|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <unsupported/StormEigen/Polynomials>
#include <iostream>
using namespace std;
namespace StormEigen { namespace internal { template<int Size> struct increment_if_fixed_size { enum { ret = (Size == Dynamic) ? Dynamic : Size+1 }; }; } }
template<typename _Scalar, int _Deg> void realRoots_to_monicPolynomial_test(int deg) { typedef internal::increment_if_fixed_size<_Deg> Dim; typedef Matrix<_Scalar,Dim::ret,1> PolynomialType; typedef Matrix<_Scalar,_Deg,1> EvalRootsType;
PolynomialType pols(deg+1); EvalRootsType roots = EvalRootsType::Random(deg); roots_to_monicPolynomial( roots, pols );
EvalRootsType evr( deg ); for( int i=0; i<roots.size(); ++i ){ evr[i] = std::abs( poly_eval( pols, roots[i] ) ); }
bool evalToZero = evr.isZero( test_precision<_Scalar>() ); if( !evalToZero ){ cerr << evr.transpose() << endl; } VERIFY( evalToZero ); }
template<typename _Scalar> void realRoots_to_monicPolynomial_scalar() { CALL_SUBTEST_2( (realRoots_to_monicPolynomial_test<_Scalar,2>(2)) ); CALL_SUBTEST_3( (realRoots_to_monicPolynomial_test<_Scalar,3>(3)) ); CALL_SUBTEST_4( (realRoots_to_monicPolynomial_test<_Scalar,4>(4)) ); CALL_SUBTEST_5( (realRoots_to_monicPolynomial_test<_Scalar,5>(5)) ); CALL_SUBTEST_6( (realRoots_to_monicPolynomial_test<_Scalar,6>(6)) ); CALL_SUBTEST_7( (realRoots_to_monicPolynomial_test<_Scalar,7>(7)) ); CALL_SUBTEST_8( (realRoots_to_monicPolynomial_test<_Scalar,17>(17)) );
CALL_SUBTEST_9( (realRoots_to_monicPolynomial_test<_Scalar,Dynamic>( internal::random<int>(18,26) )) ); }
template<typename _Scalar, int _Deg> void CauchyBounds(int deg) { typedef internal::increment_if_fixed_size<_Deg> Dim; typedef Matrix<_Scalar,Dim::ret,1> PolynomialType; typedef Matrix<_Scalar,_Deg,1> EvalRootsType;
PolynomialType pols(deg+1); EvalRootsType roots = EvalRootsType::Random(deg); roots_to_monicPolynomial( roots, pols ); _Scalar M = cauchy_max_bound( pols ); _Scalar m = cauchy_min_bound( pols ); _Scalar Max = roots.array().abs().maxCoeff(); _Scalar min = roots.array().abs().minCoeff(); bool eval = (M >= Max) && (m <= min); if( !eval ) { cerr << "Roots: " << roots << endl; cerr << "Bounds: (" << m << ", " << M << ")" << endl; cerr << "Min,Max: (" << min << ", " << Max << ")" << endl; } VERIFY( eval ); }
template<typename _Scalar> void CauchyBounds_scalar() { CALL_SUBTEST_2( (CauchyBounds<_Scalar,2>(2)) ); CALL_SUBTEST_3( (CauchyBounds<_Scalar,3>(3)) ); CALL_SUBTEST_4( (CauchyBounds<_Scalar,4>(4)) ); CALL_SUBTEST_5( (CauchyBounds<_Scalar,5>(5)) ); CALL_SUBTEST_6( (CauchyBounds<_Scalar,6>(6)) ); CALL_SUBTEST_7( (CauchyBounds<_Scalar,7>(7)) ); CALL_SUBTEST_8( (CauchyBounds<_Scalar,17>(17)) );
CALL_SUBTEST_9( (CauchyBounds<_Scalar,Dynamic>( internal::random<int>(18,26) )) ); }
void test_polynomialutils() { for(int i = 0; i < g_repeat; i++) { realRoots_to_monicPolynomial_scalar<double>(); realRoots_to_monicPolynomial_scalar<float>(); CauchyBounds_scalar<double>(); CauchyBounds_scalar<float>(); } }
|