps); values_.further_from_one = Floating::ReinterpretBits( one_bits + max_ulps + 1);
// +infinity.
values_.infinity = Floating::Infinity();
// The bits that represent +infinity.
const Bits infinity_bits = Floating(values_.infinity).bits();
// Makes some numbers close to infinity.
values_.close_to_infinity = Floating::ReinterpretBits( infinity_bits - max_ulps); values_.further_from_infinity = Floating::ReinterpretBits( infinity_bits - max_ulps - 1);
// Makes some NAN's. Sets the most significant bit of the fraction so that
// our NaN's are quiet; trying to process a signaling NaN would raise an
// exception if our environment enables floating point exceptions.
values_.nan1 = Floating::ReinterpretBits(Floating::kExponentBitMask | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 1); values_.nan2 = Floating::ReinterpretBits(Floating::kExponentBitMask | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 200); }
void TestSize() { EXPECT_EQ(sizeof(RawType), sizeof(Bits)); }
static TestValues values_; };
template <typename RawType> typename FloatingPointTest<RawType>::TestValues FloatingPointTest<RawType>::values_;
// Instantiates FloatingPointTest for testing *_FLOAT_EQ.
typedef FloatingPointTest<float> FloatTest;
// Tests that the size of Float::Bits matches the size of float.
TEST_F(FloatTest, Size) { TestSize(); }
// Tests comparing with +0 and -0.
TEST_F(FloatTest, Zeros) { EXPECT_FLOAT_EQ(0.0, -0.0); EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0), "1.0"); EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5), "1.5"); }
// Tests comparing numbers close to 0.
//
// This ensures that *_FLOAT_EQ handles the sign correctly and no
// overflow occurs when comparing numbers whose absolute value is very
// small.
TEST_F(FloatTest, AlmostZeros) { // In C++Builder, names within local classes (such as used by
// EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
// scoping class. Use a static local alias as a workaround.
// We use the assignment syntax since some compilers, like Sun Studio,
// don't allow initializing references using construction syntax
// (parentheses).
static const FloatTest::TestValues& v = this->values_;
EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero); EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero); EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
EXPECT_FATAL_FAILURE({ // NOLINT
ASSERT_FLOAT_EQ(v.close_to_positive_zero, v.further_from_negative_zero); }, "v.further_from_negative_zero"); }
// Tests comparing numbers close to each other.
TEST_F(FloatTest, SmallDiff) { EXPECT_FLOAT_EQ(1.0, values_.close_to_one); EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one), "values_.further_from_one"); }
// Tests comparing numbers far apart.
TEST_F(FloatTest, LargeDiff) { EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0), "3.0"); }
// Tests comparing with infinity.
//
// This ensures that no overflow occurs when comparing numbers whose
// absolute value is very large.
TEST_F(FloatTest, Infinity) { EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity); EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity); #if !GTEST_OS_SYMBIAN
// Nokia's STLport crashes if we try to output infinity or NaN.
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity), "-values_.infinity");
// This is interesting as the representations of infinity and nan1
// are only 1 DLP apart.
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1), "values_.nan1"); #endif // !GTEST_OS_SYMBIAN
}
// Tests that comparing with NAN always returns false.
TEST_F(FloatTest, NaN) { #if !GTEST_OS_SYMBIAN
// Nokia's STLport crashes if we try to output infinity or NaN.
// In C++Builder, names within local classes (such as used by
// EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
// scoping class. Use a static local alias as a workaround.
// We use the assignment syntax since some compilers, like Sun Studio,
// don't allow initializing references using construction syntax
// (parentheses).
static const FloatTest::TestValues& v = this->values_;
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1), "v.nan1"); EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2), "v.nan2"); EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, v.nan1), "v.nan1");
EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity), "v.infinity"); #endif // !GTEST_OS_SYMBIAN
}
// Tests that *_FLOAT_EQ are reflexive.
TEST_F(FloatTest, Reflexive) { EXPECT_FLOAT_EQ(0.0, 0.0); EXPECT_FLOAT_EQ(1.0, 1.0); ASSERT_FLOAT_EQ(values_.infinity, values_.infinity); }
// Tests that *_FLOAT_EQ are commutative.
TEST_F(FloatTest, Commutative) { // We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one).
EXPECT_FLOAT_EQ(values_.close_to_one, 1.0);
// We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one).
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0), "1.0"); }
// Tests EXPECT_NEAR.
TEST_F(FloatTest, EXPECT_NEAR) { EXPECT_NEAR(-1.0f, -1.1f, 0.2f); EXPECT_NEAR(2.0f, 3.0f, 1.0f); EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f,1.5f, 0.25f), // NOLINT
"The difference between 1.0f and 1.5f is 0.5, " "which exceeds 0.25f"); // To work around a bug in gcc 2.95.0, there is intentionally no
// space after the first comma in the previous line.
}
// Tests ASSERT_NEAR.
TEST_F(FloatTest, ASSERT_NEAR) { ASSERT_NEAR(-1.0f, -1.1f, 0.2f); ASSERT_NEAR(2.0f, 3.0f, 1.0f); EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f,1.5f, 0.25f), // NOLINT
"The difference between 1.0f and 1.5f is 0.5, " "which exceeds 0.25f"); // To work around a bug in gcc 2.95.0, there is intentionally no
// space after the first comma in the previous line.
}
// Tests the cases where FloatLE() should succeed.
TEST_F(FloatTest, FloatLESucceeds) { EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f); // When val1 < val2,
ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f); // val1 == val2,
// or when val1 is greater than, but almost equals to, val2.
EXPECT_PRED_FORMAT2(FloatLE, values_.close_to_positive_zero, 0.0f); }
// Tests the cases where FloatLE() should fail.
TEST_F(FloatTest, FloatLEFails) { // When val1 is greater than val2 by a large margin,
EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f), "(2.0f) <= (1.0f)");
// or by a small yet non-negligible margin,
EXPECT_NONFATAL_FAILURE({ // NOLINT
EXPECT_PRED_FORMAT2(FloatLE, values_.further_from_one, 1.0f); }, "(values_.further_from_one) <= (1.0f)");
#if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
// Nokia's STLport crashes if we try to output infinity or NaN.
// C++Builder gives bad results for ordered comparisons involving NaNs
// due to compiler bugs.
EXPECT_NONFATAL_FAILURE({ // NOLINT
EXPECT_PRED_FORMAT2(FloatLE, values_.nan1, values_.infinity); }, "(values_.nan1) <= (values_.infinity)"); EXPECT_NONFATAL_FAILURE({ // NOLINT
EXPECT_PRED_FORMAT2(FloatLE, -values_.infinity, values_.nan1); }, "(-values_.infinity) <= (values_.nan1)"); EXPECT_FATAL_FAILURE({ // NOLINT
ASSERT_PRED_FORMAT2(FloatLE, values_.nan1, values_.nan1); }, "(values_.nan1) <= (values_.nan1)"); #endif // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
}
// Instantiates FloatingPointTest for testing *_DOUBLE_EQ.
typedef FloatingPointTest<double> DoubleTest;
// Tests that the size of Double::Bits matches the size of double.
TEST_F(DoubleTest, Size) { TestSize(); }
// Tests comparing with +0 and -0.
TEST_F(DoubleTest, Zeros) { EXPECT_DOUBLE_EQ(0.0, -0.0); EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0), "1.0"); EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0), "1.0"); }
// Tests comparing numbers close to 0.
//
// This ensures that *_DOUBLE_EQ handles the sign correctly and no
// overflow occurs when comparing numbers whose absolute value is very
// small.
TEST_F(DoubleTest, AlmostZeros) { // In C++Builder, names within local classes (such as used by
// EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
// scoping class. Use a static local alias as a workaround.
// We use the assignment syntax since some compilers, like Sun Studio,
// don't allow initializing references using construction syntax
// (parentheses).
static const DoubleTest::TestValues& v = this->values_;
EXPECT_DOUBLE_EQ(0.0, v.close_to_positive_zero); EXPECT_DOUBLE_EQ(-0.0, v.close_to_negative_zero); EXPECT_DOUBLE_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
EXPECT_FATAL_FAILURE({ // NOLINT
ASSERT_DOUBLE_EQ(v.close_to_positive_zero, v.further_from_negative_zero); }, "v.further_from_negative_zero"); }
// Tests comparing numbers close to each other.
TEST_F(DoubleTest, SmallDiff) { EXPECT_DOUBLE_EQ(1.0, values_.close_to_one); EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, values_.further_from_one), "values_.further_from_one"); }
// Tests comparing numbers far apart.
TEST_F(DoubleTest, LargeDiff) { EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0), "3.0"); }
// Tests comparing with infinity.
//
// This ensures that no overflow occurs when comparing numbers whose
// absolute value is very large.
TEST_F(DoubleTest, Infinity) { EXPECT_DOUBLE_EQ(values_.infinity, values_.close_to_infinity); EXPECT_DOUBLE_EQ(-values_.infinity, -values_.close_to_infinity); #if !GTEST_OS_SYMBIAN
// Nokia's STLport crashes if we try to output infinity or NaN.
EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, -values_.infinity), "-values_.infinity");
// This is interesting as the representations of infinity_ and nan1_
// are only 1 DLP apart.
EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, values_.nan1), "values_.nan1"); #endif // !GTEST_OS_SYMBIAN
}
// Tests that comparing with NAN always returns false.
TEST_F(DoubleTest, NaN) { #if !GTEST_OS_SYMBIAN
// In C++Builder, names within local classes (such as used by
// EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
// scoping class. Use a static local alias as a workaround.
// We use the assignment syntax since some compilers, like Sun Studio,
// don't allow initializing references using construction syntax
// (parentheses).
static const DoubleTest::TestValues& v = this->values_;
// Nokia's STLport crashes if we try to output infinity or NaN.
EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan1), "v.nan1"); EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan2), "v.nan2"); EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, v.nan1), "v.nan1"); EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(v.nan1, v.infinity), "v.infinity"); #endif // !GTEST_OS_SYMBIAN
}
// Tests that *_DOUBLE_EQ are reflexive.
TEST_F(DoubleTest, Reflexive) { EXPECT_DOUBLE_EQ(0.0, 0.0); EXPECT_DOUBLE_EQ(1.0, 1.0); #if !GTEST_OS_SYMBIAN
// Nokia's STLport crashes if we try to output infinity or NaN.
ASSERT_DOUBLE_EQ(values_.infinity, values_.infinity); #endif // !GTEST_OS_SYMBIAN
}
// Tests that *_DOUBLE_EQ are commutative.
TEST_F(DoubleTest, Commutative) { // We already tested EXPECT_DOUBLE_EQ(1.0, values_.close_to_one).
EXPECT_DOUBLE_EQ(values_.close_to_one, 1.0);
// We already tested EXPECT_DOUBLE_EQ(1.0, values_.further_from_one).
EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.further_from_one, 1.0), "1.0"); }
// Tests EXPECT_NEAR.
TEST_F(DoubleTest, EXPECT_NEAR) { EXPECT_NEAR(-1.0, -1.1, 0.2); EXPECT_NEAR(2.0, 3.0, 1.0); EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.5, 0.25), // NOLINT
"The difference between 1.0 and 1.5 is 0.5, " "which exceeds 0.25"); // To work around a bug in gcc 2.95.0, there is intentionally no
// space after the first comma in the previous statement.
}
// Tests ASSERT_NEAR.
TEST_F(DoubleTest, ASSERT_NEAR) { ASSERT_NEAR(-1.0, -1.1, 0.2); ASSERT_NEAR(2.0, 3.0, 1.0); EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.5, 0.25), // NOLINT
"The difference between 1.0 and 1.5 is 0.5, " "which exceeds 0.25"); // To work around a bug in gcc 2.95.0, there is intentionally no
// space after the first comma in the previous statement.
}
// Tests the cases where DoubleLE() should succeed.
TEST_F(DoubleTest, DoubleLESucceeds) { EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0); // When val1 < val2,
ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0); // val1 == val2,
// or when val1 is greater than, but almost equals to, val2.
EXPECT_PRED_FORMAT2(DoubleLE, values_.close_to_positive_zero, 0.0); }
// Tests the cases where DoubleLE() should fail.
TEST_F(DoubleTest, DoubleLEFails) { // When val1 is greater than val2 by a large margin,
EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0), "(2.0) <= (1.0)");
// or by a small yet non-negligible margin,
EXPECT_NONFATAL_FAILURE({ // NOLINT
EXPECT_PRED_FORMAT2(DoubleLE, values_.further_from_one, 1.0); }, "(values_.further_from_one) <= (1.0)");
#if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
// Nokia's STLport crashes if we try to output infinity or NaN.
// C++Builder gives bad results for ordered comparisons involving NaNs
// due to compiler bugs.
EXPECT_NONFATAL_FAILURE({ // NOLINT
EXPECT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.infinity); }, "(values_.nan1) <= (values_.infinity)"); EXPECT_NONFATAL_FAILURE({ // NOLINT
EXPECT_PRED_FORMAT2(DoubleLE, -values_.infinity, values_.nan1); }, " (-values_.infinity) <= (values_.nan1)"); EXPECT_FATAL_FAILURE({ // NOLINT
ASSERT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.nan1); }, "(values_.nan1) <= (values_.nan1)"); #endif // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
}
// Verifies that a test or test case whose name starts with DISABLED_ is
// not run.
// A test whose name starts with DISABLED_.
// Should not run.
TEST(DisabledTest, DISABLED_TestShouldNotRun) { FAIL() << "Unexpected failure: Disabled test should not be run."; }
// A test whose name does not start with DISABLED_.
// Should run.
TEST(DisabledTest, NotDISABLED_TestShouldRun) { EXPECT_EQ(1, 1); }
// A test case whose name starts with DISABLED_.
// Should not run.
TEST(DISABLED_TestCase, TestShouldNotRun) { FAIL() << "Unexpected failure: Test in disabled test case should not be run."; }
// A test case and test whose names start with DISABLED_.
// Should not run.
TEST(DISABLED_TestCase, DISABLED_TestShouldNotRun) { FAIL() << "Unexpected failure: Test in disabled test case should not be run."; }
// Check that when all tests in a test case are disabled, SetupTestCase() and
// TearDownTestCase() are not called.
class DisabledTestsTest : public Test { protected: static void SetUpTestCase() { FAIL() << "Unexpected failure: All tests disabled in test case. " "SetupTestCase() should not be called."; }
static void TearDownTestCase() { FAIL() << "Unexpected failure: All tests disabled in test case. " "TearDownTestCase() should not be called."; } };
TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) { FAIL() << "Unexpected failure: Disabled test should not be run."; }
TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) { FAIL() << "Unexpected failure: Disabled test should not be run."; }
// Tests that disabled typed tests aren't run.
#if GTEST_HAS_TYPED_TEST
template <typename T> class TypedTest : public Test { };
typedef testing::Types<int, double> NumericTypes; TYPED_TEST_CASE(TypedTest, NumericTypes);
TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) { FAIL() << "Unexpected failure: Disabled typed test should not run."; }
template <typename T> class DISABLED_TypedTest : public Test { };
TYPED_TEST_CASE(DISABLED_TypedTest, NumericTypes);
TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) { FAIL() << "Unexpected failure: Disabled typed test should not run."; }
#endif // GTEST_HAS_TYPED_TEST
// Tests that disabled type-parameterized tests aren't run.
#if GTEST_HAS_TYPED_TEST_P
template <typename T> class TypedTestP : public Test { };
TYPED_TEST_CASE_P(TypedTestP);
TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) { FAIL() << "Unexpected failure: " << "Disabled type-parameterized test should not run."; }
REGISTER_TYPED_TEST_CASE_P(TypedTestP, DISABLED_ShouldNotRun);
INSTANTIATE_TYPED_TEST_CASE_P(My, TypedTestP, NumericTypes);
template <typename T> class DISABLED_TypedTestP : public Test { };
TYPED_TEST_CASE_P(DISABLED_TypedTestP);
TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) { FAIL() << "Unexpected failure: " << "Disabled type-parameterized test should not run."; }
REGISTER_TYPED_TEST_CASE_P(DISABLED_TypedTestP, ShouldNotRun);
INSTANTIATE_TYPED_TEST_CASE_P(My, DISABLED_TypedTestP, NumericTypes);
#endif // GTEST_HAS_TYPED_TEST_P
// Tests that assertion macros evaluate their arguments exactly once.
class SingleEvaluationTest : public Test { public: // Must be public and not protected due to a bug in g++ 3.4.2.
