|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_NO_ASSERTION_CHECKING
#define EIGEN_NO_ASSERTION_CHECKING
#endif
#define TEST_ENABLE_TEMPORARY_TRACKING
#include "main.h"
#include <Eigen/Cholesky>
#include <Eigen/QR>
template<typename MatrixType,template <typename,int> class CholType> void test_chol_update(const MatrixType& symm) { typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
MatrixType symmLo = symm.template triangularView<Lower>(); MatrixType symmUp = symm.template triangularView<Upper>(); MatrixType symmCpy = symm;
CholType<MatrixType,Lower> chollo(symmLo); CholType<MatrixType,Upper> cholup(symmUp);
for (int k=0; k<10; ++k) { VectorType vec = VectorType::Random(symm.rows()); RealScalar sigma = internal::random<RealScalar>(); symmCpy += sigma * vec * vec.adjoint();
// we are doing some downdates, so it might be the case that the matrix is not SPD anymore
CholType<MatrixType,Lower> chol(symmCpy); if(chol.info()!=Success) break;
chollo.rankUpdate(vec, sigma); VERIFY_IS_APPROX(symmCpy, chollo.reconstructedMatrix());
cholup.rankUpdate(vec, sigma); VERIFY_IS_APPROX(symmCpy, cholup.reconstructedMatrix()); } }
template<typename MatrixType> void cholesky(const MatrixType& m) { typedef typename MatrixType::Index Index; /* this test covers the following files:
LLT.h LDLT.h */ Index rows = m.rows(); Index cols = m.cols();
typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
MatrixType a0 = MatrixType::Random(rows,cols); VectorType vecB = VectorType::Random(rows), vecX(rows); MatrixType matB = MatrixType::Random(rows,cols), matX(rows,cols); SquareMatrixType symm = a0 * a0.adjoint(); // let's make sure the matrix is not singular or near singular
for (int k=0; k<3; ++k) { MatrixType a1 = MatrixType::Random(rows,cols); symm += a1 * a1.adjoint(); }
{ SquareMatrixType symmUp = symm.template triangularView<Upper>(); SquareMatrixType symmLo = symm.template triangularView<Lower>(); LLT<SquareMatrixType,Lower> chollo(symmLo); VERIFY_IS_APPROX(symm, chollo.reconstructedMatrix()); vecX = chollo.solve(vecB); VERIFY_IS_APPROX(symm * vecX, vecB); matX = chollo.solve(matB); VERIFY_IS_APPROX(symm * matX, matB);
// test the upper mode
LLT<SquareMatrixType,Upper> cholup(symmUp); VERIFY_IS_APPROX(symm, cholup.reconstructedMatrix()); vecX = cholup.solve(vecB); VERIFY_IS_APPROX(symm * vecX, vecB); matX = cholup.solve(matB); VERIFY_IS_APPROX(symm * matX, matB);
MatrixType neg = -symmLo; chollo.compute(neg); VERIFY(chollo.info()==NumericalIssue);
VERIFY_IS_APPROX(MatrixType(chollo.matrixL().transpose().conjugate()), MatrixType(chollo.matrixU())); VERIFY_IS_APPROX(MatrixType(chollo.matrixU().transpose().conjugate()), MatrixType(chollo.matrixL())); VERIFY_IS_APPROX(MatrixType(cholup.matrixL().transpose().conjugate()), MatrixType(cholup.matrixU())); VERIFY_IS_APPROX(MatrixType(cholup.matrixU().transpose().conjugate()), MatrixType(cholup.matrixL())); // test some special use cases of SelfCwiseBinaryOp:
MatrixType m1 = MatrixType::Random(rows,cols), m2(rows,cols); m2 = m1; m2 += symmLo.template selfadjointView<Lower>().llt().solve(matB); VERIFY_IS_APPROX(m2, m1 + symmLo.template selfadjointView<Lower>().llt().solve(matB)); m2 = m1; m2 -= symmLo.template selfadjointView<Lower>().llt().solve(matB); VERIFY_IS_APPROX(m2, m1 - symmLo.template selfadjointView<Lower>().llt().solve(matB)); m2 = m1; m2.noalias() += symmLo.template selfadjointView<Lower>().llt().solve(matB); VERIFY_IS_APPROX(m2, m1 + symmLo.template selfadjointView<Lower>().llt().solve(matB)); m2 = m1; m2.noalias() -= symmLo.template selfadjointView<Lower>().llt().solve(matB); VERIFY_IS_APPROX(m2, m1 - symmLo.template selfadjointView<Lower>().llt().solve(matB)); }
// LDLT
{ int sign = internal::random<int>()%2 ? 1 : -1;
if(sign == -1) { symm = -symm; // test a negative matrix
}
SquareMatrixType symmUp = symm.template triangularView<Upper>(); SquareMatrixType symmLo = symm.template triangularView<Lower>();
LDLT<SquareMatrixType,Lower> ldltlo(symmLo); VERIFY_IS_APPROX(symm, ldltlo.reconstructedMatrix()); vecX = ldltlo.solve(vecB); VERIFY_IS_APPROX(symm * vecX, vecB); matX = ldltlo.solve(matB); VERIFY_IS_APPROX(symm * matX, matB);
LDLT<SquareMatrixType,Upper> ldltup(symmUp); VERIFY_IS_APPROX(symm, ldltup.reconstructedMatrix()); vecX = ldltup.solve(vecB); VERIFY_IS_APPROX(symm * vecX, vecB); matX = ldltup.solve(matB); VERIFY_IS_APPROX(symm * matX, matB);
