|
|
/***** ltl2ba : generalized.c *****/
/* Written by Denis Oddoux, LIAFA, France */ /* Copyright (c) 2001 Denis Oddoux */ /* Modified by Paul Gastin, LSV, France */ /* Copyright (c) 2007 Paul Gastin */ /* */ /* This program is free software; you can redistribute it and/or modify */ /* it under the terms of the GNU General Public License as published by */ /* the Free Software Foundation; either version 2 of the License, or */ /* (at your option) any later version. */ /* */ /* This program is distributed in the hope that it will be useful, */ /* but WITHOUT ANY WARRANTY; without even the implied warranty of */ /* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */ /* GNU General Public License for more details. */ /* */ /* You should have received a copy of the GNU General Public License */ /* along with this program; if not, write to the Free Software */ /* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA*/ /* */ /* Based on the translation algorithm by Gastin and Oddoux, */ /* presented at the 13th International Conference on Computer Aided */ /* Verification, CAV 2001, Paris, France. */ /* Proceedings - LNCS 2102, pp. 53-65 */ /* */ /* Send bug-reports and/or questions to Paul Gastin */ /* http://www.lsv.ens-cachan.fr/~gastin */
#include "ltl2ba.h"
/********************************************************************\
|* Structures and shared variables *| \********************************************************************/
extern FILE *tl_out; extern ATrans **transition; extern struct rusage tr_debut, tr_fin; extern struct timeval t_diff; extern int tl_verbose, tl_stats, tl_simp_diff, tl_simp_fly, tl_fjtofj, tl_simp_scc, *final_set, node_id; extern char **sym_table;
GState *gstack, *gremoved, *gstates, **init; GScc *scc_stack; int init_size = 0, gstate_id = 1, gstate_count = 0, gtrans_count = 0; int *fin, *final, rank, scc_id, scc_size, *bad_scc;
void print_generalized();
/********************************************************************\
|* Simplification of the generalized Buchi automaton *| \********************************************************************/
void free_gstate(GState *s) /* frees a state and its transitions */ { free_gtrans(s->trans->nxt, s->trans, 1); tfree(s->nodes_set); tfree(s); }
GState *remove_gstate(GState *s, GState *s1) /* removes a state */ { GState *prv = s->prv; s->prv->nxt = s->nxt; s->nxt->prv = s->prv; free_gtrans(s->trans->nxt, s->trans, 0); s->trans = (GTrans *)0; tfree(s->nodes_set); s->nodes_set = 0; s->nxt = gremoved->nxt; gremoved->nxt = s; s->prv = s1; for(s1 = gremoved->nxt; s1 != gremoved; s1 = s1->nxt) if(s1->prv == s) s1->prv = s->prv; return prv; }
void copy_gtrans(GTrans *from, GTrans *to) /* copies a transition */ { to->to = from->to; copy_set(from->pos, to->pos, 1); copy_set(from->neg, to->neg, 1); copy_set(from->final, to->final, 0); }
int same_gtrans(GState *a, GTrans *s, GState *b, GTrans *t, int use_scc) { /* returns 1 if the transitions are identical */ if((s->to != t->to) || ! same_sets(s->pos, t->pos, 1) || ! same_sets(s->neg, t->neg, 1)) return 0; /* transitions differ */ if(same_sets(s->final, t->final, 0)) return 1; /* same transitions exactly */ /* next we check whether acceptance conditions may be ignored */ if( use_scc && ( in_set(bad_scc, a->incoming) || in_set(bad_scc, b->incoming) || (a->incoming != s->to->incoming) || (b->incoming != t->to->incoming) ) ) return 1; return 0; /* below is the old test to check whether acceptance conditions may be ignored */ if(!use_scc) return 0; /* transitions differ */ if( (a->incoming == b->incoming) && (a->incoming == s->to->incoming) ) return 0; /* same scc: acceptance conditions must be taken into account */ /* if scc(a)=scc(b)>scc(s->to) then acceptance conditions need not be taken into account */ /* if scc(a)>scc(b) and scc(a) is non-trivial then all_gtrans_match(a,b,use_scc) will fail */ /* if scc(a) is trivial then acceptance conditions of transitions from a need not be taken into account */ return 1; /* same transitions up to acceptance conditions */ }