// This helper function is needed by the FailedASSERT_STREQ test
// below. It's public to work around C++Builder's bug with scoping local
// classes.
static void CompareAndIncrementCharPtrs() { ASSERT_STREQ(p1_++, p2_++); }
// This helper function is needed by the FailedASSERT_NE test below. It's
// public to work around C++Builder's bug with scoping local classes.
static void CompareAndIncrementInts() { ASSERT_NE(a_++, b_++); }
protected: SingleEvaluationTest() { p1_ = s1_; p2_ = s2_; a_ = 0; b_ = 0; }
static const char* const s1_; static const char* const s2_; static const char* p1_; static const char* p2_;
static int a_; static int b_; };
const char* const SingleEvaluationTest::s1_ = "01234"; const char* const SingleEvaluationTest::s2_ = "abcde"; const char* SingleEvaluationTest::p1_; const char* SingleEvaluationTest::p2_; int SingleEvaluationTest::a_; int SingleEvaluationTest::b_;
// Tests that when ASSERT_STREQ fails, it evaluates its arguments
// exactly once.
TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) { EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementCharPtrs(), "p2_++"); EXPECT_EQ(s1_ + 1, p1_); EXPECT_EQ(s2_ + 1, p2_); }
// Tests that string assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest, ASSERT_STR) { // successful EXPECT_STRNE
EXPECT_STRNE(p1_++, p2_++); EXPECT_EQ(s1_ + 1, p1_); EXPECT_EQ(s2_ + 1, p2_);
// failed EXPECT_STRCASEEQ
EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++), "ignoring case"); EXPECT_EQ(s1_ + 2, p1_); EXPECT_EQ(s2_ + 2, p2_); }
// Tests that when ASSERT_NE fails, it evaluates its arguments exactly
// once.
TEST_F(SingleEvaluationTest, FailedASSERT_NE) { EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementInts(), "(a_++) != (b_++)"); EXPECT_EQ(1, a_); EXPECT_EQ(1, b_); }
// Tests that assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest, OtherCases) { // successful EXPECT_TRUE
EXPECT_TRUE(0 == a_++); // NOLINT
EXPECT_EQ(1, a_);
// failed EXPECT_TRUE
EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++"); EXPECT_EQ(2, a_);
// successful EXPECT_GT
EXPECT_GT(a_++, b_++); EXPECT_EQ(3, a_); EXPECT_EQ(1, b_);
// failed EXPECT_LT
EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)"); EXPECT_EQ(4, a_); EXPECT_EQ(2, b_);
// successful ASSERT_TRUE
ASSERT_TRUE(0 < a_++); // NOLINT
EXPECT_EQ(5, a_);
// successful ASSERT_GT
ASSERT_GT(a_++, b_++); EXPECT_EQ(6, a_); EXPECT_EQ(3, b_); }
#if GTEST_HAS_EXCEPTIONS
void ThrowAnInteger() { throw 1; }
// Tests that assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest, ExceptionTests) { // successful EXPECT_THROW
EXPECT_THROW({ // NOLINT
a_++; ThrowAnInteger(); }, int); EXPECT_EQ(1, a_);
// failed EXPECT_THROW, throws different
EXPECT_NONFATAL_FAILURE(EXPECT_THROW({ // NOLINT
a_++; ThrowAnInteger(); }, bool), "throws a different type"); EXPECT_EQ(2, a_);
// failed EXPECT_THROW, throws nothing
EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing"); EXPECT_EQ(3, a_);
// successful EXPECT_NO_THROW
EXPECT_NO_THROW(a_++); EXPECT_EQ(4, a_);
// failed EXPECT_NO_THROW
EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW({ // NOLINT
a_++; ThrowAnInteger(); }), "it throws"); EXPECT_EQ(5, a_);
// successful EXPECT_ANY_THROW
EXPECT_ANY_THROW({ // NOLINT
a_++; ThrowAnInteger(); }); EXPECT_EQ(6, a_);
// failed EXPECT_ANY_THROW
EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't"); EXPECT_EQ(7, a_); }
#endif // GTEST_HAS_EXCEPTIONS
// Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE.
class NoFatalFailureTest : public Test { protected: void Succeeds() {} void FailsNonFatal() { ADD_FAILURE() << "some non-fatal failure"; } void Fails() { FAIL() << "some fatal failure"; }
void DoAssertNoFatalFailureOnFails() { ASSERT_NO_FATAL_FAILURE(Fails()); ADD_FAILURE() << "shold not reach here."; }
void DoExpectNoFatalFailureOnFails() { EXPECT_NO_FATAL_FAILURE(Fails()); ADD_FAILURE() << "other failure"; } };
TEST_F(NoFatalFailureTest, NoFailure) { EXPECT_NO_FATAL_FAILURE(Succeeds()); ASSERT_NO_FATAL_FAILURE(Succeeds()); }
TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) { EXPECT_NONFATAL_FAILURE( EXPECT_NO_FATAL_FAILURE(FailsNonFatal()), "some non-fatal failure"); EXPECT_NONFATAL_FAILURE( ASSERT_NO_FATAL_FAILURE(FailsNonFatal()), "some non-fatal failure"); }
TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) { TestPartResultArray gtest_failures; { ScopedFakeTestPartResultReporter gtest_reporter(>est_failures); DoAssertNoFatalFailureOnFails(); } ASSERT_EQ(2, gtest_failures.size()); EXPECT_EQ(TestPartResult::kFatalFailure, gtest_failures.GetTestPartResult(0).type()); EXPECT_EQ(TestPartResult::kFatalFailure, gtest_failures.GetTestPartResult(1).type()); EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure", gtest_failures.GetTestPartResult(0).message()); EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does", gtest_failures.GetTestPartResult(1).message()); }
TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) { TestPartResultArray gtest_failures; { ScopedFakeTestPartResultReporter gtest_reporter(>est_failures); DoExpectNoFatalFailureOnFails(); } ASSERT_EQ(3, gtest_failures.size()); EXPECT_EQ(TestPartResult::kFatalFailure, gtest_failures.GetTestPartResult(0).type()); EXPECT_EQ(TestPartResult::kNonFatalFailure, gtest_failures.GetTestPartResult(1).type()); EXPECT_EQ(TestPartResult::kNonFatalFailure, gtest_failures.GetTestPartResult(2).type()); EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure", gtest_failures.GetTestPartResult(0).message()); EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does", gtest_failures.GetTestPartResult(1).message()); EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure", gtest_failures.GetTestPartResult(2).message()); }
TEST_F(NoFatalFailureTest, MessageIsStreamable) { TestPartResultArray gtest_failures; { ScopedFakeTestPartResultReporter gtest_reporter(>est_failures); EXPECT_NO_FATAL_FAILURE(FAIL() << "foo") << "my message"; } ASSERT_EQ(2, gtest_failures.size()); EXPECT_EQ(TestPartResult::kNonFatalFailure, gtest_failures.GetTestPartResult(0).type()); EXPECT_EQ(TestPartResult::kNonFatalFailure, gtest_failures.GetTestPartResult(1).type()); EXPECT_PRED_FORMAT2(testing::IsSubstring, "foo", gtest_failures.GetTestPartResult(0).message()); EXPECT_PRED_FORMAT2(testing::IsSubstring, "my message", gtest_failures.GetTestPartResult(1).message()); }
// Tests non-string assertions.
// Tests EqFailure(), used for implementing *EQ* assertions.
TEST(AssertionTest, EqFailure) { const String foo_val("5"), bar_val("6"); const String msg1( EqFailure("foo", "bar", foo_val, bar_val, false) .failure_message()); EXPECT_STREQ( "Value of: bar\n" " Actual: 6\n" "Expected: foo\n" "Which is: 5", msg1.c_str());
const String msg2( EqFailure("foo", "6", foo_val, bar_val, false) .failure_message()); EXPECT_STREQ( "Value of: 6\n" "Expected: foo\n" "Which is: 5", msg2.c_str());
const String msg3( EqFailure("5", "bar", foo_val, bar_val, false) .failure_message()); EXPECT_STREQ( "Value of: bar\n" " Actual: 6\n" "Expected: 5", msg3.c_str());
const String msg4( EqFailure("5", "6", foo_val, bar_val, false).failure_message()); EXPECT_STREQ( "Value of: 6\n" "Expected: 5", msg4.c_str());
const String msg5( EqFailure("foo", "bar", String("\"x\""), String("\"y\""), true).failure_message()); EXPECT_STREQ( "Value of: bar\n" " Actual: \"y\"\n" "Expected: foo (ignoring case)\n" "Which is: \"x\"", msg5.c_str()); }
// Tests AppendUserMessage(), used for implementing the *EQ* macros.
TEST(AssertionTest, AppendUserMessage) { const String foo("foo");
Message msg; EXPECT_STREQ("foo", AppendUserMessage(foo, msg).c_str());
msg << "bar"; EXPECT_STREQ("foo\nbar", AppendUserMessage(foo, msg).c_str()); }
#ifdef __BORLANDC__
// Silences warnings: "Condition is always true", "Unreachable code"
# pragma option push -w-ccc -w-rch
#endif
// Tests ASSERT_TRUE.
TEST(AssertionTest, ASSERT_TRUE) { ASSERT_TRUE(2 > 1); // NOLINT
EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1), "2 < 1"); }
// Tests ASSERT_TRUE(predicate) for predicates returning AssertionResult.
TEST(AssertionTest, AssertTrueWithAssertionResult) { ASSERT_TRUE(ResultIsEven(2)); #ifndef __BORLANDC__
// ICE's in C++Builder.
EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEven(3)), "Value of: ResultIsEven(3)\n" " Actual: false (3 is odd)\n" "Expected: true"); #endif
ASSERT_TRUE(ResultIsEvenNoExplanation(2)); EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEvenNoExplanation(3)), "Value of: ResultIsEvenNoExplanation(3)\n" " Actual: false (3 is odd)\n" "Expected: true"); }
// Tests ASSERT_FALSE.
TEST(AssertionTest, ASSERT_FALSE) { ASSERT_FALSE(2 < 1); // NOLINT
EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1), "Value of: 2 > 1\n" " Actual: true\n" "Expected: false"); }
// Tests ASSERT_FALSE(predicate) for predicates returning AssertionResult.
TEST(AssertionTest, AssertFalseWithAssertionResult) { ASSERT_FALSE(ResultIsEven(3)); #ifndef __BORLANDC__
// ICE's in C++Builder.
EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEven(2)), "Value of: ResultIsEven(2)\n" " Actual: true (2 is even)\n" "Expected: false"); #endif
ASSERT_FALSE(ResultIsEvenNoExplanation(3)); EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEvenNoExplanation(2)), "Value of: ResultIsEvenNoExplanation(2)\n" " Actual: true\n" "Expected: false"); }
#ifdef __BORLANDC__
// Restores warnings after previous "#pragma option push" supressed them
# pragma option pop
#endif
// Tests using ASSERT_EQ on double values. The purpose is to make
// sure that the specialization we did for integer and anonymous enums
// isn't used for double arguments.
TEST(ExpectTest, ASSERT_EQ_Double) { // A success.
ASSERT_EQ(5.6, 5.6);
// A failure.
EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2), "5.1"); }
// Tests ASSERT_EQ.
TEST(AssertionTest, ASSERT_EQ) { ASSERT_EQ(5, 2 + 3); EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3), "Value of: 2*3\n" " Actual: 6\n" "Expected: 5"); }
// Tests ASSERT_EQ(NULL, pointer).
#if GTEST_CAN_COMPARE_NULL
TEST(AssertionTest, ASSERT_EQ_NULL) { // A success.
const char* p = NULL; // Some older GCC versions may issue a spurious waring in this or the next
// assertion statement. This warning should not be suppressed with
// static_cast since the test verifies the ability to use bare NULL as the
// expected parameter to the macro.
ASSERT_EQ(NULL, p);
// A failure.
static int n = 0; EXPECT_FATAL_FAILURE(ASSERT_EQ(NULL, &n), "Value of: &n\n"); } #endif // GTEST_CAN_COMPARE_NULL
// Tests ASSERT_EQ(0, non_pointer). Since the literal 0 can be
// treated as a null pointer by the compiler, we need to make sure
// that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as
// ASSERT_EQ(static_cast<void*>(NULL), non_pointer).
TEST(ExpectTest, ASSERT_EQ_0) { int n = 0;
// A success.
ASSERT_EQ(0, n);
// A failure.
EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6), "Expected: 0"); }
// Tests ASSERT_NE.
TEST(AssertionTest, ASSERT_NE) { ASSERT_NE(6, 7); EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'), "Expected: ('a') != ('a'), " "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)"); }
// Tests ASSERT_LE.
TEST(AssertionTest, ASSERT_LE) { ASSERT_LE(2, 3); ASSERT_LE(2, 2); EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0), "Expected: (2) <= (0), actual: 2 vs 0"); }
// Tests ASSERT_LT.
TEST(AssertionTest, ASSERT_LT) { ASSERT_LT(2, 3); EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2), "Expected: (2) < (2), actual: 2 vs 2"); }
// Tests ASSERT_GE.
TEST(AssertionTest, ASSERT_GE) { ASSERT_GE(2, 1); ASSERT_GE(2, 2); EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3), "Expected: (2) >= (3), actual: 2 vs 3"); }
// Tests ASSERT_GT.
TEST(AssertionTest, ASSERT_GT) { ASSERT_GT(2, 1); EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2), "Expected: (2) > (2), actual: 2 vs 2"); }
#if GTEST_HAS_EXCEPTIONS
void ThrowNothing() {}
// Tests ASSERT_THROW.
TEST(AssertionTest, ASSERT_THROW) { ASSERT_THROW(ThrowAnInteger(), int);
# ifndef __BORLANDC__
// ICE's in C++Builder 2007 and 2009.
EXPECT_FATAL_FAILURE( ASSERT_THROW(ThrowAnInteger(), bool), "Expected: ThrowAnInteger() throws an exception of type bool.\n" " Actual: it throws a different type."); # endif
EXPECT_FATAL_FAILURE( ASSERT_THROW(ThrowNothing(), bool), "Expected: ThrowNothing() throws an exception of type bool.\n" " Actual: it throws nothing."); }
// Tests ASSERT_NO_THROW.
TEST(AssertionTest, ASSERT_NO_THROW) { ASSERT_NO_THROW(ThrowNothing()); EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()), "Expected: ThrowAnInteger() doesn't throw an exception." "\n Actual: it throws."); }
// Tests ASSERT_ANY_THROW.
TEST(AssertionTest, ASSERT_ANY_THROW) { ASSERT_ANY_THROW(ThrowAnInteger()); EXPECT_FATAL_FAILURE( ASSERT_ANY_THROW(ThrowNothing()), "Expected: ThrowNothing() throws an exception.\n" " Actual: it doesn't."); }
#endif // GTEST_HAS_EXCEPTIONS
// Makes sure we deal with the precedence of <<. This test should
// compile.
TEST(AssertionTest, AssertPrecedence) { ASSERT_EQ(1 < 2, true); bool false_value = false; ASSERT_EQ(true && false_value, false); }
// A subroutine used by the following test.
void TestEq1(int x) { ASSERT_EQ(1, x); }
// Tests calling a test subroutine that's not part of a fixture.
