|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "common.h"
// y = alpha*A*x + beta*y
int EIGEN_BLAS_FUNC(symv) (char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy) { typedef void (*functype)(int, const Scalar*, int, const Scalar*, int, Scalar*, Scalar); static functype func[2];
static bool init = false; if(!init) { for(int k=0; k<2; ++k) func[k] = 0;
func[UP] = (internal::selfadjoint_matrix_vector_product<Scalar,int,ColMajor,Upper,false,false>::run); func[LO] = (internal::selfadjoint_matrix_vector_product<Scalar,int,ColMajor,Lower,false,false>::run);
init = true; }
Scalar* a = reinterpret_cast<Scalar*>(pa); Scalar* x = reinterpret_cast<Scalar*>(px); Scalar* y = reinterpret_cast<Scalar*>(py); Scalar alpha = *reinterpret_cast<Scalar*>(palpha); Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
// check arguments
int info = 0; if(UPLO(*uplo)==INVALID) info = 1; else if(*n<0) info = 2; else if(*lda<std::max(1,*n)) info = 5; else if(*incx==0) info = 7; else if(*incy==0) info = 10; if(info) return xerbla_(SCALAR_SUFFIX_UP"SYMV ",&info,6);
if(*n==0) return 0;
Scalar* actual_x = get_compact_vector(x,*n,*incx); Scalar* actual_y = get_compact_vector(y,*n,*incy);
if(beta!=Scalar(1)) { if(beta==Scalar(0)) vector(actual_y, *n).setZero(); else vector(actual_y, *n) *= beta; }
int code = UPLO(*uplo); if(code>=2 || func[code]==0) return 0;
func[code](*n, a, *lda, actual_x, 1, actual_y, alpha);
if(actual_x!=x) delete[] actual_x; if(actual_y!=y) delete[] copy_back(actual_y,y,*n,*incy);
return 1; }
// C := alpha*x*x' + C
int EIGEN_BLAS_FUNC(syr)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pc, int *ldc) {
// typedef void (*functype)(int, const Scalar *, int, Scalar *, int, Scalar);
// static functype func[2];
// static bool init = false;
// if(!init)
// {
// for(int k=0; k<2; ++k)
// func[k] = 0;
//
// func[UP] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,UpperTriangular>::run);
// func[LO] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,LowerTriangular>::run);
// init = true;
// }
typedef void (*functype)(int, Scalar*, int, const Scalar*, Scalar); static functype func[2];
static bool init = false; if(!init) { for(int k=0; k<2; ++k) func[k] = 0;
func[UP] = (selfadjoint_rank1_update<Scalar,int,ColMajor,Upper,false,Conj>::run); func[LO] = (selfadjoint_rank1_update<Scalar,int,ColMajor,Lower,false,Conj>::run);
init = true; }
Scalar* x = reinterpret_cast<Scalar*>(px); Scalar* c = reinterpret_cast<Scalar*>(pc); Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
int info = 0; if(UPLO(*uplo)==INVALID) info = 1; else if(*n<0) info = 2; else if(*incx==0) info = 5; else if(*ldc<std::max(1,*n)) info = 7; if(info) return xerbla_(SCALAR_SUFFIX_UP"SYR ",&info,6);
if(*n==0 || alpha==Scalar(0)) return 1;
// if the increment is not 1, let's copy it to a temporary vector to enable vectorization
Scalar* x_cpy = get_compact_vector(x,*n,*incx);
int code = UPLO(*uplo); if(code>=2 || func[code]==0) return 0;
func[code](*n, c, *ldc, x_cpy, alpha);
if(x_cpy!=x) delete[] x_cpy;
return 1; }
// C := alpha*x*y' + alpha*y*x' + C
int EIGEN_BLAS_FUNC(syr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, int *ldc) { // typedef void (*functype)(int, const Scalar *, int, const Scalar *, int, Scalar *, int, Scalar);
// static functype func[2];
//
// static bool init = false;
// if(!init)
// {
// for(int k=0; k<2; ++k)
// func[k] = 0;
//
// func[UP] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,UpperTriangular>::run);
// func[LO] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,LowerTriangular>::run);
//
// init = true;
// }
typedef void (*functype)(int, Scalar*, int, const Scalar*, const Scalar*, Scalar); static functype func[2];
static bool init = false; if(!init) { for(int k=0; k<2; ++k) func[k] = 0;
func[UP] = (internal::rank2_update_selector<Scalar,int,Upper>::run); func[LO] = (internal::rank2_update_selector<Scalar,int,Lower>::run);
init = true; }
Scalar* x = reinterpret_cast<Scalar*>(px); Scalar* y = reinterpret_cast<Scalar*>(py); Scalar* c = reinterpret_cast<Scalar*>(pc); Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
int info = 0; if(UPLO(*uplo)==INVALID) info = 1; else if(*n<0) info = 2; else if(*incx==0) info = 5; else if(*incy==0) info = 7; else if(*ldc<std::max(1,*n)) info = 9; if(info) return xerbla_(SCALAR_SUFFIX_UP"SYR2 ",&info,6);
if(alpha==Scalar(0)) return 1;
Scalar* x_cpy = get_compact_vector(x,*n,*incx); Scalar* y_cpy = get_compact_vector(y,*n,*incy); int code = UPLO(*uplo); if(code>=2 || func[code]==0) return 0;
