|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <unsupported/StormEigen/MatrixFunctions>
// Variant of VERIFY_IS_APPROX which uses absolute error instead of
// relative error.
#define VERIFY_IS_APPROX_ABS(a, b) VERIFY(test_isApprox_abs(a, b))
template<typename Type1, typename Type2> inline bool test_isApprox_abs(const Type1& a, const Type2& b) { return ((a-b).array().abs() < test_precision<typename Type1::RealScalar>()).all(); }
// Returns a matrix with eigenvalues clustered around 0, 1 and 2.
template<typename MatrixType> MatrixType randomMatrixWithRealEivals(const typename MatrixType::Index size) { typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; MatrixType diag = MatrixType::Zero(size, size); for (Index i = 0; i < size; ++i) { diag(i, i) = Scalar(RealScalar(internal::random<int>(0,2))) + internal::random<Scalar>() * Scalar(RealScalar(0.01)); } MatrixType A = MatrixType::Random(size, size); HouseholderQR<MatrixType> QRofA(A); return QRofA.householderQ().inverse() * diag * QRofA.householderQ(); }
template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex> struct randomMatrixWithImagEivals { // Returns a matrix with eigenvalues clustered around 0 and +/- i.
static MatrixType run(const typename MatrixType::Index size); };
// Partial specialization for real matrices
template<typename MatrixType> struct randomMatrixWithImagEivals<MatrixType, 0> { static MatrixType run(const typename MatrixType::Index size) { typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; MatrixType diag = MatrixType::Zero(size, size); Index i = 0; while (i < size) { Index randomInt = internal::random<Index>(-1, 1); if (randomInt == 0 || i == size-1) { diag(i, i) = internal::random<Scalar>() * Scalar(0.01); ++i; } else { Scalar alpha = Scalar(randomInt) + internal::random<Scalar>() * Scalar(0.01); diag(i, i+1) = alpha; diag(i+1, i) = -alpha; i += 2; } } MatrixType A = MatrixType::Random(size, size); HouseholderQR<MatrixType> QRofA(A); return QRofA.householderQ().inverse() * diag * QRofA.householderQ(); } };
// Partial specialization for complex matrices
template<typename MatrixType> struct randomMatrixWithImagEivals<MatrixType, 1> { static MatrixType run(const typename MatrixType::Index size) { typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; const Scalar imagUnit(0, 1); MatrixType diag = MatrixType::Zero(size, size); for (Index i = 0; i < size; ++i) { diag(i, i) = Scalar(RealScalar(internal::random<Index>(-1, 1))) * imagUnit + internal::random<Scalar>() * Scalar(RealScalar(0.01)); } MatrixType A = MatrixType::Random(size, size); HouseholderQR<MatrixType> QRofA(A); return QRofA.householderQ().inverse() * diag * QRofA.householderQ(); } };
template<typename MatrixType> void testMatrixExponential(const MatrixType& A) { typedef typename internal::traits<MatrixType>::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef std::complex<RealScalar> ComplexScalar;
VERIFY_IS_APPROX(A.exp(), A.matrixFunction(internal::stem_function_exp<ComplexScalar>)); }
template<typename MatrixType> void testMatrixLogarithm(const MatrixType& A) { typedef typename internal::traits<MatrixType>::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar;
MatrixType scaledA; RealScalar maxImagPartOfSpectrum = A.eigenvalues().imag().cwiseAbs().maxCoeff(); if (maxImagPartOfSpectrum >= 0.9 * M_PI) scaledA = A * 0.9 * M_PI / maxImagPartOfSpectrum; else scaledA = A;
// identity X.exp().log() = X only holds if Im(lambda) < pi for all eigenvalues of X
MatrixType expA = scaledA.exp(); MatrixType logExpA = expA.log(); VERIFY_IS_APPROX(logExpA, scaledA); }
template<typename MatrixType> void testHyperbolicFunctions(const MatrixType& A) { // Need to use absolute error because of possible cancellation when
// adding/subtracting expA and expmA.
VERIFY_IS_APPROX_ABS(A.sinh(), (A.exp() - (-A).exp()) / 2); VERIFY_IS_APPROX_ABS(A.cosh(), (A.exp() + (-A).exp()) / 2); }
template<typename MatrixType> void testGonioFunctions(const MatrixType& A) { typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef std::complex<RealScalar> ComplexScalar; typedef Matrix<ComplexScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime, MatrixType::Options> ComplexMatrix;
ComplexScalar imagUnit(0,1); ComplexScalar two(2,0);
ComplexMatrix Ac = A.template cast<ComplexScalar>(); ComplexMatrix exp_iA = (imagUnit * Ac).exp(); ComplexMatrix exp_miA = (-imagUnit * Ac).exp(); ComplexMatrix sinAc = A.sin().template cast<ComplexScalar>(); VERIFY_IS_APPROX_ABS(sinAc, (exp_iA - exp_miA) / (two*imagUnit)); ComplexMatrix cosAc = A.cos().template cast<ComplexScalar>(); VERIFY_IS_APPROX_ABS(cosAc, (exp_iA + exp_miA) / 2); }
template<typename MatrixType> void testMatrix(const MatrixType& A) { testMatrixExponential(A); testMatrixLogarithm(A); testHyperbolicFunctions(A); testGonioFunctions(A); }
template<typename MatrixType> void testMatrixType(const MatrixType& m) { // Matrices with clustered eigenvalue lead to different code paths
// in MatrixFunction.h and are thus useful for testing.
typedef typename MatrixType::Index Index;
const Index size = m.rows(); for (int i = 0; i < g_repeat; i++) { testMatrix(MatrixType::Random(size, size).eval()); testMatrix(randomMatrixWithRealEivals<MatrixType>(size)); testMatrix(randomMatrixWithImagEivals<MatrixType>::run(size)); } }
void test_matrix_function() { CALL_SUBTEST_1(testMatrixType(Matrix<float,1,1>())); CALL_SUBTEST_2(testMatrixType(Matrix3cf())); CALL_SUBTEST_3(testMatrixType(MatrixXf(8,8))); CALL_SUBTEST_4(testMatrixType(Matrix2d())); CALL_SUBTEST_5(testMatrixType(Matrix<double,5,5,RowMajor>())); CALL_SUBTEST_6(testMatrixType(Matrix4cd())); CALL_SUBTEST_7(testMatrixType(MatrixXd(13,13))); }
|