TEST(AssertionTest, NonFixtureSubroutine) { EXPECT_FATAL_FAILURE(TestEq1(2), "Value of: x"); }
// An uncopyable class.
class Uncopyable { public: explicit Uncopyable(int a_value) : value_(a_value) {}
int value() const { return value_; } bool operator==(const Uncopyable& rhs) const { return value() == rhs.value(); } private: // This constructor deliberately has no implementation, as we don't
// want this class to be copyable.
Uncopyable(const Uncopyable&); // NOLINT
int value_; };
::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) { return os << value.value(); }
bool IsPositiveUncopyable(const Uncopyable& x) { return x.value() > 0; }
// A subroutine used by the following test.
void TestAssertNonPositive() { Uncopyable y(-1); ASSERT_PRED1(IsPositiveUncopyable, y); } // A subroutine used by the following test.
void TestAssertEqualsUncopyable() { Uncopyable x(5); Uncopyable y(-1); ASSERT_EQ(x, y); }
// Tests that uncopyable objects can be used in assertions.
TEST(AssertionTest, AssertWorksWithUncopyableObject) { Uncopyable x(5); ASSERT_PRED1(IsPositiveUncopyable, x); ASSERT_EQ(x, x); EXPECT_FATAL_FAILURE(TestAssertNonPositive(), "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1"); EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(), "Value of: y\n Actual: -1\nExpected: x\nWhich is: 5"); }
// Tests that uncopyable objects can be used in expects.
TEST(AssertionTest, ExpectWorksWithUncopyableObject) { Uncopyable x(5); EXPECT_PRED1(IsPositiveUncopyable, x); Uncopyable y(-1); EXPECT_NONFATAL_FAILURE(EXPECT_PRED1(IsPositiveUncopyable, y), "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1"); EXPECT_EQ(x, x); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "Value of: y\n Actual: -1\nExpected: x\nWhich is: 5"); }
enum NamedEnum { kE1 = 0, kE2 = 1 };
TEST(AssertionTest, NamedEnum) { EXPECT_EQ(kE1, kE1); EXPECT_LT(kE1, kE2); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 0"); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Actual: 1"); }
// The version of gcc used in XCode 2.2 has a bug and doesn't allow
// anonymous enums in assertions. Therefore the following test is not
// done on Mac.
// Sun Studio and HP aCC also reject this code.
#if !GTEST_OS_MAC && !defined(__SUNPRO_CC) && !defined(__HP_aCC)
// Tests using assertions with anonymous enums.
enum { kCaseA = -1,
# if GTEST_OS_LINUX
// We want to test the case where the size of the anonymous enum is
// larger than sizeof(int), to make sure our implementation of the
// assertions doesn't truncate the enums. However, MSVC
// (incorrectly) doesn't allow an enum value to exceed the range of
// an int, so this has to be conditionally compiled.
//
// On Linux, kCaseB and kCaseA have the same value when truncated to
// int size. We want to test whether this will confuse the
// assertions.
kCaseB = testing::internal::kMaxBiggestInt,
# else
kCaseB = INT_MAX,
# endif // GTEST_OS_LINUX
kCaseC = 42 };
TEST(AssertionTest, AnonymousEnum) { # if GTEST_OS_LINUX
EXPECT_EQ(static_cast<int>(kCaseA), static_cast<int>(kCaseB));
# endif // GTEST_OS_LINUX
EXPECT_EQ(kCaseA, kCaseA); EXPECT_NE(kCaseA, kCaseB); EXPECT_LT(kCaseA, kCaseB); EXPECT_LE(kCaseA, kCaseB); EXPECT_GT(kCaseB, kCaseA); EXPECT_GE(kCaseA, kCaseA); EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseB), "(kCaseA) >= (kCaseB)"); EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseC), "-1 vs 42");
ASSERT_EQ(kCaseA, kCaseA); ASSERT_NE(kCaseA, kCaseB); ASSERT_LT(kCaseA, kCaseB); ASSERT_LE(kCaseA, kCaseB); ASSERT_GT(kCaseB, kCaseA); ASSERT_GE(kCaseA, kCaseA);
# ifndef __BORLANDC__
// ICE's in C++Builder.
EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseB), "Value of: kCaseB"); EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC), "Actual: 42"); # endif
EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC), "Which is: -1"); }
#endif // !GTEST_OS_MAC && !defined(__SUNPRO_CC)
#if GTEST_OS_WINDOWS
static HRESULT UnexpectedHRESULTFailure() { return E_UNEXPECTED; }
static HRESULT OkHRESULTSuccess() { return S_OK; }
static HRESULT FalseHRESULTSuccess() { return S_FALSE; }
// HRESULT assertion tests test both zero and non-zero
// success codes as well as failure message for each.
//
// Windows CE doesn't support message texts.
TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) { EXPECT_HRESULT_SUCCEEDED(S_OK); EXPECT_HRESULT_SUCCEEDED(S_FALSE);
EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()), "Expected: (UnexpectedHRESULTFailure()) succeeds.\n" " Actual: 0x8000FFFF"); }
TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) { ASSERT_HRESULT_SUCCEEDED(S_OK); ASSERT_HRESULT_SUCCEEDED(S_FALSE);
EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()), "Expected: (UnexpectedHRESULTFailure()) succeeds.\n" " Actual: 0x8000FFFF"); }
TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) { EXPECT_HRESULT_FAILED(E_UNEXPECTED);
EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()), "Expected: (OkHRESULTSuccess()) fails.\n" " Actual: 0x00000000"); EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()), "Expected: (FalseHRESULTSuccess()) fails.\n" " Actual: 0x00000001"); }
TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) { ASSERT_HRESULT_FAILED(E_UNEXPECTED);
# ifndef __BORLANDC__
// ICE's in C++Builder 2007 and 2009.
EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()), "Expected: (OkHRESULTSuccess()) fails.\n" " Actual: 0x00000000"); # endif
EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()), "Expected: (FalseHRESULTSuccess()) fails.\n" " Actual: 0x00000001"); }
// Tests that streaming to the HRESULT macros works.
TEST(HRESULTAssertionTest, Streaming) { EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure"; ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure"; EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure"; ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
EXPECT_NONFATAL_FAILURE( EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure", "expected failure");
# ifndef __BORLANDC__
// ICE's in C++Builder 2007 and 2009.
EXPECT_FATAL_FAILURE( ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure", "expected failure"); # endif
EXPECT_NONFATAL_FAILURE( EXPECT_HRESULT_FAILED(S_OK) << "expected failure", "expected failure");
EXPECT_FATAL_FAILURE( ASSERT_HRESULT_FAILED(S_OK) << "expected failure", "expected failure"); }
#endif // GTEST_OS_WINDOWS
#ifdef __BORLANDC__
// Silences warnings: "Condition is always true", "Unreachable code"
# pragma option push -w-ccc -w-rch
#endif
// Tests that the assertion macros behave like single statements.
TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) { if (AlwaysFalse()) ASSERT_TRUE(false) << "This should never be executed; " "It's a compilation test only.";
if (AlwaysTrue()) EXPECT_FALSE(false); else ; // NOLINT
if (AlwaysFalse()) ASSERT_LT(1, 3);
if (AlwaysFalse()) ; // NOLINT
else EXPECT_GT(3, 2) << ""; }
#if GTEST_HAS_EXCEPTIONS
// Tests that the compiler will not complain about unreachable code in the
// EXPECT_THROW/EXPECT_ANY_THROW/EXPECT_NO_THROW macros.
TEST(ExpectThrowTest, DoesNotGenerateUnreachableCodeWarning) { int n = 0;
EXPECT_THROW(throw 1, int); EXPECT_NONFATAL_FAILURE(EXPECT_THROW(n++, int), ""); EXPECT_NONFATAL_FAILURE(EXPECT_THROW(throw 1, const char*), ""); EXPECT_NO_THROW(n++); EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(throw 1), ""); EXPECT_ANY_THROW(throw 1); EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(n++), ""); }
TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) { if (AlwaysFalse()) EXPECT_THROW(ThrowNothing(), bool);
if (AlwaysTrue()) EXPECT_THROW(ThrowAnInteger(), int); else ; // NOLINT
if (AlwaysFalse()) EXPECT_NO_THROW(ThrowAnInteger());
if (AlwaysTrue()) EXPECT_NO_THROW(ThrowNothing()); else ; // NOLINT
if (AlwaysFalse()) EXPECT_ANY_THROW(ThrowNothing());
if (AlwaysTrue()) EXPECT_ANY_THROW(ThrowAnInteger()); else ; // NOLINT
} #endif // GTEST_HAS_EXCEPTIONS
TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) { if (AlwaysFalse()) EXPECT_NO_FATAL_FAILURE(FAIL()) << "This should never be executed. " << "It's a compilation test only."; else ; // NOLINT
if (AlwaysFalse()) ASSERT_NO_FATAL_FAILURE(FAIL()) << ""; else ; // NOLINT
if (AlwaysTrue()) EXPECT_NO_FATAL_FAILURE(SUCCEED()); else ; // NOLINT
if (AlwaysFalse()) ; // NOLINT
else ASSERT_NO_FATAL_FAILURE(SUCCEED()); }
// Tests that the assertion macros work well with switch statements.
TEST(AssertionSyntaxTest, WorksWithSwitch) { switch (0) { case 1: break; default: ASSERT_TRUE(true); }
switch (0) case 0: EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case";
// Binary assertions are implemented using a different code path
// than the Boolean assertions. Hence we test them separately.
switch (0) { case 1: default: ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler"; }
switch (0) case 0: EXPECT_NE(1, 2); }
#if GTEST_HAS_EXCEPTIONS
void ThrowAString() { throw "String"; }
// Test that the exception assertion macros compile and work with const
// type qualifier.
TEST(AssertionSyntaxTest, WorksWithConst) { ASSERT_THROW(ThrowAString(), const char*);
EXPECT_THROW(ThrowAString(), const char*); }
#endif // GTEST_HAS_EXCEPTIONS
} // namespace
namespace testing {
// Tests that Google Test tracks SUCCEED*.
TEST(SuccessfulAssertionTest, SUCCEED) { SUCCEED(); SUCCEED() << "OK"; EXPECT_EQ(2, GetUnitTestImpl()->current_test_result()->total_part_count()); }
// Tests that Google Test doesn't track successful EXPECT_*.
TEST(SuccessfulAssertionTest, EXPECT) { EXPECT_TRUE(true); EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count()); }
// Tests that Google Test doesn't track successful EXPECT_STR*.
TEST(SuccessfulAssertionTest, EXPECT_STR) { EXPECT_STREQ("", ""); EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count()); }
// Tests that Google Test doesn't track successful ASSERT_*.
TEST(SuccessfulAssertionTest, ASSERT) { ASSERT_TRUE(true); EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count()); }
// Tests that Google Test doesn't track successful ASSERT_STR*.
TEST(SuccessfulAssertionTest, ASSERT_STR) { ASSERT_STREQ("", ""); EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count()); }
} // namespace testing
namespace {
// Tests EXPECT_TRUE.
TEST(ExpectTest, EXPECT_TRUE) { EXPECT_TRUE(2 > 1); // NOLINT
EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1), "Value of: 2 < 1\n" " Actual: false\n" "Expected: true"); EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3), "2 > 3"); }
// Tests EXPECT_TRUE(predicate) for predicates returning AssertionResult.
TEST(ExpectTest, ExpectTrueWithAssertionResult) { EXPECT_TRUE(ResultIsEven(2)); EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEven(3)), "Value of: ResultIsEven(3)\n" " Actual: false (3 is odd)\n" "Expected: true"); EXPECT_TRUE(ResultIsEvenNoExplanation(2)); EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEvenNoExplanation(3)), "Value of: ResultIsEvenNoExplanation(3)\n" " Actual: false (3 is odd)\n" "Expected: true"); }
// Tests EXPECT_FALSE.
TEST(ExpectTest, EXPECT_FALSE) { EXPECT_FALSE(2 < 1); // NOLINT
EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1), "Value of: 2 > 1\n" " Actual: true\n" "Expected: false"); EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3), "2 < 3"); }
// Tests EXPECT_FALSE(predicate) for predicates returning AssertionResult.
TEST(ExpectTest, ExpectFalseWithAssertionResult) { EXPECT_FALSE(ResultIsEven(3)); EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEven(2)), "Value of: ResultIsEven(2)\n" " Actual: true (2 is even)\n" "Expected: false"); EXPECT_FALSE(ResultIsEvenNoExplanation(3)); EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEvenNoExplanation(2)), "Value of: ResultIsEvenNoExplanation(2)\n" " Actual: true\n" "Expected: false"); }
#ifdef __BORLANDC__
// Restores warnings after previous "#pragma option push" supressed them
# pragma option pop
#endif
// Tests EXPECT_EQ.
TEST(ExpectTest, EXPECT_EQ) { EXPECT_EQ(5, 2 + 3); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3), "Value of: 2*3\n" " Actual: 6\n" "Expected: 5"); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3), "2 - 3"); }
// Tests using EXPECT_EQ on double values. The purpose is to make
// sure that the specialization we did for integer and anonymous enums
// isn't used for double arguments.
TEST(ExpectTest, EXPECT_EQ_Double) { // A success.
EXPECT_EQ(5.6, 5.6);
// A failure.
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2), "5.1"); }
#if GTEST_CAN_COMPARE_NULL
// Tests EXPECT_EQ(NULL, pointer).
TEST(ExpectTest, EXPECT_EQ_NULL) { // A success.
const char* p = NULL; // Some older GCC versions may issue a spurious warning in this or the next
// assertion statement. This warning should not be suppressed with
// static_cast since the test verifies the ability to use bare NULL as the
// expected parameter to the macro.
EXPECT_EQ(NULL, p);
// A failure.
int n = 0; EXPECT_NONFATAL_FAILURE(EXPECT_EQ(NULL, &n), "Value of: &n\n"); } #endif // GTEST_CAN_COMPARE_NULL
// Tests EXPECT_EQ(0, non_pointer). Since the literal 0 can be
// treated as a null pointer by the compiler, we need to make sure
// that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as
// EXPECT_EQ(static_cast<void*>(NULL), non_pointer).
TEST(ExpectTest, EXPECT_EQ_0) { int n = 0;
// A success.
EXPECT_EQ(0, n);
// A failure.
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6), "Expected: 0"); }
// Tests EXPECT_NE.
TEST(ExpectTest, EXPECT_NE) { EXPECT_NE(6, 7);
EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'), "Expected: ('a') != ('a'), " "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)"); EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2), "2"); char* const p0 = NULL; EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0), "p0"); // Only way to get the Nokia compiler to compile the cast
// is to have a separate void* variable first. Putting
// the two casts on the same line doesn't work, neither does
// a direct C-style to char*.
void* pv1 = (void*)0x1234; // NOLINT
char* const p1 = reinterpret_cast<char*>(pv1); EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1), "p1"); }
// Tests EXPECT_LE.
TEST(ExpectTest, EXPECT_LE) { EXPECT_LE(2, 3); EXPECT_LE(2, 2); EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0), "Expected: (2) <= (0), actual: 2 vs 0"); EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9), "(1.1) <= (0.9)"); }
// Tests EXPECT_LT.
TEST(ExpectTest, EXPECT_LT) { EXPECT_LT(2, 3); EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2), "Expected: (2) < (2), actual: 2 vs 2"); EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1), "(2) < (1)"); }
// Tests EXPECT_GE.
TEST(ExpectTest, EXPECT_GE) { EXPECT_GE(2, 1); EXPECT_GE(2, 2); EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3), "Expected: (2) >= (3), actual: 2 vs 3"); EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1), "(0.9) >= (1.1)"); }
// Tests EXPECT_GT.
TEST(ExpectTest, EXPECT_GT) { EXPECT_GT(2, 1); EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2), "Expected: (2) > (2), actual: 2 vs 2"); EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3), "(2) > (3)"); }
#if GTEST_HAS_EXCEPTIONS
// Tests EXPECT_THROW.