int simplify_gtrans() /* simplifies the transitions */ { int changed = 0; GState *s; GTrans *t, *t1;
if(tl_stats) getrusage(RUSAGE_SELF, &tr_debut);
for(s = gstates->nxt; s != gstates; s = s->nxt) { t = s->trans->nxt; while(t != s->trans) { /* tries to remove t */ copy_gtrans(t, s->trans); t1 = s->trans->nxt; while ( !((t != t1) && (t1->to == t->to) && included_set(t1->pos, t->pos, 1) && included_set(t1->neg, t->neg, 1) && (included_set(t->final, t1->final, 0) /* acceptance conditions of t are also in t1 or may be ignored */ || (tl_simp_scc && ((s->incoming != t->to->incoming) || in_set(bad_scc, s->incoming))))) ) t1 = t1->nxt; if(t1 != s->trans) { /* remove transition t */ GTrans *free = t->nxt; t->to = free->to; copy_set(free->pos, t->pos, 1); copy_set(free->neg, t->neg, 1); copy_set(free->final, t->final, 0); t->nxt = free->nxt; if(free == s->trans) s->trans = t; free_gtrans(free, 0, 0); changed++; } else t = t->nxt; } } if(tl_stats) { getrusage(RUSAGE_SELF, &tr_fin); timeval_subtract (&t_diff, &tr_fin.ru_utime, &tr_debut.ru_utime); fprintf(tl_out, "\nSimplification of the generalized Buchi automaton - transitions: %i.%06is", t_diff.tv_sec, t_diff.tv_usec); fprintf(tl_out, "\n%i transitions removed\n", changed); }
return changed; }
void retarget_all_gtrans() { /* redirects transitions before removing a state from the automaton */ GState *s; GTrans *t; int i; for (i = 0; i < init_size; i++) if (init[i] && !init[i]->trans) /* init[i] has been removed */ init[i] = init[i]->prv; for (s = gstates->nxt; s != gstates; s = s->nxt) for (t = s->trans->nxt; t != s->trans; ) if (!t->to->trans) { /* t->to has been removed */ t->to = t->to->prv; if(!t->to) { /* t->to has no transitions */ GTrans *free = t->nxt; t->to = free->to; copy_set(free->pos, t->pos, 1); copy_set(free->neg, t->neg, 1); copy_set(free->final, t->final, 0); t->nxt = free->nxt; if(free == s->trans) s->trans = t; free_gtrans(free, 0, 0); } else t = t->nxt; } else t = t->nxt; while(gremoved->nxt != gremoved) { /* clean the 'removed' list */ s = gremoved->nxt; gremoved->nxt = gremoved->nxt->nxt; if(s->nodes_set) tfree(s->nodes_set); tfree(s); } }
int all_gtrans_match(GState *a, GState *b, int use_scc) { /* decides if the states are equivalent */ GTrans *s, *t; for (s = a->trans->nxt; s != a->trans; s = s->nxt) { /* all transitions from a appear in b */ copy_gtrans(s, b->trans); t = b->trans->nxt; while(!same_gtrans(a, s, b, t, use_scc)) t = t->nxt; if(t == b->trans) return 0; } for (t = b->trans->nxt; t != b->trans; t = t->nxt) { /* all transitions from b appear in a */ copy_gtrans(t, a->trans); s = a->trans->nxt; while(!same_gtrans(a, s, b, t, use_scc)) s = s->nxt; if(s == a->trans) return 0; } return 1; }
int simplify_gstates() /* eliminates redundant states */ { int changed = 0; GState *a, *b;
if(tl_stats) getrusage(RUSAGE_SELF, &tr_debut);
for(a = gstates->nxt; a != gstates; a = a->nxt) { if(a->trans == a->trans->nxt) { /* a has no transitions */ a = remove_gstate(a, (GState *)0); changed++; continue; } gstates->trans = a->trans; b = a->nxt; while(!all_gtrans_match(a, b, tl_simp_scc)) b = b->nxt; if(b != gstates) { /* a and b are equivalent */ /* if scc(a)>scc(b) and scc(a) is non-trivial then all_gtrans_match(a,b,use_scc) must fail */ if(a->incoming > b->incoming) /* scc(a) is trivial */ a = remove_gstate(a, b); else /* either scc(a)=scc(b) or scc(b) is trivial */ remove_gstate(b, a); changed++; } } retarget_all_gtrans();