VERIFY_IS_APPROX(MatrixType(ldltlo.matrixL().transpose().conjugate()), MatrixType(ldltlo.matrixU())); VERIFY_IS_APPROX(MatrixType(ldltlo.matrixU().transpose().conjugate()), MatrixType(ldltlo.matrixL())); VERIFY_IS_APPROX(MatrixType(ldltup.matrixL().transpose().conjugate()), MatrixType(ldltup.matrixU())); VERIFY_IS_APPROX(MatrixType(ldltup.matrixU().transpose().conjugate()), MatrixType(ldltup.matrixL()));
if(MatrixType::RowsAtCompileTime==Dynamic) { // note : each inplace permutation requires a small temporary vector (mask)
// check inplace solve
matX = matB; VERIFY_EVALUATION_COUNT(matX = ldltlo.solve(matX), 0); VERIFY_IS_APPROX(matX, ldltlo.solve(matB).eval());
matX = matB; VERIFY_EVALUATION_COUNT(matX = ldltup.solve(matX), 0); VERIFY_IS_APPROX(matX, ldltup.solve(matB).eval()); }
// restore
if(sign == -1) symm = -symm; // check matrices coming from linear constraints with Lagrange multipliers
if(rows>=3) { SquareMatrixType A = symm; Index c = internal::random<Index>(0,rows-2); A.bottomRightCorner(c,c).setZero(); // Make sure a solution exists:
vecX.setRandom(); vecB = A * vecX; vecX.setZero(); ldltlo.compute(A); VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix()); vecX = ldltlo.solve(vecB); VERIFY_IS_APPROX(A * vecX, vecB); } // check non-full rank matrices
if(rows>=3) { Index r = internal::random<Index>(1,rows-1); Matrix<Scalar,Dynamic,Dynamic> a = Matrix<Scalar,Dynamic,Dynamic>::Random(rows,r); SquareMatrixType A = a * a.adjoint(); // Make sure a solution exists:
vecX.setRandom(); vecB = A * vecX; vecX.setZero(); ldltlo.compute(A); VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix()); vecX = ldltlo.solve(vecB); VERIFY_IS_APPROX(A * vecX, vecB); } // check matrices with a wide spectrum
if(rows>=3) { RealScalar s = (std::min)(16,std::numeric_limits<RealScalar>::max_exponent10/8); Matrix<Scalar,Dynamic,Dynamic> a = Matrix<Scalar,Dynamic,Dynamic>::Random(rows,rows); Matrix<RealScalar,Dynamic,1> d = Matrix<RealScalar,Dynamic,1>::Random(rows); for(Index k=0; k<rows; ++k) d(k) = d(k)*std::pow(RealScalar(10),internal::random<RealScalar>(-s,s)); SquareMatrixType A = a * d.asDiagonal() * a.adjoint(); // Make sure a solution exists:
vecX.setRandom(); vecB = A * vecX; vecX.setZero(); ldltlo.compute(A); VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix()); vecX = ldltlo.solve(vecB);
if(ldltlo.vectorD().real().cwiseAbs().minCoeff()>RealScalar(0)) { VERIFY_IS_APPROX(A * vecX,vecB); } else { RealScalar large_tol = std::sqrt(test_precision<RealScalar>()); VERIFY((A * vecX).isApprox(vecB, large_tol)); ++g_test_level; VERIFY_IS_APPROX(A * vecX,vecB); --g_test_level; } } }
// update/downdate
CALL_SUBTEST(( test_chol_update<SquareMatrixType,LLT>(symm) )); CALL_SUBTEST(( test_chol_update<SquareMatrixType,LDLT>(symm) )); }
template<typename MatrixType> void cholesky_cplx(const MatrixType& m) { // classic test
cholesky(m);
// test mixing real/scalar types
typedef typename MatrixType::Index Index;
Index rows = m.rows(); Index cols = m.cols();
typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> RealMatrixType; typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
RealMatrixType a0 = RealMatrixType::Random(rows,cols); VectorType vecB = VectorType::Random(rows), vecX(rows); MatrixType matB = MatrixType::Random(rows,cols), matX(rows,cols); RealMatrixType symm = a0 * a0.adjoint(); // let's make sure the matrix is not singular or near singular
for (int k=0; k<3; ++k) { RealMatrixType a1 = RealMatrixType::Random(rows,cols); symm += a1 * a1.adjoint(); }
{ RealMatrixType symmLo = symm.template triangularView<Lower>();
LLT<RealMatrixType,Lower> chollo(symmLo); VERIFY_IS_APPROX(symm, chollo.reconstructedMatrix()); vecX = chollo.solve(vecB); VERIFY_IS_APPROX(symm * vecX, vecB); // matX = chollo.solve(matB);
// VERIFY_IS_APPROX(symm * matX, matB);
}
// LDLT
{ int sign = internal::random<int>()%2 ? 1 : -1;
if(sign == -1) { symm = -symm; // test a negative matrix
}
RealMatrixType symmLo = symm.template triangularView<Lower>();
LDLT<RealMatrixType,Lower> ldltlo(symmLo); VERIFY_IS_APPROX(symm, ldltlo.reconstructedMatrix()); vecX = ldltlo.solve(vecB); VERIFY_IS_APPROX(symm * vecX, vecB); // matX = ldltlo.solve(matB);
// VERIFY_IS_APPROX(symm * matX, matB);
} }
// regression test for bug 241
template<typename MatrixType> void cholesky_bug241(const MatrixType& m) { eigen_assert(m.rows() == 2 && m.cols() == 2);
typedef typename MatrixType::Scalar Scalar; typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
MatrixType matA; matA << 1, 1, 1, 1; VectorType vecB; vecB << 1, 1; VectorType vecX = matA.ldlt().solve(vecB); VERIFY_IS_APPROX(matA * vecX, vecB); }
// LDLT is not guaranteed to work for indefinite matrices, but happens to work fine if matrix is diagonal.