TEST(ExpectTest, EXPECT_THROW) { EXPECT_THROW(ThrowAnInteger(), int); EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool), "Expected: ThrowAnInteger() throws an exception of " "type bool.\n Actual: it throws a different type."); EXPECT_NONFATAL_FAILURE( EXPECT_THROW(ThrowNothing(), bool), "Expected: ThrowNothing() throws an exception of type bool.\n" " Actual: it throws nothing."); }
// Tests EXPECT_NO_THROW.
TEST(ExpectTest, EXPECT_NO_THROW) { EXPECT_NO_THROW(ThrowNothing()); EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()), "Expected: ThrowAnInteger() doesn't throw an " "exception.\n Actual: it throws."); }
// Tests EXPECT_ANY_THROW.
TEST(ExpectTest, EXPECT_ANY_THROW) { EXPECT_ANY_THROW(ThrowAnInteger()); EXPECT_NONFATAL_FAILURE( EXPECT_ANY_THROW(ThrowNothing()), "Expected: ThrowNothing() throws an exception.\n" " Actual: it doesn't."); }
#endif // GTEST_HAS_EXCEPTIONS
// Make sure we deal with the precedence of <<.
TEST(ExpectTest, ExpectPrecedence) { EXPECT_EQ(1 < 2, true); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false), "Value of: true && false"); }
// Tests the StreamableToString() function.
// Tests using StreamableToString() on a scalar.
TEST(StreamableToStringTest, Scalar) { EXPECT_STREQ("5", StreamableToString(5).c_str()); }
// Tests using StreamableToString() on a non-char pointer.
TEST(StreamableToStringTest, Pointer) { int n = 0; int* p = &n; EXPECT_STRNE("(null)", StreamableToString(p).c_str()); }
// Tests using StreamableToString() on a NULL non-char pointer.
TEST(StreamableToStringTest, NullPointer) { int* p = NULL; EXPECT_STREQ("(null)", StreamableToString(p).c_str()); }
// Tests using StreamableToString() on a C string.
TEST(StreamableToStringTest, CString) { EXPECT_STREQ("Foo", StreamableToString("Foo").c_str()); }
// Tests using StreamableToString() on a NULL C string.
TEST(StreamableToStringTest, NullCString) { char* p = NULL; EXPECT_STREQ("(null)", StreamableToString(p).c_str()); }
// Tests using streamable values as assertion messages.
// Tests using std::string as an assertion message.
TEST(StreamableTest, string) { static const std::string str( "This failure message is a std::string, and is expected."); EXPECT_FATAL_FAILURE(FAIL() << str, str.c_str()); }
// Tests that we can output strings containing embedded NULs.
// Limited to Linux because we can only do this with std::string's.
TEST(StreamableTest, stringWithEmbeddedNUL) { static const char char_array_with_nul[] = "Here's a NUL\0 and some more string"; static const std::string string_with_nul(char_array_with_nul, sizeof(char_array_with_nul) - 1); // drops the trailing NUL
EXPECT_FATAL_FAILURE(FAIL() << string_with_nul, "Here's a NUL\\0 and some more string"); }
// Tests that we can output a NUL char.
TEST(StreamableTest, NULChar) { EXPECT_FATAL_FAILURE({ // NOLINT
FAIL() << "A NUL" << '\0' << " and some more string"; }, "A NUL\\0 and some more string"); }
// Tests using int as an assertion message.
TEST(StreamableTest, int) { EXPECT_FATAL_FAILURE(FAIL() << 900913, "900913"); }
// Tests using NULL char pointer as an assertion message.
//
// In MSVC, streaming a NULL char * causes access violation. Google Test
// implemented a workaround (substituting "(null)" for NULL). This
// tests whether the workaround works.
TEST(StreamableTest, NullCharPtr) { EXPECT_FATAL_FAILURE(FAIL() << static_cast<const char*>(NULL), "(null)"); }
// Tests that basic IO manipulators (endl, ends, and flush) can be
// streamed to testing::Message.
TEST(StreamableTest, BasicIoManip) { EXPECT_FATAL_FAILURE({ // NOLINT
FAIL() << "Line 1." << std::endl << "A NUL char " << std::ends << std::flush << " in line 2."; }, "Line 1.\nA NUL char \\0 in line 2."); }
// Tests the macros that haven't been covered so far.
void AddFailureHelper(bool* aborted) { *aborted = true; ADD_FAILURE() << "Failure"; *aborted = false; }
// Tests ADD_FAILURE.
TEST(MacroTest, ADD_FAILURE) { bool aborted = true; EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted), "Failure"); EXPECT_FALSE(aborted); }
// Tests ADD_FAILURE_AT.
TEST(MacroTest, ADD_FAILURE_AT) { // Verifies that ADD_FAILURE_AT does generate a nonfatal failure and
// the failure message contains the user-streamed part.
EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42) << "Wrong!", "Wrong!");
// Verifies that the user-streamed part is optional.
EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42), "Failed");
// Unfortunately, we cannot verify that the failure message contains
// the right file path and line number the same way, as
// EXPECT_NONFATAL_FAILURE() doesn't get to see the file path and
// line number. Instead, we do that in gtest_output_test_.cc.
}
// Tests FAIL.
TEST(MacroTest, FAIL) { EXPECT_FATAL_FAILURE(FAIL(), "Failed"); EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.", "Intentional failure."); }
// Tests SUCCEED
TEST(MacroTest, SUCCEED) { SUCCEED(); SUCCEED() << "Explicit success."; }
// Tests for EXPECT_EQ() and ASSERT_EQ().
//
// These tests fail *intentionally*, s.t. the failure messages can be
// generated and tested.
//
// We have different tests for different argument types.
// Tests using bool values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest, Bool) { EXPECT_EQ(true, true); EXPECT_FATAL_FAILURE({ bool false_value = false; ASSERT_EQ(false_value, true); }, "Value of: true"); }
// Tests using int values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest, Int) { ASSERT_EQ(32, 32); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33), "33"); }
// Tests using time_t values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest, Time_T) { EXPECT_EQ(static_cast<time_t>(0), static_cast<time_t>(0)); EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<time_t>(0), static_cast<time_t>(1234)), "1234"); }
// Tests using char values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest, Char) { ASSERT_EQ('z', 'z'); const char ch = 'b'; EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch), "ch"); EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch), "ch"); }
// Tests using wchar_t values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest, WideChar) { EXPECT_EQ(L'b', L'b');
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'), "Value of: L'x'\n" " Actual: L'x' (120, 0x78)\n" "Expected: L'\0'\n" "Which is: L'\0' (0, 0x0)");
static wchar_t wchar; wchar = L'b'; EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar), "wchar"); wchar = 0x8119; EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<wchar_t>(0x8120), wchar), "Value of: wchar"); }
// Tests using ::std::string values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest, StdString) { // Compares a const char* to an std::string that has identical
// content.
ASSERT_EQ("Test", ::std::string("Test"));
// Compares two identical std::strings.
static const ::std::string str1("A * in the middle"); static const ::std::string str2(str1); EXPECT_EQ(str1, str2);
// Compares a const char* to an std::string that has different
// content
EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")), "::std::string(\"test\")");
// Compares an std::string to a char* that has different content.
char* const p1 = const_cast<char*>("foo"); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1), "p1");
// Compares two std::strings that have different contents, one of
// which having a NUL character in the middle. This should fail.
static ::std::string str3(str1); str3.at(2) = '\0'; EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3), "Value of: str3\n" " Actual: \"A \\0 in the middle\""); }
#if GTEST_HAS_STD_WSTRING
// Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest, StdWideString) { // Compares two identical std::wstrings.
const ::std::wstring wstr1(L"A * in the middle"); const ::std::wstring wstr2(wstr1); ASSERT_EQ(wstr1, wstr2);
// Compares an std::wstring to a const wchar_t* that has identical
// content.
const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' }; EXPECT_EQ(::std::wstring(kTestX8119), kTestX8119);
// Compares an std::wstring to a const wchar_t* that has different
// content.
const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' }; EXPECT_NONFATAL_FAILURE({ // NOLINT
EXPECT_EQ(::std::wstring(kTestX8119), kTestX8120); }, "kTestX8120");
// Compares two std::wstrings that have different contents, one of
// which having a NUL character in the middle.
::std::wstring wstr3(wstr1); wstr3.at(2) = L'\0'; EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3), "wstr3");
// Compares a wchar_t* to an std::wstring that has different
// content.
EXPECT_FATAL_FAILURE({ // NOLINT
ASSERT_EQ(const_cast<wchar_t*>(L"foo"), ::std::wstring(L"bar")); }, ""); }
#endif // GTEST_HAS_STD_WSTRING
#if GTEST_HAS_GLOBAL_STRING
// Tests using ::string values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest, GlobalString) { // Compares a const char* to a ::string that has identical content.
EXPECT_EQ("Test", ::string("Test"));
// Compares two identical ::strings.
const ::string str1("A * in the middle"); const ::string str2(str1); ASSERT_EQ(str1, str2);
// Compares a ::string to a const char* that has different content.
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::string("Test"), "test"), "test");
// Compares two ::strings that have different contents, one of which
// having a NUL character in the middle.
::string str3(str1); str3.at(2) = '\0'; EXPECT_NONFATAL_FAILURE(EXPECT_EQ(str1, str3), "str3");
// Compares a ::string to a char* that has different content.
EXPECT_FATAL_FAILURE({ // NOLINT
ASSERT_EQ(::string("bar"), const_cast<char*>("foo")); }, ""); }
#endif // GTEST_HAS_GLOBAL_STRING
#if GTEST_HAS_GLOBAL_WSTRING
// Tests using ::wstring values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest, GlobalWideString) { // Compares two identical ::wstrings.
static const ::wstring wstr1(L"A * in the middle"); static const ::wstring wstr2(wstr1); EXPECT_EQ(wstr1, wstr2);
// Compares a const wchar_t* to a ::wstring that has identical content.
const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' }; ASSERT_EQ(kTestX8119, ::wstring(kTestX8119));
// Compares a const wchar_t* to a ::wstring that has different
// content.
const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' }; EXPECT_NONFATAL_FAILURE({ // NOLINT
EXPECT_EQ(kTestX8120, ::wstring(kTestX8119)); }, "Test\\x8119");
// Compares a wchar_t* to a ::wstring that has different content.
wchar_t* const p1 = const_cast<wchar_t*>(L"foo"); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, ::wstring(L"bar")), "bar");
// Compares two ::wstrings that have different contents, one of which
// having a NUL character in the middle.
static ::wstring wstr3; wstr3 = wstr1; wstr3.at(2) = L'\0'; EXPECT_FATAL_FAILURE(ASSERT_EQ(wstr1, wstr3), "wstr3"); }
#endif // GTEST_HAS_GLOBAL_WSTRING
// Tests using char pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest, CharPointer) { char* const p0 = NULL; // Only way to get the Nokia compiler to compile the cast
// is to have a separate void* variable first. Putting
// the two casts on the same line doesn't work, neither does
// a direct C-style to char*.
void* pv1 = (void*)0x1234; // NOLINT
void* pv2 = (void*)0xABC0; // NOLINT
char* const p1 = reinterpret_cast<char*>(pv1); char* const p2 = reinterpret_cast<char*>(pv2); ASSERT_EQ(p1, p1);
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2), "Value of: p2"); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2), "p2"); EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast<char*>(0x1234), reinterpret_cast<char*>(0xABC0)), "ABC0"); }
// Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest, WideCharPointer) { wchar_t* const p0 = NULL; // Only way to get the Nokia compiler to compile the cast
// is to have a separate void* variable first. Putting
// the two casts on the same line doesn't work, neither does
// a direct C-style to char*.
void* pv1 = (void*)0x1234; // NOLINT
void* pv2 = (void*)0xABC0; // NOLINT
wchar_t* const p1 = reinterpret_cast<wchar_t*>(pv1); wchar_t* const p2 = reinterpret_cast<wchar_t*>(pv2); EXPECT_EQ(p0, p0);
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2), "Value of: p2"); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2), "p2"); void* pv3 = (void*)0x1234; // NOLINT
void* pv4 = (void*)0xABC0; // NOLINT
const wchar_t* p3 = reinterpret_cast<const wchar_t*>(pv3); const wchar_t* p4 = reinterpret_cast<const wchar_t*>(pv4); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4), "p4"); }
// Tests using other types of pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest, OtherPointer) { ASSERT_EQ(static_cast<const int*>(NULL), static_cast<const int*>(NULL)); EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<const int*>(NULL), reinterpret_cast<const int*>(0x1234)), "0x1234"); }
// A class that supports binary comparison operators but not streaming.
class UnprintableChar { public: explicit UnprintableChar(char ch) : char_(ch) {}
bool operator==(const UnprintableChar& rhs) const { return char_ == rhs.char_; } bool operator!=(const UnprintableChar& rhs) const { return char_ != rhs.char_; } bool operator<(const UnprintableChar& rhs) const { return char_ < rhs.char_; } bool operator<=(const UnprintableChar& rhs) const { return char_ <= rhs.char_; } bool operator>(const UnprintableChar& rhs) const { return char_ > rhs.char_; } bool operator>=(const UnprintableChar& rhs) const { return char_ >= rhs.char_; }
private: char char_; };
// Tests that ASSERT_EQ() and friends don't require the arguments to
// be printable.
TEST(ComparisonAssertionTest, AcceptsUnprintableArgs) { const UnprintableChar x('x'), y('y'); ASSERT_EQ(x, x); EXPECT_NE(x, y); ASSERT_LT(x, y); EXPECT_LE(x, y); ASSERT_GT(y, x); EXPECT_GE(x, x);
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <78>"); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <79>"); EXPECT_NONFATAL_FAILURE(EXPECT_LT(y, y), "1-byte object <79>"); EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <78>"); EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <79>");
// Code tested by EXPECT_FATAL_FAILURE cannot reference local
// variables, so we have to write UnprintableChar('x') instead of x.
#ifndef __BORLANDC__
// ICE's in C++Builder.
EXPECT_FATAL_FAILURE(ASSERT_NE(UnprintableChar('x'), UnprintableChar('x')), "1-byte object <78>"); EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')), "1-byte object <78>"); #endif
EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')), "1-byte object <79>"); EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')), "1-byte object <78>"); EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')), "1-byte object <79>"); }
// Tests the FRIEND_TEST macro.
// This class has a private member we want to test. We will test it
// both in a TEST and in a TEST_F.
class Foo { public: Foo() {}
private: int Bar() const { return 1; }
// Declares the friend tests that can access the private member
// Bar().
FRIEND_TEST(FRIEND_TEST_Test, TEST); FRIEND_TEST(FRIEND_TEST_Test2, TEST_F); };
// Tests that the FRIEND_TEST declaration allows a TEST to access a
// class's private members. This should compile.
TEST(FRIEND_TEST_Test, TEST) { ASSERT_EQ(1, Foo().Bar()); }
// The fixture needed to test using FRIEND_TEST with TEST_F.
class FRIEND_TEST_Test2 : public Test { protected: Foo foo; };
// Tests that the FRIEND_TEST declaration allows a TEST_F to access a
// class's private members. This should compile.
TEST_F(FRIEND_TEST_Test2, TEST_F) { ASSERT_EQ(1, foo.Bar()); }
// Tests the life cycle of Test objects.
// The test fixture for testing the life cycle of Test objects.
//
// This class counts the number of live test objects that uses this
// fixture.
class TestLifeCycleTest : public Test { protected: // Constructor. Increments the number of test objects that uses
// this fixture.
TestLifeCycleTest() { count_++; }
// Destructor. Decrements the number of test objects that uses this
// fixture.
~TestLifeCycleTest() { count_--; }
// Returns the number of live test objects that uses this fixture.
int count() const { return count_; }
private: static int count_; };
int TestLifeCycleTest::count_ = 0;
// Tests the life cycle of test objects.
TEST_F(TestLifeCycleTest, Test1) { // There should be only one test object in this test case that's
// currently alive.
ASSERT_EQ(1, count()); }
// Tests the life cycle of test objects.
TEST_F(TestLifeCycleTest, Test2) { // After Test1 is done and Test2 is started, there should still be
// only one live test object, as the object for Test1 should've been
// deleted.
