|
|
#include "basicValueIteration.h"
#include <iostream> #include <chrono>
#include <cuda_runtime.h> #include "cusparse_v2.h"
__global__ void cuda_kernel_basicValueIteration_mvReduce(int const * const A, int * const B) { *B = *A; }
void cudaForStormTestFunction(int a, int b) { std::cout << "Cuda for Storm: a + b = " << (a+b) << std::endl; }
void basicValueIteration_mvReduce(uint_fast64_t const maxIterationCount, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<std::pair<uint_fast64_t, double>> columnIndicesAndValues, std::vector<double>& x, std::vector<double> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices) { if (sizeof(double) != sizeof(uint_fast64_t)) { std::cout << "FATAL ERROR - Internal Sizes of Double and uint_fast64_t do NOT match, CUDA acceleration not possible!" << std::endl; return; } uint_fast64_t* device_matrixRowIndices = nullptr; uint_fast64_t* device_matrixColIndicesAndValues = nullptr; double* device_x = nullptr; double* device_b = nullptr; double* device_multiplyResult = nullptr; uint_fast64_t* device_nondeterministicChoiceIndices = nullptr;
cudaError_t cudaMallocResult;
cudaMallocResult = cudaMalloc<uint_fast64_t>(&device_matrixRowIndices, matrixRowIndices.size()); if (cudaMallocResult != cudaSuccess) { std::cout << "Could not allocate memory for Matrix Row Indices, Error Code " << cudaMallocResult << "." << std::endl; goto cleanup; }
cudaMallocResult = cudaMalloc<uint_fast64_t>(&device_matrixColIndicesAndValues, columnIndicesAndValues.size() * 2); if (cudaMallocResult != cudaSuccess) { std::cout << "Could not allocate memory for Matrix Column Indices and Values, Error Code " << cudaMallocResult << "." << std::endl; goto cleanup; }
cudaMallocResult = cudaMalloc<double>(&device_x, x.size()); if (cudaMallocResult != cudaSuccess) { std::cout << "Could not allocate memory for Vector x, Error Code " << cudaMallocResult << "." << std::endl; goto cleanup; }
cudaMallocResult = cudaMalloc<double>(&device_b, b.size()); if (cudaMallocResult != cudaSuccess) { std::cout << "Could not allocate memory for Vector b, Error Code " << cudaMallocResult << "." << std::endl; goto cleanup; }
cudaMallocResult = cudaMalloc<double>(&device_multiplyResult, b.size()); if (cudaMallocResult != cudaSuccess) { std::cout << "Could not allocate memory for Vector multiplyResult, Error Code " << cudaMallocResult << "." << std::endl; goto cleanup; }
cudaMallocResult = cudaMalloc<uint_fast64_t>(&device_nondeterministicChoiceIndices, nondeterministicChoiceIndices.size()); if (cudaMallocResult != cudaSuccess) { std::cout << "Could not allocate memory for Nondeterministic Choice Indices, Error Code " << cudaMallocResult << "." << std::endl; goto cleanup; }
// Memory allocated, copy data to device cudaError_t cudaCopyResult;
cudaCopyResult = cudaMemcpy(device_matrixRowIndices, matrixRowIndices.data(), sizeof(uint_fast64_t) * matrixRowIndices.size(), cudaMemcpyHostToDevice); if (cudaCopyResult != cudaSuccess) { std::cout << "Could not copy data for Matrix Row Indices, Error Code " << cudaCopyResult << std::endl; goto cleanup; }
cudaCopyResult = cudaMemcpy(device_matrixColIndicesAndValues, columnIndicesAndValues.data(), (sizeof(uint_fast64_t) * columnIndicesAndValues.size()) + (sizeof(double) * columnIndicesAndValues.size()), cudaMemcpyHostToDevice); if (cudaCopyResult != cudaSuccess) { std::cout << "Could not copy data for Matrix Column Indices and Values, Error Code " << cudaCopyResult << std::endl; goto cleanup; }
cudaCopyResult = cudaMemcpy(device_x, x.data(), sizeof(double) * x.size(), cudaMemcpyHostToDevice); if (cudaCopyResult != cudaSuccess) { std::cout << "Could not copy data for Vector x, Error Code " << cudaCopyResult << std::endl; goto cleanup; }