func[code](*n, c, *ldc, x_cpy, y_cpy, alpha);
if(x_cpy!=x) delete[] x_cpy; if(y_cpy!=y) delete[] y_cpy;
// int code = UPLO(*uplo);
// if(code>=2 || func[code]==0)
// return 0;
// func[code](*n, a, *inca, b, *incb, c, *ldc, alpha);
return 1; }
/** DSBMV performs the matrix-vector operation
* * y := alpha*A*x + beta*y, * * where alpha and beta are scalars, x and y are n element vectors and * A is an n by n symmetric band matrix, with k super-diagonals. */ // int EIGEN_BLAS_FUNC(sbmv)( char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda,
// RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
// {
// return 1;
// }
/** DSPMV performs the matrix-vector operation
* * y := alpha*A*x + beta*y, * * where alpha and beta are scalars, x and y are n element vectors and * A is an n by n symmetric matrix, supplied in packed form. * */ // int EIGEN_BLAS_FUNC(spmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
// {
// return 1;
// }
/** DSPR performs the symmetric rank 1 operation
* * A := alpha*x*x' + A, * * where alpha is a real scalar, x is an n element vector and A is an * n by n symmetric matrix, supplied in packed form. */ int EIGEN_BLAS_FUNC(spr)(char *uplo, int *n, Scalar *palpha, Scalar *px, int *incx, Scalar *pap) { typedef void (*functype)(int, Scalar*, const Scalar*, Scalar); static functype func[2];
static bool init = false; if(!init) { for(int k=0; k<2; ++k) func[k] = 0;
func[UP] = (internal::selfadjoint_packed_rank1_update<Scalar,int,ColMajor,Upper,false,false>::run); func[LO] = (internal::selfadjoint_packed_rank1_update<Scalar,int,ColMajor,Lower,false,false>::run);
init = true; }
Scalar* x = reinterpret_cast<Scalar*>(px); Scalar* ap = reinterpret_cast<Scalar*>(pap); Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
int info = 0; if(UPLO(*uplo)==INVALID) info = 1; else if(*n<0) info = 2; else if(*incx==0) info = 5; if(info) return xerbla_(SCALAR_SUFFIX_UP"SPR ",&info,6);
if(alpha==Scalar(0)) return 1;
Scalar* x_cpy = get_compact_vector(x, *n, *incx);
int code = UPLO(*uplo); if(code>=2 || func[code]==0) return 0;
func[code](*n, ap, x_cpy, alpha);
if(x_cpy!=x) delete[] x_cpy;
return 1; }
/** DSPR2 performs the symmetric rank 2 operation
* * A := alpha*x*y' + alpha*y*x' + A, * * where alpha is a scalar, x and y are n element vectors and A is an * n by n symmetric matrix, supplied in packed form. */ int EIGEN_BLAS_FUNC(spr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pap) { typedef void (*functype)(int, Scalar*, const Scalar*, const Scalar*, Scalar); static functype func[2];
static bool init = false; if(!init) { for(int k=0; k<2; ++k) func[k] = 0;
func[UP] = (internal::packed_rank2_update_selector<Scalar,int,Upper>::run); func[LO] = (internal::packed_rank2_update_selector<Scalar,int,Lower>::run);
init = true; }
Scalar* x = reinterpret_cast<Scalar*>(px); Scalar* y = reinterpret_cast<Scalar*>(py); Scalar* ap = reinterpret_cast<Scalar*>(pap); Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
int info = 0; if(UPLO(*uplo)==INVALID) info = 1; else if(*n<0) info = 2; else if(*incx==0) info = 5; else if(*incy==0) info = 7; if(info) return xerbla_(SCALAR_SUFFIX_UP"SPR2 ",&info,6);
if(alpha==Scalar(0)) return 1;
Scalar* x_cpy = get_compact_vector(x, *n, *incx); Scalar* y_cpy = get_compact_vector(y, *n, *incy);
int code = UPLO(*uplo); if(code>=2 || func[code]==0) return 0;
func[code](*n, ap, x_cpy, y_cpy, alpha);
if(x_cpy!=x) delete[] x_cpy; if(y_cpy!=y) delete[] y_cpy;
return 1; }
/** DGER performs the rank 1 operation
* * A := alpha*x*y' + A, * * where alpha is a scalar, x is an m element vector, y is an n element * vector and A is an m by n matrix. */ int EIGEN_BLAS_FUNC(ger)(int *m, int *n, Scalar *palpha, Scalar *px, int *incx, Scalar *py, int *incy, Scalar *pa, int *lda) { Scalar* x = reinterpret_cast<Scalar*>(px); Scalar* y = reinterpret_cast<Scalar*>(py); Scalar* a = reinterpret_cast<Scalar*>(pa); Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
int info = 0; if(*m<0) info = 1; else if(*n<0) info = 2; else if(*incx==0) info = 5; else if(*incy==0) info = 7; else if(*lda<std::max(1,*m)) info = 9; if(info) return xerbla_(SCALAR_SUFFIX_UP"GER ",&info,6);
if(alpha==Scalar(0)) return 1;
Scalar* x_cpy = get_compact_vector(x,*m,*incx); Scalar* y_cpy = get_compact_vector(y,*n,*incy);
internal::general_rank1_update<Scalar,int,ColMajor,false,false>::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha);
if(x_cpy!=x) delete[] x_cpy; if(y_cpy!=y) delete[] y_cpy;
return 1; }
|