ASSERT_EQ(1, count()); }
} // namespace
// Tests that the copy constructor works when it is NOT optimized away by
// the compiler.
TEST(AssertionResultTest, CopyConstructorWorksWhenNotOptimied) { // Checks that the copy constructor doesn't try to dereference NULL pointers
// in the source object.
AssertionResult r1 = AssertionSuccess(); AssertionResult r2 = r1; // The following line is added to prevent the compiler from optimizing
// away the constructor call.
r1 << "abc";
AssertionResult r3 = r1; EXPECT_EQ(static_cast<bool>(r3), static_cast<bool>(r1)); EXPECT_STREQ("abc", r1.message()); }
// Tests that AssertionSuccess and AssertionFailure construct
// AssertionResult objects as expected.
TEST(AssertionResultTest, ConstructionWorks) { AssertionResult r1 = AssertionSuccess(); EXPECT_TRUE(r1); EXPECT_STREQ("", r1.message());
AssertionResult r2 = AssertionSuccess() << "abc"; EXPECT_TRUE(r2); EXPECT_STREQ("abc", r2.message());
AssertionResult r3 = AssertionFailure(); EXPECT_FALSE(r3); EXPECT_STREQ("", r3.message());
AssertionResult r4 = AssertionFailure() << "def"; EXPECT_FALSE(r4); EXPECT_STREQ("def", r4.message());
AssertionResult r5 = AssertionFailure(Message() << "ghi"); EXPECT_FALSE(r5); EXPECT_STREQ("ghi", r5.message()); }
// Tests that the negation flips the predicate result but keeps the message.
TEST(AssertionResultTest, NegationWorks) { AssertionResult r1 = AssertionSuccess() << "abc"; EXPECT_FALSE(!r1); EXPECT_STREQ("abc", (!r1).message());
AssertionResult r2 = AssertionFailure() << "def"; EXPECT_TRUE(!r2); EXPECT_STREQ("def", (!r2).message()); }
TEST(AssertionResultTest, StreamingWorks) { AssertionResult r = AssertionSuccess(); r << "abc" << 'd' << 0 << true; EXPECT_STREQ("abcd0true", r.message()); }
TEST(AssertionResultTest, CanStreamOstreamManipulators) { AssertionResult r = AssertionSuccess(); r << "Data" << std::endl << std::flush << std::ends << "Will be visible"; EXPECT_STREQ("Data\n\\0Will be visible", r.message()); }
// Tests streaming a user type whose definition and operator << are
// both in the global namespace.
class Base { public: explicit Base(int an_x) : x_(an_x) {} int x() const { return x_; } private: int x_; }; std::ostream& operator<<(std::ostream& os, const Base& val) { return os << val.x(); } std::ostream& operator<<(std::ostream& os, const Base* pointer) { return os << "(" << pointer->x() << ")"; }
TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) { Message msg; Base a(1);
msg << a << &a; // Uses ::operator<<.
EXPECT_STREQ("1(1)", msg.GetString().c_str()); }
// Tests streaming a user type whose definition and operator<< are
// both in an unnamed namespace.
namespace { class MyTypeInUnnamedNameSpace : public Base { public: explicit MyTypeInUnnamedNameSpace(int an_x): Base(an_x) {} }; std::ostream& operator<<(std::ostream& os, const MyTypeInUnnamedNameSpace& val) { return os << val.x(); } std::ostream& operator<<(std::ostream& os, const MyTypeInUnnamedNameSpace* pointer) { return os << "(" << pointer->x() << ")"; } } // namespace
TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) { Message msg; MyTypeInUnnamedNameSpace a(1);
msg << a << &a; // Uses <unnamed_namespace>::operator<<.
EXPECT_STREQ("1(1)", msg.GetString().c_str()); }
// Tests streaming a user type whose definition and operator<< are
// both in a user namespace.
namespace namespace1 { class MyTypeInNameSpace1 : public Base { public: explicit MyTypeInNameSpace1(int an_x): Base(an_x) {} }; std::ostream& operator<<(std::ostream& os, const MyTypeInNameSpace1& val) { return os << val.x(); } std::ostream& operator<<(std::ostream& os, const MyTypeInNameSpace1* pointer) { return os << "(" << pointer->x() << ")"; } } // namespace namespace1
TEST(MessageTest, CanStreamUserTypeInUserNameSpace) { Message msg; namespace1::MyTypeInNameSpace1 a(1);
msg << a << &a; // Uses namespace1::operator<<.
EXPECT_STREQ("1(1)", msg.GetString().c_str()); }
// Tests streaming a user type whose definition is in a user namespace
// but whose operator<< is in the global namespace.
namespace namespace2 { class MyTypeInNameSpace2 : public ::Base { public: explicit MyTypeInNameSpace2(int an_x): Base(an_x) {} }; } // namespace namespace2
std::ostream& operator<<(std::ostream& os, const namespace2::MyTypeInNameSpace2& val) { return os << val.x(); } std::ostream& operator<<(std::ostream& os, const namespace2::MyTypeInNameSpace2* pointer) { return os << "(" << pointer->x() << ")"; }
TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) { Message msg; namespace2::MyTypeInNameSpace2 a(1);
msg << a << &a; // Uses ::operator<<.
EXPECT_STREQ("1(1)", msg.GetString().c_str()); }
// Tests streaming NULL pointers to testing::Message.
TEST(MessageTest, NullPointers) { Message msg; char* const p1 = NULL; unsigned char* const p2 = NULL; int* p3 = NULL; double* p4 = NULL; bool* p5 = NULL; Message* p6 = NULL;
msg << p1 << p2 << p3 << p4 << p5 << p6; ASSERT_STREQ("(null)(null)(null)(null)(null)(null)", msg.GetString().c_str()); }
// Tests streaming wide strings to testing::Message.
TEST(MessageTest, WideStrings) { // Streams a NULL of type const wchar_t*.
const wchar_t* const_wstr = NULL; EXPECT_STREQ("(null)", (Message() << const_wstr).GetString().c_str());
// Streams a NULL of type wchar_t*.
wchar_t* wstr = NULL; EXPECT_STREQ("(null)", (Message() << wstr).GetString().c_str());
// Streams a non-NULL of type const wchar_t*.
const_wstr = L"abc\x8119"; EXPECT_STREQ("abc\xe8\x84\x99", (Message() << const_wstr).GetString().c_str());
// Streams a non-NULL of type wchar_t*.
wstr = const_cast<wchar_t*>(const_wstr); EXPECT_STREQ("abc\xe8\x84\x99", (Message() << wstr).GetString().c_str()); }
// This line tests that we can define tests in the testing namespace.
namespace testing {
// Tests the TestInfo class.
class TestInfoTest : public Test { protected: static const TestInfo* GetTestInfo(const char* test_name) { const TestCase* const test_case = GetUnitTestImpl()-> GetTestCase("TestInfoTest", "", NULL, NULL);
for (int i = 0; i < test_case->total_test_count(); ++i) { const TestInfo* const test_info = test_case->GetTestInfo(i); if (strcmp(test_name, test_info->name()) == 0) return test_info; } return NULL; }
static const TestResult* GetTestResult( const TestInfo* test_info) { return test_info->result(); } };
// Tests TestInfo::test_case_name() and TestInfo::name().
TEST_F(TestInfoTest, Names) { const TestInfo* const test_info = GetTestInfo("Names");
ASSERT_STREQ("TestInfoTest", test_info->test_case_name()); ASSERT_STREQ("Names", test_info->name()); }
// Tests TestInfo::result().
TEST_F(TestInfoTest, result) { const TestInfo* const test_info = GetTestInfo("result");
// Initially, there is no TestPartResult for this test.
ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
// After the previous assertion, there is still none.
ASSERT_EQ(0, GetTestResult(test_info)->total_part_count()); }
// Tests setting up and tearing down a test case.
class SetUpTestCaseTest : public Test { protected: // This will be called once before the first test in this test case
// is run.
static void SetUpTestCase() { printf("Setting up the test case . . .\n");
// Initializes some shared resource. In this simple example, we
// just create a C string. More complex stuff can be done if
// desired.
shared_resource_ = "123";
// Increments the number of test cases that have been set up.
counter_++;
// SetUpTestCase() should be called only once.
EXPECT_EQ(1, counter_); }
// This will be called once after the last test in this test case is
// run.
static void TearDownTestCase() { printf("Tearing down the test case . . .\n");
// Decrements the number of test cases that have been set up.
counter_--;
// TearDownTestCase() should be called only once.
EXPECT_EQ(0, counter_);
// Cleans up the shared resource.
shared_resource_ = NULL; }
// This will be called before each test in this test case.
virtual void SetUp() { // SetUpTestCase() should be called only once, so counter_ should
// always be 1.
EXPECT_EQ(1, counter_); }
// Number of test cases that have been set up.
static int counter_;
// Some resource to be shared by all tests in this test case.
static const char* shared_resource_; };
int SetUpTestCaseTest::counter_ = 0; const char* SetUpTestCaseTest::shared_resource_ = NULL;
// A test that uses the shared resource.
TEST_F(SetUpTestCaseTest, Test1) { EXPECT_STRNE(NULL, shared_resource_); }
// Another test that uses the shared resource.
TEST_F(SetUpTestCaseTest, Test2) { EXPECT_STREQ("123", shared_resource_); }
// The InitGoogleTestTest test case tests testing::InitGoogleTest().
// The Flags struct stores a copy of all Google Test flags.
struct Flags { // Constructs a Flags struct where each flag has its default value.
Flags() : also_run_disabled_tests(false), break_on_failure(false), catch_exceptions(false), death_test_use_fork(false), filter(""), list_tests(false), output(""), print_time(true), random_seed(0), repeat(1), shuffle(false), stack_trace_depth(kMaxStackTraceDepth), stream_result_to(""), throw_on_failure(false) {}
// Factory methods.
// Creates a Flags struct where the gtest_also_run_disabled_tests flag has
// the given value.
static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) { Flags flags; flags.also_run_disabled_tests = also_run_disabled_tests; return flags; }
// Creates a Flags struct where the gtest_break_on_failure flag has
// the given value.
static Flags BreakOnFailure(bool break_on_failure) { Flags flags; flags.break_on_failure = break_on_failure; return flags; }
// Creates a Flags struct where the gtest_catch_exceptions flag has
// the given value.
static Flags CatchExceptions(bool catch_exceptions) { Flags flags; flags.catch_exceptions = catch_exceptions; return flags; }
// Creates a Flags struct where the gtest_death_test_use_fork flag has
// the given value.
static Flags DeathTestUseFork(bool death_test_use_fork) { Flags flags; flags.death_test_use_fork = death_test_use_fork; return flags; }
// Creates a Flags struct where the gtest_filter flag has the given
// value.
static Flags Filter(const char* filter) { Flags flags; flags.filter = filter; return flags; }
// Creates a Flags struct where the gtest_list_tests flag has the
// given value.
static Flags ListTests(bool list_tests) { Flags flags; flags.list_tests = list_tests; return flags; }
// Creates a Flags struct where the gtest_output flag has the given
// value.
static Flags Output(const char* output) { Flags flags; flags.output = output; return flags; }
// Creates a Flags struct where the gtest_print_time flag has the given
// value.
static Flags PrintTime(bool print_time) { Flags flags; flags.print_time = print_time; return flags; }
// Creates a Flags struct where the gtest_random_seed flag has
// the given value.
static Flags RandomSeed(Int32 random_seed) { Flags flags; flags.random_seed = random_seed; return flags; }
// Creates a Flags struct where the gtest_repeat flag has the given
// value.
static Flags Repeat(Int32 repeat) { Flags flags; flags.repeat = repeat; return flags; }
// Creates a Flags struct where the gtest_shuffle flag has
// the given value.
static Flags Shuffle(bool shuffle) { Flags flags; flags.shuffle = shuffle; return flags; }
// Creates a Flags struct where the GTEST_FLAG(stack_trace_depth) flag has
// the given value.
static Flags StackTraceDepth(Int32 stack_trace_depth) { Flags flags; flags.stack_trace_depth = stack_trace_depth; return flags; }
// Creates a Flags struct where the GTEST_FLAG(stream_result_to) flag has
// the given value.
static Flags StreamResultTo(const char* stream_result_to) { Flags flags; flags.stream_result_to = stream_result_to; return flags; }
// Creates a Flags struct where the gtest_throw_on_failure flag has
// the given value.
static Flags ThrowOnFailure(bool throw_on_failure) { Flags flags; flags.throw_on_failure = throw_on_failure; return flags; }
// These fields store the flag values.
bool also_run_disabled_tests; bool break_on_failure; bool catch_exceptions; bool death_test_use_fork; const char* filter; bool list_tests; const char* output; bool print_time; Int32 random_seed; Int32 repeat; bool shuffle; Int32 stack_trace_depth; const char* stream_result_to; bool throw_on_failure; };
// Fixture for testing InitGoogleTest().
class InitGoogleTestTest : public Test { protected: // Clears the flags before each test.
virtual void SetUp() { GTEST_FLAG(also_run_disabled_tests) = false; GTEST_FLAG(break_on_failure) = false; GTEST_FLAG(catch_exceptions) = false; GTEST_FLAG(death_test_use_fork) = false; GTEST_FLAG(filter) = ""; GTEST_FLAG(list_tests) = false; GTEST_FLAG(output) = ""; GTEST_FLAG(print_time) = true; GTEST_FLAG(random_seed) = 0; GTEST_FLAG(repeat) = 1; GTEST_FLAG(shuffle) = false; GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth; GTEST_FLAG(stream_result_to) = ""; GTEST_FLAG(throw_on_failure) = false; }
// Asserts that two narrow or wide string arrays are equal.
template <typename CharType> static void AssertStringArrayEq(size_t size1, CharType** array1, size_t size2, CharType** array2) { ASSERT_EQ(size1, size2) << " Array sizes different.";
for (size_t i = 0; i != size1; i++) { ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i; } }
// Verifies that the flag values match the expected values.
static void CheckFlags(const Flags& expected) { EXPECT_EQ(expected.also_run_disabled_tests, GTEST_FLAG(also_run_disabled_tests)); EXPECT_EQ(expected.break_on_failure, GTEST_FLAG(break_on_failure)); EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG(catch_exceptions)); EXPECT_EQ(expected.death_test_use_fork, GTEST_FLAG(death_test_use_fork)); EXPECT_STREQ(expected.filter, GTEST_FLAG(filter).c_str()); EXPECT_EQ(expected.list_tests, GTEST_FLAG(list_tests)); EXPECT_STREQ(expected.output, GTEST_FLAG(output).c_str()); EXPECT_EQ(expected.print_time, GTEST_FLAG(print_time)); EXPECT_EQ(expected.random_seed, GTEST_FLAG(random_seed)); EXPECT_EQ(expected.repeat, GTEST_FLAG(repeat)); EXPECT_EQ(expected.shuffle, GTEST_FLAG(shuffle)); EXPECT_EQ(expected.stack_trace_depth, GTEST_FLAG(stack_trace_depth)); EXPECT_STREQ(expected.stream_result_to, GTEST_FLAG(stream_result_to).c_str()); EXPECT_EQ(expected.throw_on_failure, GTEST_FLAG(throw_on_failure)); }
// Parses a command line (specified by argc1 and argv1), then
// verifies that the flag values are expected and that the
// recognized flags are removed from the command line.
template <typename CharType> static void TestParsingFlags(int argc1, const CharType** argv1, int argc2, const CharType** argv2, const Flags& expected, bool should_print_help) { const bool saved_help_flag = ::testing::internal::g_help_flag; ::testing::internal::g_help_flag = false;
#if GTEST_HAS_STREAM_REDIRECTION
CaptureStdout(); #endif
// Parses the command line.
internal::ParseGoogleTestFlagsOnly(&argc1, const_cast<CharType**>(argv1));
#if GTEST_HAS_STREAM_REDIRECTION
const String captured_stdout = GetCapturedStdout(); #endif
// Verifies the flag values.