// This test checks that LDLT reports correctly that matrix is indefinite.
// See http://forum.kde.org/viewtopic.php?f=74&t=106942 and bug 736
template<typename MatrixType> void cholesky_definiteness(const MatrixType& m) { eigen_assert(m.rows() == 2 && m.cols() == 2); MatrixType mat; LDLT<MatrixType> ldlt(2); { mat << 1, 0, 0, -1; ldlt.compute(mat); VERIFY(!ldlt.isNegative()); VERIFY(!ldlt.isPositive()); } { mat << 1, 2, 2, 1; ldlt.compute(mat); VERIFY(!ldlt.isNegative()); VERIFY(!ldlt.isPositive()); } { mat << 0, 0, 0, 0; ldlt.compute(mat); VERIFY(ldlt.isNegative()); VERIFY(ldlt.isPositive()); } { mat << 0, 0, 0, 1; ldlt.compute(mat); VERIFY(!ldlt.isNegative()); VERIFY(ldlt.isPositive()); } { mat << -1, 0, 0, 0; ldlt.compute(mat); VERIFY(ldlt.isNegative()); VERIFY(!ldlt.isPositive()); } }
template<typename MatrixType> void cholesky_verify_assert() { MatrixType tmp;
LLT<MatrixType> llt; VERIFY_RAISES_ASSERT(llt.matrixL()) VERIFY_RAISES_ASSERT(llt.matrixU()) VERIFY_RAISES_ASSERT(llt.solve(tmp)) VERIFY_RAISES_ASSERT(llt.solveInPlace(&tmp))
LDLT<MatrixType> ldlt; VERIFY_RAISES_ASSERT(ldlt.matrixL()) VERIFY_RAISES_ASSERT(ldlt.permutationP()) VERIFY_RAISES_ASSERT(ldlt.vectorD()) VERIFY_RAISES_ASSERT(ldlt.isPositive()) VERIFY_RAISES_ASSERT(ldlt.isNegative()) VERIFY_RAISES_ASSERT(ldlt.solve(tmp)) VERIFY_RAISES_ASSERT(ldlt.solveInPlace(&tmp)) }
void test_cholesky() { int s = 0; for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( cholesky(Matrix<double,1,1>()) ); CALL_SUBTEST_3( cholesky(Matrix2d()) ); CALL_SUBTEST_3( cholesky_bug241(Matrix2d()) ); CALL_SUBTEST_3( cholesky_definiteness(Matrix2d()) ); CALL_SUBTEST_4( cholesky(Matrix3f()) ); CALL_SUBTEST_5( cholesky(Matrix4d()) ); s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE); CALL_SUBTEST_2( cholesky(MatrixXd(s,s)) ); TEST_SET_BUT_UNUSED_VARIABLE(s) s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2); CALL_SUBTEST_6( cholesky_cplx(MatrixXcd(s,s)) ); TEST_SET_BUT_UNUSED_VARIABLE(s) }
CALL_SUBTEST_4( cholesky_verify_assert<Matrix3f>() ); CALL_SUBTEST_7( cholesky_verify_assert<Matrix3d>() ); CALL_SUBTEST_8( cholesky_verify_assert<MatrixXf>() ); CALL_SUBTEST_2( cholesky_verify_assert<MatrixXd>() );
// Test problem size constructors
CALL_SUBTEST_9( LLT<MatrixXf>(10) ); CALL_SUBTEST_9( LDLT<MatrixXf>(10) ); TEST_SET_BUT_UNUSED_VARIABLE(nb_temporaries) }
|