cudaCopyResult = cudaMemcpy(device_b, b.data(), sizeof(double) * b.size(), cudaMemcpyHostToDevice); if (cudaCopyResult != cudaSuccess) { std::cout << "Could not copy data for Vector b, Error Code " << cudaCopyResult << std::endl; goto cleanup; }
cudaCopyResult = cudaMemcpy(device_nondeterministicChoiceIndices, nondeterministicChoiceIndices.data(), sizeof(uint_fast64_t) * nondeterministicChoiceIndices.size(), cudaMemcpyHostToDevice); if (cudaCopyResult != cudaSuccess) { std::cout << "Could not copy data for Vector b, Error Code " << cudaCopyResult << std::endl; goto cleanup; }
// Data is on device, start Kernel
// All code related to freeing memory and clearing up the device cleanup: if (device_matrixRowIndices != nullptr) { cudaError_t cudaFreeResult = cudaFree(device_matrixRowIndices); if (cudaFreeResult != cudaSuccess) { std::cout << "Could not free Memory of Matrix Row Indices, Error Code " << cudaFreeResult << "." << std::endl; } device_matrixRowIndices = nullptr; } if (device_matrixColIndicesAndValues != nullptr) { cudaError_t cudaFreeResult = cudaFree(device_matrixColIndicesAndValues); if (cudaFreeResult != cudaSuccess) { std::cout << "Could not free Memory of Matrix Column Indices and Values, Error Code " << cudaFreeResult << "." << std::endl; } device_matrixColIndicesAndValues = nullptr; } if (device_x != nullptr) { cudaError_t cudaFreeResult = cudaFree(device_x); if (cudaFreeResult != cudaSuccess) { std::cout << "Could not free Memory of Vector x, Error Code " << cudaFreeResult << "." << std::endl; } device_x = nullptr; } if (device_b != nullptr) { cudaError_t cudaFreeResult = cudaFree(device_b); if (cudaFreeResult != cudaSuccess) { std::cout << "Could not free Memory of Vector b, Error Code " << cudaFreeResult << "." << std::endl; } device_b = nullptr; } if (device_multiplyResult != nullptr) { cudaError_t cudaFreeResult = cudaFree(device_multiplyResult); if (cudaFreeResult != cudaSuccess) { std::cout << "Could not free Memory of Vector multiplyResult, Error Code " << cudaFreeResult << "." << std::endl; } device_multiplyResult = nullptr; } if (device_nondeterministicChoiceIndices != nullptr) { cudaError_t cudaFreeResult = cudaFree(device_nondeterministicChoiceIndices); if (cudaFreeResult != cudaSuccess) { std::cout << "Could not free Memory of Nondeterministic Choice Indices, Error Code " << cudaFreeResult << "." << std::endl; } device_nondeterministicChoiceIndices = nullptr; } }
/* void kernelSwitchTest(size_t N) { int* deviceIntA; int* deviceIntB;
if (cudaMalloc((void**)&deviceIntA, sizeof(int)) != cudaSuccess) { std::cout << "Error in cudaMalloc while allocating " << sizeof(int) << " Bytes!" << std::endl; return; } if (cudaMalloc((void**)&deviceIntB, sizeof(int)) != cudaSuccess) { std::cout << "Error in cudaMalloc while allocating " << sizeof(int) << " Bytes!" << std::endl; return; }
// Allocate space on the device auto start_time = std::chrono::high_resolution_clock::now(); for (int i = 0; i < N; ++i) { cuda_kernel_kernelSwitchTest<<<1,1>>>(deviceIntA, deviceIntB); } auto end_time = std::chrono::high_resolution_clock::now(); std::cout << "Switching the Kernel " << N << " times took " << std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count() << "micros" << std::endl; std::cout << "Resulting in " << (std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count() / ((double)(N))) << "Microseconds per Kernel Switch" << std::endl;
// Free memory on device if (cudaFree(deviceIntA) != cudaSuccess) { std::cout << "Error in cudaFree!" << std::endl; return; } if (cudaFree(deviceIntB) != cudaSuccess) { std::cout << "Error in cudaFree!" << std::endl; return; } }*/
|