CheckFlags(expected);
// Verifies that the recognized flags are removed from the command
// line.
AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2);
// ParseGoogleTestFlagsOnly should neither set g_help_flag nor print the
// help message for the flags it recognizes.
EXPECT_EQ(should_print_help, ::testing::internal::g_help_flag);
#if GTEST_HAS_STREAM_REDIRECTION
const char* const expected_help_fragment = "This program contains tests written using"; if (should_print_help) { EXPECT_PRED_FORMAT2(IsSubstring, expected_help_fragment, captured_stdout); } else { EXPECT_PRED_FORMAT2(IsNotSubstring, expected_help_fragment, captured_stdout); } #endif // GTEST_HAS_STREAM_REDIRECTION
::testing::internal::g_help_flag = saved_help_flag; }
// This macro wraps TestParsingFlags s.t. the user doesn't need
// to specify the array sizes.
#define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help) \
TestParsingFlags(sizeof(argv1)/sizeof(*argv1) - 1, argv1, \ sizeof(argv2)/sizeof(*argv2) - 1, argv2, \ expected, should_print_help) };
// Tests parsing an empty command line.
TEST_F(InitGoogleTestTest, Empty) { const char* argv[] = { NULL };
const char* argv2[] = { NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false); }
// Tests parsing a command line that has no flag.
TEST_F(InitGoogleTestTest, NoFlag) { const char* argv[] = { "foo.exe", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false); }
// Tests parsing a bad --gtest_filter flag.
TEST_F(InitGoogleTestTest, FilterBad) { const char* argv[] = { "foo.exe", "--gtest_filter", NULL };
const char* argv2[] = { "foo.exe", "--gtest_filter", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true); }
// Tests parsing an empty --gtest_filter flag.
TEST_F(InitGoogleTestTest, FilterEmpty) { const char* argv[] = { "foo.exe", "--gtest_filter=", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), false); }
// Tests parsing a non-empty --gtest_filter flag.
TEST_F(InitGoogleTestTest, FilterNonEmpty) { const char* argv[] = { "foo.exe", "--gtest_filter=abc", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false); }
// Tests parsing --gtest_break_on_failure.
TEST_F(InitGoogleTestTest, BreakOnFailureWithoutValue) { const char* argv[] = { "foo.exe", "--gtest_break_on_failure", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false); }
// Tests parsing --gtest_break_on_failure=0.
TEST_F(InitGoogleTestTest, BreakOnFailureFalse_0) { const char* argv[] = { "foo.exe", "--gtest_break_on_failure=0", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false); }
// Tests parsing --gtest_break_on_failure=f.
TEST_F(InitGoogleTestTest, BreakOnFailureFalse_f) { const char* argv[] = { "foo.exe", "--gtest_break_on_failure=f", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false); }
// Tests parsing --gtest_break_on_failure=F.
TEST_F(InitGoogleTestTest, BreakOnFailureFalse_F) { const char* argv[] = { "foo.exe", "--gtest_break_on_failure=F", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false); }
// Tests parsing a --gtest_break_on_failure flag that has a "true"
// definition.
TEST_F(InitGoogleTestTest, BreakOnFailureTrue) { const char* argv[] = { "foo.exe", "--gtest_break_on_failure=1", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false); }
// Tests parsing --gtest_catch_exceptions.
TEST_F(InitGoogleTestTest, CatchExceptions) { const char* argv[] = { "foo.exe", "--gtest_catch_exceptions", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::CatchExceptions(true), false); }
// Tests parsing --gtest_death_test_use_fork.
TEST_F(InitGoogleTestTest, DeathTestUseFork) { const char* argv[] = { "foo.exe", "--gtest_death_test_use_fork", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::DeathTestUseFork(true), false); }
// Tests having the same flag twice with different values. The
// expected behavior is that the one coming last takes precedence.
TEST_F(InitGoogleTestTest, DuplicatedFlags) { const char* argv[] = { "foo.exe", "--gtest_filter=a", "--gtest_filter=b", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("b"), false); }
// Tests having an unrecognized flag on the command line.
TEST_F(InitGoogleTestTest, UnrecognizedFlag) { const char* argv[] = { "foo.exe", "--gtest_break_on_failure", "bar", // Unrecognized by Google Test.
"--gtest_filter=b", NULL };
const char* argv2[] = { "foo.exe", "bar", NULL };
Flags flags; flags.break_on_failure = true; flags.filter = "b"; GTEST_TEST_PARSING_FLAGS_(argv, argv2, flags, false); }
// Tests having a --gtest_list_tests flag
TEST_F(InitGoogleTestTest, ListTestsFlag) { const char* argv[] = { "foo.exe", "--gtest_list_tests", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false); }
// Tests having a --gtest_list_tests flag with a "true" value
TEST_F(InitGoogleTestTest, ListTestsTrue) { const char* argv[] = { "foo.exe", "--gtest_list_tests=1", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false); }
// Tests having a --gtest_list_tests flag with a "false" value
TEST_F(InitGoogleTestTest, ListTestsFalse) { const char* argv[] = { "foo.exe", "--gtest_list_tests=0", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false); }
// Tests parsing --gtest_list_tests=f.
TEST_F(InitGoogleTestTest, ListTestsFalse_f) { const char* argv[] = { "foo.exe", "--gtest_list_tests=f", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false); }
// Tests parsing --gtest_list_tests=F.
TEST_F(InitGoogleTestTest, ListTestsFalse_F) { const char* argv[] = { "foo.exe", "--gtest_list_tests=F", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false); }
// Tests parsing --gtest_output (invalid).
TEST_F(InitGoogleTestTest, OutputEmpty) { const char* argv[] = { "foo.exe", "--gtest_output", NULL };
const char* argv2[] = { "foo.exe", "--gtest_output", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true); }
// Tests parsing --gtest_output=xml
TEST_F(InitGoogleTestTest, OutputXml) { const char* argv[] = { "foo.exe", "--gtest_output=xml", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml"), false); }
// Tests parsing --gtest_output=xml:file
TEST_F(InitGoogleTestTest, OutputXmlFile) { const char* argv[] = { "foo.exe", "--gtest_output=xml:file", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:file"), false); }
// Tests parsing --gtest_output=xml:directory/path/
TEST_F(InitGoogleTestTest, OutputXmlDirectory) { const char* argv[] = { "foo.exe", "--gtest_output=xml:directory/path/", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:directory/path/"), false); }
// Tests having a --gtest_print_time flag
TEST_F(InitGoogleTestTest, PrintTimeFlag) { const char* argv[] = { "foo.exe", "--gtest_print_time", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false); }
// Tests having a --gtest_print_time flag with a "true" value
TEST_F(InitGoogleTestTest, PrintTimeTrue) { const char* argv[] = { "foo.exe", "--gtest_print_time=1", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false); }
// Tests having a --gtest_print_time flag with a "false" value
TEST_F(InitGoogleTestTest, PrintTimeFalse) { const char* argv[] = { "foo.exe", "--gtest_print_time=0", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false); }
// Tests parsing --gtest_print_time=f.
TEST_F(InitGoogleTestTest, PrintTimeFalse_f) { const char* argv[] = { "foo.exe", "--gtest_print_time=f", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false); }
// Tests parsing --gtest_print_time=F.
TEST_F(InitGoogleTestTest, PrintTimeFalse_F) { const char* argv[] = { "foo.exe", "--gtest_print_time=F", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false); }
// Tests parsing --gtest_random_seed=number
TEST_F(InitGoogleTestTest, RandomSeed) { const char* argv[] = { "foo.exe", "--gtest_random_seed=1000", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::RandomSeed(1000), false); }
// Tests parsing --gtest_repeat=number
TEST_F(InitGoogleTestTest, Repeat) { const char* argv[] = { "foo.exe", "--gtest_repeat=1000", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Repeat(1000), false); }
// Tests having a --gtest_also_run_disabled_tests flag
TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFlag) { const char* argv[] = { "foo.exe", "--gtest_also_run_disabled_tests", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(true), false); }
// Tests having a --gtest_also_run_disabled_tests flag with a "true" value
TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsTrue) { const char* argv[] = { "foo.exe", "--gtest_also_run_disabled_tests=1", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(true), false); }
// Tests having a --gtest_also_run_disabled_tests flag with a "false" value
TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFalse) { const char* argv[] = { "foo.exe", "--gtest_also_run_disabled_tests=0", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(false), false); }
// Tests parsing --gtest_shuffle.
TEST_F(InitGoogleTestTest, ShuffleWithoutValue) { const char* argv[] = { "foo.exe", "--gtest_shuffle", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false); }
// Tests parsing --gtest_shuffle=0.
TEST_F(InitGoogleTestTest, ShuffleFalse_0) { const char* argv[] = { "foo.exe", "--gtest_shuffle=0", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(false), false); }
// Tests parsing a --gtest_shuffle flag that has a "true"
// definition.
TEST_F(InitGoogleTestTest, ShuffleTrue) { const char* argv[] = { "foo.exe", "--gtest_shuffle=1", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false); }
// Tests parsing --gtest_stack_trace_depth=number.
TEST_F(InitGoogleTestTest, StackTraceDepth) { const char* argv[] = { "foo.exe", "--gtest_stack_trace_depth=5", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::StackTraceDepth(5), false); }
TEST_F(InitGoogleTestTest, StreamResultTo) { const char* argv[] = { "foo.exe", "--gtest_stream_result_to=localhost:1234", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_( argv, argv2, Flags::StreamResultTo("localhost:1234"), false); }
// Tests parsing --gtest_throw_on_failure.
TEST_F(InitGoogleTestTest, ThrowOnFailureWithoutValue) { const char* argv[] = { "foo.exe", "--gtest_throw_on_failure", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false); }
// Tests parsing --gtest_throw_on_failure=0.
TEST_F(InitGoogleTestTest, ThrowOnFailureFalse_0) { const char* argv[] = { "foo.exe", "--gtest_throw_on_failure=0", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(false), false); }
// Tests parsing a --gtest_throw_on_failure flag that has a "true"
// definition.
TEST_F(InitGoogleTestTest, ThrowOnFailureTrue) { const char* argv[] = { "foo.exe", "--gtest_throw_on_failure=1", NULL };
const char* argv2[] = { "foo.exe", NULL };
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false); }
#if GTEST_OS_WINDOWS
// Tests parsing wide strings.
TEST_F(InitGoogleTestTest, WideStrings) { const wchar_t* argv[] = { L"foo.exe", L"--gtest_filter=Foo*", L"--gtest_list_tests=1", L"--gtest_break_on_failure", L"--non_gtest_flag", NULL };
const wchar_t* argv2[] = { L"foo.exe", L"--non_gtest_flag", NULL };
Flags expected_flags; expected_flags.break_on_failure = true; expected_flags.filter = "Foo*"; expected_flags.list_tests = true;
GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false); } #endif // GTEST_OS_WINDOWS
// Tests current_test_info() in UnitTest.
class CurrentTestInfoTest : public Test { protected: // Tests that current_test_info() returns NULL before the first test in
// the test case is run.
static void SetUpTestCase() { // There should be no tests running at this point.
const TestInfo* test_info = UnitTest::GetInstance()->current_test_info(); EXPECT_TRUE(test_info == NULL) << "There should be no tests running at this point."; }
// Tests that current_test_info() returns NULL after the last test in
// the test case has run.
static void TearDownTestCase() { const TestInfo* test_info = UnitTest::GetInstance()->current_test_info(); EXPECT_TRUE(test_info == NULL) << "There should be no tests running at this point."; } };
// Tests that current_test_info() returns TestInfo for currently running
// test by checking the expected test name against the actual one.
TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestCase) { const TestInfo* test_info = UnitTest::GetInstance()->current_test_info(); ASSERT_TRUE(NULL != test_info) << "There is a test running so we should have a valid TestInfo."; EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name()) << "Expected the name of the currently running test case."; EXPECT_STREQ("WorksForFirstTestInATestCase", test_info->name()) << "Expected the name of the currently running test."; }
// Tests that current_test_info() returns TestInfo for currently running
// test by checking the expected test name against the actual one. We
// use this test to see that the TestInfo object actually changed from
// the previous invocation.
TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestCase) { const TestInfo* test_info = UnitTest::GetInstance()->current_test_info(); ASSERT_TRUE(NULL != test_info) << "There is a test running so we should have a valid TestInfo."; EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name()) << "Expected the name of the currently running test case."; EXPECT_STREQ("WorksForSecondTestInATestCase", test_info->name()) << "Expected the name of the currently running test."; }
} // namespace testing
// These two lines test that we can define tests in a namespace that
// has the name "testing" and is nested in another namespace.
namespace my_namespace { namespace testing {
// Makes sure that TEST knows to use ::testing::Test instead of
// ::my_namespace::testing::Test.
class Test {};
// Makes sure that an assertion knows to use ::testing::Message instead of
// ::my_namespace::testing::Message.
class Message {};
// Makes sure that an assertion knows to use
// ::testing::AssertionResult instead of
// ::my_namespace::testing::AssertionResult.
class AssertionResult {};
// Tests that an assertion that should succeed works as expected.
TEST(NestedTestingNamespaceTest, Success) { EXPECT_EQ(1, 1) << "This shouldn't fail."; }
// Tests that an assertion that should fail works as expected.
TEST(NestedTestingNamespaceTest, Failure) { EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.", "This failure is expected."); }
} // namespace testing
} // namespace my_namespace
// Tests that one can call superclass SetUp and TearDown methods--
// that is, that they are not private.
// No tests are based on this fixture; the test "passes" if it compiles
// successfully.
class ProtectedFixtureMethodsTest : public Test { protected: virtual void SetUp() { Test::SetUp(); } virtual void TearDown() { Test::TearDown(); } };
// StreamingAssertionsTest tests the streaming versions of a representative
// sample of assertions.
TEST(StreamingAssertionsTest, Unconditional) { SUCCEED() << "expected success"; EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(FAIL() << "expected failure", "expected failure"); }
#ifdef __BORLANDC__
// Silences warnings: "Condition is always true", "Unreachable code"
# pragma option push -w-ccc -w-rch
#endif
TEST(StreamingAssertionsTest, Truth) { EXPECT_TRUE(true) << "unexpected failure"; ASSERT_TRUE(true) << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure", "expected failure"); }
TEST(StreamingAssertionsTest, Truth2) { EXPECT_FALSE(false) << "unexpected failure"; ASSERT_FALSE(false) << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure", "expected failure"); }
#ifdef __BORLANDC__
// Restores warnings after previous "#pragma option push" supressed them
# pragma option pop
#endif
TEST(StreamingAssertionsTest, IntegerEquals) { EXPECT_EQ(1, 1) << "unexpected failure"; ASSERT_EQ(1, 1) << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure", "expected failure"); }
TEST(StreamingAssertionsTest, IntegerLessThan) { EXPECT_LT(1, 2) << "unexpected failure"; ASSERT_LT(1, 2) << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure", "expected failure"); }
TEST(StreamingAssertionsTest, StringsEqual) { EXPECT_STREQ("foo", "foo") << "unexpected failure"; ASSERT_STREQ("foo", "foo") << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure", "expected failure"); }
TEST(StreamingAssertionsTest, StringsNotEqual) { EXPECT_STRNE("foo", "bar") << "unexpected failure"; ASSERT_STRNE("foo", "bar") << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure", "expected failure"); }
TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) { EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure"; ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure", "expected failure"); }
TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) { EXPECT_STRCASENE("foo", "bar") << "unexpected failure"; ASSERT_STRCASENE("foo", "bar") << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure", "expected failure"); }
TEST(StreamingAssertionsTest, FloatingPointEquals) { EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure"; ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure", "expected failure"); }
#if GTEST_HAS_EXCEPTIONS
TEST(StreamingAssertionsTest, Throw) { EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure"; ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool) << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool) << "expected failure", "expected failure"); }
TEST(StreamingAssertionsTest, NoThrow) { EXPECT_NO_THROW(ThrowNothing()) << "unexpected failure"; ASSERT_NO_THROW(ThrowNothing()) << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()) << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) << "expected failure", "expected failure"); }
TEST(StreamingAssertionsTest, AnyThrow) { EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure"; ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing()) << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()) << "expected failure", "expected failure"); }
#endif // GTEST_HAS_EXCEPTIONS
// Tests that Google Test correctly decides whether to use colors in the output.
TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) { GTEST_FLAG(color) = "yes";
SetEnv("TERM", "xterm"); // TERM supports colors.
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
SetEnv("TERM", "dumb"); // TERM doesn't support colors.
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
}
TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) { SetEnv("TERM", "dumb"); // TERM doesn't support colors.
GTEST_FLAG(color) = "True"; EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
GTEST_FLAG(color) = "t"; EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
GTEST_FLAG(color) = "1"; EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
}
TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) { GTEST_FLAG(color) = "no";
SetEnv("TERM", "xterm"); // TERM supports colors.
EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY.
SetEnv("TERM", "dumb"); // TERM doesn't support colors.
EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY.
}
TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) { SetEnv("TERM", "xterm"); // TERM supports colors.
GTEST_FLAG(color) = "F"; EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
GTEST_FLAG(color) = "0"; EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
GTEST_FLAG(color) = "unknown"; EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
}
TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) { GTEST_FLAG(color) = "auto";
SetEnv("TERM", "xterm"); // TERM supports colors.
EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY.
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
}
TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) { GTEST_FLAG(color) = "auto";
#if GTEST_OS_WINDOWS
// On Windows, we ignore the TERM variable as it's usually not set.
SetEnv("TERM", "dumb"); EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
SetEnv("TERM", ""); EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
SetEnv("TERM", "xterm"); EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
#else
// On non-Windows platforms, we rely on TERM to determine if the
// terminal supports colors.
SetEnv("TERM", "dumb"); // TERM doesn't support colors.
EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
SetEnv("TERM", "emacs"); // TERM doesn't support colors.
EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
SetEnv("TERM", "vt100"); // TERM doesn't support colors.
EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
SetEnv("TERM", "xterm-mono"); // TERM doesn't support colors.
EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
SetEnv("TERM", "xterm"); // TERM supports colors.
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
SetEnv("TERM", "xterm-color"); // TERM supports colors.
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
SetEnv("TERM", "xterm-256color"); // TERM supports colors.
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
SetEnv("TERM", "screen"); // TERM supports colors.
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
SetEnv("TERM", "linux"); // TERM supports colors.
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
SetEnv("TERM", "cygwin"); // TERM supports colors.
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
#endif // GTEST_OS_WINDOWS
}
// Verifies that StaticAssertTypeEq works in a namespace scope.
static bool dummy1 GTEST_ATTRIBUTE_UNUSED_ = StaticAssertTypeEq<bool, bool>(); static bool dummy2 GTEST_ATTRIBUTE_UNUSED_ = StaticAssertTypeEq<const int, const int>();
// Verifies that StaticAssertTypeEq works in a class.
template <typename T> class StaticAssertTypeEqTestHelper { public: StaticAssertTypeEqTestHelper() { StaticAssertTypeEq<bool, T>(); } };
TEST(StaticAssertTypeEqTest, WorksInClass) { StaticAssertTypeEqTestHelper<bool>(); }
// Verifies that StaticAssertTypeEq works inside a function.
typedef int IntAlias;
TEST(StaticAssertTypeEqTest, CompilesForEqualTypes) { StaticAssertTypeEq<int, IntAlias>(); StaticAssertTypeEq<int*, IntAlias*>(); }
TEST(GetCurrentOsStackTraceExceptTopTest, ReturnsTheStackTrace) { testing::UnitTest* const unit_test = testing::UnitTest::GetInstance();
// We don't have a stack walker in Google Test yet.
EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 0).c_str()); EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 1).c_str()); }
TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsNoFailure) { EXPECT_FALSE(HasNonfatalFailure()); }
static void FailFatally() { FAIL(); }
TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsOnlyFatalFailure) { FailFatally(); const bool has_nonfatal_failure = HasNonfatalFailure(); ClearCurrentTestPartResults(); EXPECT_FALSE(has_nonfatal_failure); }
TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) { ADD_FAILURE(); const bool has_nonfatal_failure = HasNonfatalFailure(); ClearCurrentTestPartResults(); EXPECT_TRUE(has_nonfatal_failure); }
TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) { FailFatally(); ADD_FAILURE(); const bool has_nonfatal_failure = HasNonfatalFailure(); ClearCurrentTestPartResults(); EXPECT_TRUE(has_nonfatal_failure); }
// A wrapper for calling HasNonfatalFailure outside of a test body.
static bool HasNonfatalFailureHelper() { return testing::Test::HasNonfatalFailure(); }
TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody) { EXPECT_FALSE(HasNonfatalFailureHelper()); }
TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody2) { ADD_FAILURE(); const bool has_nonfatal_failure = HasNonfatalFailureHelper(); ClearCurrentTestPartResults(); EXPECT_TRUE(has_nonfatal_failure); }
TEST(HasFailureTest, ReturnsFalseWhenThereIsNoFailure) { EXPECT_FALSE(HasFailure()); }
TEST(HasFailureTest, ReturnsTrueWhenThereIsFatalFailure) { FailFatally(); const bool has_failure = HasFailure(); ClearCurrentTestPartResults(); EXPECT_TRUE(has_failure); }
TEST(HasFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) { ADD_FAILURE(); const bool has_failure = HasFailure(); ClearCurrentTestPartResults(); EXPECT_TRUE(has_failure); }
TEST(HasFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) { FailFatally(); ADD_FAILURE(); const bool has_failure = HasFailure(); ClearCurrentTestPartResults(); EXPECT_TRUE(has_failure); }
// A wrapper for calling HasFailure outside of a test body.
static bool HasFailureHelper() { return testing::Test::HasFailure(); }
TEST(HasFailureTest, WorksOutsideOfTestBody) { EXPECT_FALSE(HasFailureHelper()); }
TEST(HasFailureTest, WorksOutsideOfTestBody2) { ADD_FAILURE(); const bool has_failure = HasFailureHelper(); ClearCurrentTestPartResults(); EXPECT_TRUE(has_failure); }
class TestListener : public EmptyTestEventListener { public: TestListener() : on_start_counter_(NULL), is_destroyed_(NULL) {} TestListener(int* on_start_counter, bool* is_destroyed) : on_start_counter_(on_start_counter), is_destroyed_(is_destroyed) {}
virtual ~TestListener() { if (is_destroyed_) *is_destroyed_ = true; }
protected: virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) { if (on_start_counter_ != NULL) (*on_start_counter_)++; }
private: int* on_start_counter_; bool* is_destroyed_; };
// Tests the constructor.
TEST(TestEventListenersTest, ConstructionWorks) { TestEventListeners listeners;
EXPECT_TRUE(TestEventListenersAccessor::GetRepeater(&listeners) != NULL); EXPECT_TRUE(listeners.default_result_printer() == NULL); EXPECT_TRUE(listeners.default_xml_generator() == NULL); }
// Tests that the TestEventListeners destructor deletes all the listeners it
// owns.
TEST(TestEventListenersTest, DestructionWorks) { bool default_result_printer_is_destroyed = false; bool default_xml_printer_is_destroyed = false; bool extra_listener_is_destroyed = false; TestListener* default_result_printer = new TestListener( NULL, &default_result_printer_is_destroyed); TestListener* default_xml_printer = new TestListener( NULL, &default_xml_printer_is_destroyed); TestListener* extra_listener = new TestListener( NULL, &extra_listener_is_destroyed);
{ TestEventListeners listeners; TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, default_result_printer); TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, default_xml_printer); listeners.Append(extra_listener); } EXPECT_TRUE(default_result_printer_is_destroyed); EXPECT_TRUE(default_xml_printer_is_destroyed); EXPECT_TRUE(extra_listener_is_destroyed); }
// Tests that a listener Append'ed to a TestEventListeners list starts
// receiving events.
TEST(TestEventListenersTest, Append) { int on_start_counter = 0; bool is_destroyed = false; TestListener* listener = new TestListener(&on_start_counter, &is_destroyed); { TestEventListeners listeners; listeners.Append(listener); TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( *UnitTest::GetInstance()); EXPECT_EQ(1, on_start_counter); } EXPECT_TRUE(is_destroyed); }
// Tests that listeners receive events in the order they were appended to
// the list, except for *End requests, which must be received in the reverse
// order.
class SequenceTestingListener : public EmptyTestEventListener { public: SequenceTestingListener(std::vector<String>* vector, const char* id) : vector_(vector), id_(id) {}
protected: virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) { vector_->push_back(GetEventDescription("OnTestProgramStart")); }
virtual void OnTestProgramEnd(const UnitTest& /*unit_test*/) { vector_->push_back(GetEventDescription("OnTestProgramEnd")); }
virtual void OnTestIterationStart(const UnitTest& /*unit_test*/, int /*iteration*/) { vector_->push_back(GetEventDescription("OnTestIterationStart")); }
virtual void OnTestIterationEnd(const UnitTest& /*unit_test*/, int /*iteration*/) { vector_->push_back(GetEventDescription("OnTestIterationEnd")); }
private: String GetEventDescription(const char* method) { Message message; message << id_ << "." << method; return message.GetString(); }
std::vector<String>* vector_; const char* const id_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(SequenceTestingListener); };
TEST(EventListenerTest, AppendKeepsOrder) { std::vector<String> vec; TestEventListeners listeners; listeners.Append(new SequenceTestingListener(&vec, "1st")); listeners.Append(new SequenceTestingListener(&vec, "2nd")); listeners.Append(new SequenceTestingListener(&vec, "3rd"));
TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( *UnitTest::GetInstance()); ASSERT_EQ(3U, vec.size()); EXPECT_STREQ("1st.OnTestProgramStart", vec[0].c_str()); EXPECT_STREQ("2nd.OnTestProgramStart", vec[1].c_str()); EXPECT_STREQ("3rd.OnTestProgramStart", vec[2].c_str());
vec.clear(); TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramEnd( *UnitTest::GetInstance()); ASSERT_EQ(3U, vec.size()); EXPECT_STREQ("3rd.OnTestProgramEnd", vec[0].c_str()); EXPECT_STREQ("2nd.OnTestProgramEnd", vec[1].c_str()); EXPECT_STREQ("1st.OnTestProgramEnd", vec[2].c_str());
vec.clear(); TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationStart( *UnitTest::GetInstance(), 0); ASSERT_EQ(3U, vec.size()); EXPECT_STREQ("1st.OnTestIterationStart", vec[0].c_str()); EXPECT_STREQ("2nd.OnTestIterationStart", vec[1].c_str()); EXPECT_STREQ("3rd.OnTestIterationStart", vec[2].c_str());
vec.clear(); TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationEnd( *UnitTest::GetInstance(), 0); ASSERT_EQ(3U, vec.size()); EXPECT_STREQ("3rd.OnTestIterationEnd", vec[0].c_str()); EXPECT_STREQ("2nd.OnTestIterationEnd", vec[1].c_str()); EXPECT_STREQ("1st.OnTestIterationEnd", vec[2].c_str()); }
// Tests that a listener removed from a TestEventListeners list stops receiving
// events and is not deleted when the list is destroyed.
TEST(TestEventListenersTest, Release) { int on_start_counter = 0; bool is_destroyed = false; // Although Append passes the ownership of this object to the list,
// the following calls release it, and we need to delete it before the
// test ends.
TestListener* listener = new TestListener(&on_start_counter, &is_destroyed); { TestEventListeners listeners; listeners.Append(listener); EXPECT_EQ(listener, listeners.Release(listener)); TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( *UnitTest::GetInstance()); EXPECT_TRUE(listeners.Release(listener) == NULL); } EXPECT_EQ(0, on_start_counter); EXPECT_FALSE(is_destroyed); delete listener; }
// Tests that no events are forwarded when event forwarding is disabled.
TEST(EventListenerTest, SuppressEventForwarding) { int on_start_counter = 0; TestListener* listener = new TestListener(&on_start_counter, NULL);
TestEventListeners listeners; listeners.Append(listener); ASSERT_TRUE(TestEventListenersAccessor::EventForwardingEnabled(listeners)); TestEventListenersAccessor::SuppressEventForwarding(&listeners); ASSERT_FALSE(TestEventListenersAccessor::EventForwardingEnabled(listeners)); TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( *UnitTest::GetInstance()); EXPECT_EQ(0, on_start_counter); }
// Tests that events generated by Google Test are not forwarded in
// death test subprocesses.
TEST(EventListenerDeathTest, EventsNotForwardedInDeathTestSubprecesses) { EXPECT_DEATH_IF_SUPPORTED({ GTEST_CHECK_(TestEventListenersAccessor::EventForwardingEnabled( *GetUnitTestImpl()->listeners())) << "expected failure";}, "expected failure"); }
// Tests that a listener installed via SetDefaultResultPrinter() starts
// receiving events and is returned via default_result_printer() and that
// the previous default_result_printer is removed from the list and deleted.
TEST(EventListenerTest, default_result_printer) { int on_start_counter = 0; bool is_destroyed = false; TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
TestEventListeners listeners; TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
EXPECT_EQ(listener, listeners.default_result_printer());
TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( *UnitTest::GetInstance());
EXPECT_EQ(1, on_start_counter);
// Replacing default_result_printer with something else should remove it
// from the list and destroy it.
TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, NULL);
EXPECT_TRUE(listeners.default_result_printer() == NULL); EXPECT_TRUE(is_destroyed);
// After broadcasting an event the counter is still the same, indicating
// the listener is not in the list anymore.
TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( *UnitTest::GetInstance()); EXPECT_EQ(1, on_start_counter); }
// Tests that the default_result_printer listener stops receiving events
// when removed via Release and that is not owned by the list anymore.
TEST(EventListenerTest, RemovingDefaultResultPrinterWorks) { int on_start_counter = 0; bool is_destroyed = false; // Although Append passes the ownership of this object to the list,
// the following calls release it, and we need to delete it before the
// test ends.
TestListener* listener = new TestListener(&on_start_counter, &is_destroyed); { TestEventListeners listeners; TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
EXPECT_EQ(listener, listeners.Release(listener)); EXPECT_TRUE(listeners.default_result_printer() == NULL); EXPECT_FALSE(is_destroyed);
// Broadcasting events now should not affect default_result_printer.
TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( *UnitTest::GetInstance()); EXPECT_EQ(0, on_start_counter); } // Destroying the list should not affect the listener now, too.
EXPECT_FALSE(is_destroyed); delete listener; }
// Tests that a listener installed via SetDefaultXmlGenerator() starts
// receiving events and is returned via default_xml_generator() and that
// the previous default_xml_generator is removed from the list and deleted.
TEST(EventListenerTest, default_xml_generator) { int on_start_counter = 0; bool is_destroyed = false; TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
TestEventListeners listeners; TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
EXPECT_EQ(listener, listeners.default_xml_generator());
TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( *UnitTest::GetInstance());
EXPECT_EQ(1, on_start_counter);
// Replacing default_xml_generator with something else should remove it
// from the list and destroy it.
TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, NULL);
EXPECT_TRUE(listeners.default_xml_generator() == NULL); EXPECT_TRUE(is_destroyed);
// After broadcasting an event the counter is still the same, indicating
// the listener is not in the list anymore.
TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( *UnitTest::GetInstance()); EXPECT_EQ(1, on_start_counter); }
// Tests that the default_xml_generator listener stops receiving events
// when removed via Release and that is not owned by the list anymore.
TEST(EventListenerTest, RemovingDefaultXmlGeneratorWorks) { int on_start_counter = 0; bool is_destroyed = false; // Although Append passes the ownership of this object to the list,
// the following calls release it, and we need to delete it before the
// test ends.
TestListener* listener = new TestListener(&on_start_counter, &is_destroyed); { TestEventListeners listeners; TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
EXPECT_EQ(listener, listeners.Release(listener)); EXPECT_TRUE(listeners.default_xml_generator() == NULL); EXPECT_FALSE(is_destroyed);
// Broadcasting events now should not affect default_xml_generator.
TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( *UnitTest::GetInstance()); EXPECT_EQ(0, on_start_counter); } // Destroying the list should not affect the listener now, too.
EXPECT_FALSE(is_destroyed); delete listener; }
// Sanity tests to ensure that the alternative, verbose spellings of
// some of the macros work. We don't test them thoroughly as that
// would be quite involved. Since their implementations are
// straightforward, and they are rarely used, we'll just rely on the
// users to tell us when they are broken.
GTEST_TEST(AlternativeNameTest, Works) { // GTEST_TEST is the same as TEST.
GTEST_SUCCEED() << "OK"; // GTEST_SUCCEED is the same as SUCCEED.
// GTEST_FAIL is the same as FAIL.
EXPECT_FATAL_FAILURE(GTEST_FAIL() << "An expected failure", "An expected failure");
// GTEST_ASSERT_XY is the same as ASSERT_XY.
GTEST_ASSERT_EQ(0, 0); EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(0, 1) << "An expected failure", "An expected failure"); EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(1, 0) << "An expected failure", "An expected failure");
GTEST_ASSERT_NE(0, 1); GTEST_ASSERT_NE(1, 0); EXPECT_FATAL_FAILURE(GTEST_ASSERT_NE(0, 0) << "An expected failure", "An expected failure");
GTEST_ASSERT_LE(0, 0); GTEST_ASSERT_LE(0, 1); EXPECT_FATAL_FAILURE(GTEST_ASSERT_LE(1, 0) << "An expected failure", "An expected failure");
GTEST_ASSERT_LT(0, 1); EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(0, 0) << "An expected failure", "An expected failure"); EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(1, 0) << "An expected failure", "An expected failure");
GTEST_ASSERT_GE(0, 0); GTEST_ASSERT_GE(1, 0); EXPECT_FATAL_FAILURE(GTEST_ASSERT_GE(0, 1) << "An expected failure", "An expected failure");
GTEST_ASSERT_GT(1, 0); EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(0, 1) << "An expected failure", "An expected failure"); EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(1, 1) << "An expected failure", "An expected failure"); }
// Tests for internal utilities necessary for implementation of the universal
// printing.
// TODO(vladl@google.com): Find a better home for them.
class ConversionHelperBase {}; class ConversionHelperDerived : public ConversionHelperBase {};
// Tests that IsAProtocolMessage<T>::value is a compile-time constant.
TEST(IsAProtocolMessageTest, ValueIsCompileTimeConstant) { GTEST_COMPILE_ASSERT_(IsAProtocolMessage<ProtocolMessage>::value, const_true); GTEST_COMPILE_ASSERT_(!IsAProtocolMessage<int>::value, const_false); }
// Tests that IsAProtocolMessage<T>::value is true when T is
// proto2::Message or a sub-class of it.
TEST(IsAProtocolMessageTest, ValueIsTrueWhenTypeIsAProtocolMessage) { EXPECT_TRUE(IsAProtocolMessage< ::proto2::Message>::value); EXPECT_TRUE(IsAProtocolMessage<ProtocolMessage>::value); }
// Tests that IsAProtocolMessage<T>::value is false when T is neither
// ProtocolMessage nor a sub-class of it.
TEST(IsAProtocolMessageTest, ValueIsFalseWhenTypeIsNotAProtocolMessage) { EXPECT_FALSE(IsAProtocolMessage<int>::value); EXPECT_FALSE(IsAProtocolMessage<const ConversionHelperBase>::value); }
// Tests that CompileAssertTypesEqual compiles when the type arguments are
// equal.
TEST(CompileAssertTypesEqual, CompilesWhenTypesAreEqual) { CompileAssertTypesEqual<void, void>(); CompileAssertTypesEqual<int*, int*>(); }
// Tests that RemoveReference does not affect non-reference types.
TEST(RemoveReferenceTest, DoesNotAffectNonReferenceType) { CompileAssertTypesEqual<int, RemoveReference<int>::type>(); CompileAssertTypesEqual<const char, RemoveReference<const char>::type>(); }
// Tests that RemoveReference removes reference from reference types.
TEST(RemoveReferenceTest, RemovesReference) { CompileAssertTypesEqual<int, RemoveReference<int&>::type>(); CompileAssertTypesEqual<const char, RemoveReference<const char&>::type>(); }
// Tests GTEST_REMOVE_REFERENCE_.
template <typename T1, typename T2> void TestGTestRemoveReference() { CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_(T2)>(); }
TEST(RemoveReferenceTest, MacroVersion) { TestGTestRemoveReference<int, int>(); TestGTestRemoveReference<const char, const char&>(); }
// Tests that RemoveConst does not affect non-const types.
TEST(RemoveConstTest, DoesNotAffectNonConstType) { CompileAssertTypesEqual<int, RemoveConst<int>::type>(); CompileAssertTypesEqual<char&, RemoveConst<char&>::type>(); }
// Tests that RemoveConst removes const from const types.
TEST(RemoveConstTest, RemovesConst) { CompileAssertTypesEqual<int, RemoveConst<const int>::type>(); CompileAssertTypesEqual<char[2], RemoveConst<const char[2]>::type>(); CompileAssertTypesEqual<char[2][3], RemoveConst<const char[2][3]>::type>(); }
// Tests GTEST_REMOVE_CONST_.
template <typename T1, typename T2> void TestGTestRemoveConst() { CompileAssertTypesEqual<T1, GTEST_REMOVE_CONST_(T2)>(); }
TEST(RemoveConstTest, MacroVersion) { TestGTestRemoveConst<int, int>(); TestGTestRemoveConst<double&, double&>(); TestGTestRemoveConst<char, const char>(); }
// Tests GTEST_REMOVE_REFERENCE_AND_CONST_.
template <typename T1, typename T2> void TestGTestRemoveReferenceAndConst() { CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_AND_CONST_(T2)>(); }
TEST(RemoveReferenceToConstTest, Works) { TestGTestRemoveReferenceAndConst<int, int>(); TestGTestRemoveReferenceAndConst<double, double&>(); TestGTestRemoveReferenceAndConst<char, const char>(); TestGTestRemoveReferenceAndConst<char, const char&>(); TestGTestRemoveReferenceAndConst<const char*, const char*>(); }
// Tests that AddReference does not affect reference types.
TEST(AddReferenceTest, DoesNotAffectReferenceType) { CompileAssertTypesEqual<int&, AddReference<int&>::type>(); CompileAssertTypesEqual<const char&, AddReference<const char&>::type>(); }
// Tests that AddReference adds reference to non-reference types.
TEST(AddReferenceTest, AddsReference) { CompileAssertTypesEqual<int&, AddReference<int>::type>(); CompileAssertTypesEqual<const char&, AddReference<const char>::type>(); }
// Tests GTEST_ADD_REFERENCE_.
template <typename T1, typename T2> void TestGTestAddReference() { CompileAssertTypesEqual<T1, GTEST_ADD_REFERENCE_(T2)>(); }
TEST(AddReferenceTest, MacroVersion) { TestGTestAddReference<int&, int>(); TestGTestAddReference<const char&, const char&>(); }
// Tests GTEST_REFERENCE_TO_CONST_.
template <typename T1, typename T2> void TestGTestReferenceToConst() { CompileAssertTypesEqual<T1, GTEST_REFERENCE_TO_CONST_(T2)>(); }
TEST(GTestReferenceToConstTest, Works) { TestGTestReferenceToConst<const char&, char>(); TestGTestReferenceToConst<const int&, const int>(); TestGTestReferenceToConst<const double&, double>(); TestGTestReferenceToConst<const String&, const String&>(); }
// Tests that ImplicitlyConvertible<T1, T2>::value is a compile-time constant.
TEST(ImplicitlyConvertibleTest, ValueIsCompileTimeConstant) { GTEST_COMPILE_ASSERT_((ImplicitlyConvertible<int, int>::value), const_true); GTEST_COMPILE_ASSERT_((!ImplicitlyConvertible<void*, int*>::value), const_false); }
// Tests that ImplicitlyConvertible<T1, T2>::value is true when T1 can
// be implicitly converted to T2.
TEST(ImplicitlyConvertibleTest, ValueIsTrueWhenConvertible) { EXPECT_TRUE((ImplicitlyConvertible<int, double>::value)); EXPECT_TRUE((ImplicitlyConvertible<double, int>::value)); EXPECT_TRUE((ImplicitlyConvertible<int*, void*>::value)); EXPECT_TRUE((ImplicitlyConvertible<int*, const int*>::value)); EXPECT_TRUE((ImplicitlyConvertible<ConversionHelperDerived&, const ConversionHelperBase&>::value)); EXPECT_TRUE((ImplicitlyConvertible<const ConversionHelperBase, ConversionHelperBase>::value)); }
// Tests that ImplicitlyConvertible<T1, T2>::value is false when T1
// cannot be implicitly converted to T2.
TEST(ImplicitlyConvertibleTest, ValueIsFalseWhenNotConvertible) { EXPECT_FALSE((ImplicitlyConvertible<double, int*>::value)); EXPECT_FALSE((ImplicitlyConvertible<void*, int*>::value)); EXPECT_FALSE((ImplicitlyConvertible<const int*, int*>::value)); EXPECT_FALSE((ImplicitlyConvertible<ConversionHelperBase&, ConversionHelperDerived&>::value)); }
// Tests IsContainerTest.
class NonContainer {};
TEST(IsContainerTestTest, WorksForNonContainer) { EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<int>(0))); EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<char[5]>(0))); EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<NonContainer>(0))); }
TEST(IsContainerTestTest, WorksForContainer) { EXPECT_EQ(sizeof(IsContainer), sizeof(IsContainerTest<std::vector<bool> >(0))); EXPECT_EQ(sizeof(IsContainer), sizeof(IsContainerTest<std::map<int, double> >(0))); }
// Tests ArrayEq().
TEST(ArrayEqTest, WorksForDegeneratedArrays) { EXPECT_TRUE(ArrayEq(5, 5L)); EXPECT_FALSE(ArrayEq('a', 0)); }
TEST(ArrayEqTest, WorksForOneDimensionalArrays) { const int a[] = { 0, 1 }; long b[] = { 0, 1 }; EXPECT_TRUE(ArrayEq(a, b)); EXPECT_TRUE(ArrayEq(a, 2, b));
b[0] = 2; EXPECT_FALSE(ArrayEq(a, b)); EXPECT_FALSE(ArrayEq(a, 1, b)); }
TEST(ArrayEqTest, WorksForTwoDimensionalArrays) { const char a[][3] = { "hi", "lo" }; const char b[][3] = { "hi", "lo" }; const char c[][3] = { "hi", "li" };
EXPECT_TRUE(ArrayEq(a, b)); EXPECT_TRUE(ArrayEq(a, 2, b));
EXPECT_FALSE(ArrayEq(a, c)); EXPECT_FALSE(ArrayEq(a, 2, c)); }
// Tests ArrayAwareFind().
TEST(ArrayAwareFindTest, WorksForOneDimensionalArray) { const char a[] = "hello"; EXPECT_EQ(a + 4, ArrayAwareFind(a, a + 5, 'o')); EXPECT_EQ(a + 5, ArrayAwareFind(a, a + 5, 'x')); }
TEST(ArrayAwareFindTest, WorksForTwoDimensionalArray) { int a[][2] = { { 0, 1 }, { 2, 3 }, { 4, 5 } }; const int b[2] = { 2, 3 }; EXPECT_EQ(a + 1, ArrayAwareFind(a, a + 3, b));
const int c[2] = { 6, 7 }; EXPECT_EQ(a + 3, ArrayAwareFind(a, a + 3, c)); }
// Tests CopyArray().
TEST(CopyArrayTest, WorksForDegeneratedArrays) { int n = 0; CopyArray('a', &n); EXPECT_EQ('a', n); }
TEST(CopyArrayTest, WorksForOneDimensionalArrays) { const char a[3] = "hi"; int b[3]; #ifndef __BORLANDC__ // C++Builder cannot compile some array size deductions.
CopyArray(a, &b); EXPECT_TRUE(ArrayEq(a, b)); #endif
int c[3]; CopyArray(a, 3, c); EXPECT_TRUE(ArrayEq(a, c)); }
TEST(CopyArrayTest, WorksForTwoDimensionalArrays) { const int a[2][3] = { { 0, 1, 2 }, { 3, 4, 5 } }; int b[2][3]; #ifndef __BORLANDC__ // C++Builder cannot compile some array size deductions.
CopyArray(a, &b); EXPECT_TRUE(ArrayEq(a, b)); #endif
int c[2][3]; CopyArray(a, 2, c); EXPECT_TRUE(ArrayEq(a, c)); }
// Tests NativeArray.
TEST(NativeArrayTest, ConstructorFromArrayWorks) { const int a[3] = { 0, 1, 2 }; NativeArray<int> na(a, 3, kReference); EXPECT_EQ(3U, na.size()); EXPECT_EQ(a, na.begin()); }
TEST(NativeArrayTest, CreatesAndDeletesCopyOfArrayWhenAskedTo) { typedef int Array[2]; Array* a = new Array[1]; (*a)[0] = 0; (*a)[1] = 1; NativeArray<int> na(*a, 2, kCopy); EXPECT_NE(*a, na.begin()); delete[] a; EXPECT_EQ(0, na.begin()[0]); EXPECT_EQ(1, na.begin()[1]);
// We rely on the heap checker to verify that na deletes the copy of
// array.
}
TEST(NativeArrayTest, TypeMembersAreCorrect) { StaticAssertTypeEq<char, NativeArray<char>::value_type>(); StaticAssertTypeEq<int[2], NativeArray<int[2]>::value_type>();
StaticAssertTypeEq<const char*, NativeArray<char>::const_iterator>(); StaticAssertTypeEq<const bool(*)[2], NativeArray<bool[2]>::const_iterator>(); }
TEST(NativeArrayTest, MethodsWork) { const int a[3] = { 0, 1, 2 }; NativeArray<int> na(a, 3, kCopy); ASSERT_EQ(3U, na.size()); EXPECT_EQ(3, na.end() - na.begin());
NativeArray<int>::const_iterator it = na.begin(); EXPECT_EQ(0, *it); ++it; EXPECT_EQ(1, *it); it++; EXPECT_EQ(2, *it); ++it; EXPECT_EQ(na.end(), it);
EXPECT_TRUE(na == na);
NativeArray<int> na2(a, 3, kReference); EXPECT_TRUE(na == na2);
const int b1[3] = { 0, 1, 1 }; const int b2[4] = { 0, 1, 2, 3 }; EXPECT_FALSE(na == NativeArray<int>(b1, 3, kReference)); EXPECT_FALSE(na == NativeArray<int>(b2, 4, kCopy)); }
TEST(NativeArrayTest, WorksForTwoDimensionalArray) { const char a[2][3] = { "hi", "lo" }; NativeArray<char[3]> na(a, 2, kReference); ASSERT_EQ(2U, na.size()); EXPECT_EQ(a, na.begin()); }
// Tests SkipPrefix().
TEST(SkipPrefixTest, SkipsWhenPrefixMatches) { const char* const str = "hello";
const char* p = str; EXPECT_TRUE(SkipPrefix("", &p)); EXPECT_EQ(str, p);
p = str; EXPECT_TRUE(SkipPrefix("hell", &p)); EXPECT_EQ(str + 4, p); }
TEST(SkipPrefixTest, DoesNotSkipWhenPrefixDoesNotMatch) { const char* const str = "world";
const char* p = str; EXPECT_FALSE(SkipPrefix("W", &p)); EXPECT_EQ(str, p);
p = str; EXPECT_FALSE(SkipPrefix("world!", &p)); EXPECT_EQ(str, p); }
|