if(tl_stats) { getrusage(RUSAGE_SELF, &tr_fin); timeval_subtract (&t_diff, &tr_fin.ru_utime, &tr_debut.ru_utime); fprintf(tl_out, "\nSimplification of the generalized Buchi automaton - states: %i.%06is", t_diff.tv_sec, t_diff.tv_usec); fprintf(tl_out, "\n%i states removed\n", changed); }
return changed; }
int gdfs(GState *s) { GTrans *t; GScc *c; GScc *scc = (GScc *)tl_emalloc(sizeof(GScc)); scc->gstate = s; scc->rank = rank; scc->theta = rank++; scc->nxt = scc_stack; scc_stack = scc;
s->incoming = 1;
for (t = s->trans->nxt; t != s->trans; t = t->nxt) { if (t->to->incoming == 0) { int result = gdfs(t->to); scc->theta = min(scc->theta, result); } else { for(c = scc_stack->nxt; c != 0; c = c->nxt) if(c->gstate == t->to) { scc->theta = min(scc->theta, c->rank); break; } } } if(scc->rank == scc->theta) { while(scc_stack != scc) { scc_stack->gstate->incoming = scc_id; scc_stack = scc_stack->nxt; } scc->gstate->incoming = scc_id++; scc_stack = scc->nxt; } return scc->theta; }
void simplify_gscc() { GState *s; GTrans *t; int i, **scc_final; rank = 1; scc_stack = 0; scc_id = 1;
if(gstates == gstates->nxt) return;
for(s = gstates->nxt; s != gstates; s = s->nxt) s->incoming = 0; /* state color = white */
for(i = 0; i < init_size; i++) if(init[i] && init[i]->incoming == 0) gdfs(init[i]);
scc_final = (int **)tl_emalloc(scc_id * sizeof(int *)); for(i = 0; i < scc_id; i++) scc_final[i] = make_set(-1,0);
for(s = gstates->nxt; s != gstates; s = s->nxt) if(s->incoming == 0) s = remove_gstate(s, 0); else for (t = s->trans->nxt; t != s->trans; t = t->nxt) if(t->to->incoming == s->incoming) merge_sets(scc_final[s->incoming], t->final, 0);
scc_size = (scc_id + 1) / (8 * sizeof(int)) + 1; bad_scc=make_set(-1,2);
for(i = 0; i < scc_id; i++) if(!included_set(final_set, scc_final[i], 0)) add_set(bad_scc, i);
for(i = 0; i < scc_id; i++) tfree(scc_final[i]); tfree(scc_final); }
/********************************************************************\
|* Generation of the generalized Buchi automaton *| \********************************************************************/
int is_final(int *from, ATrans *at, int i) /*is the transition final for i ?*/ { ATrans *t; int in_to; if((tl_fjtofj && !in_set(at->to, i)) || (!tl_fjtofj && !in_set(from, i))) return 1; in_to = in_set(at->to, i); rem_set(at->to, i); for(t = transition[i]; t; t = t->nxt) if(included_set(t->to, at->to, 0) && included_set(t->pos, at->pos, 1) && included_set(t->neg, at->neg, 1)) { if(in_to) add_set(at->to, i); return 1; } if(in_to) add_set(at->to, i); return 0; }
GState *find_gstate(int *set, GState *s) { /* finds the corresponding state, or creates it */
if(same_sets(set, s->nodes_set, 0)) return s; /* same state */
s = gstack->nxt; /* in the stack */ gstack->nodes_set = set; while(!same_sets(set, s->nodes_set, 0)) s = s->nxt; if(s != gstack) return s;
s = gstates->nxt; /* in the solved states */ gstates->nodes_set = set; while(!same_sets(set, s->nodes_set, 0)) s = s->nxt; if(s != gstates) return s;
s = gremoved->nxt; /* in the removed states */ gremoved->nodes_set = set; while(!same_sets(set, s->nodes_set, 0)) s = s->nxt; if(s != gremoved) return s;
s = (GState *)tl_emalloc(sizeof(GState)); /* creates a new state */ s->id = (empty_set(set, 0)) ? 0 : gstate_id++; s->incoming = 0; s->nodes_set = dup_set(set, 0); s->trans = emalloc_gtrans(); /* sentinel */ s->trans->nxt = s->trans; s->nxt = gstack->nxt; gstack->nxt = s; return s; }
void make_gtrans(GState *s) { /* creates all the transitions from a state */ int i, *list, state_trans = 0, trans_exist = 1; GState *s1; GTrans *t; ATrans *t1, *free; AProd *prod = (AProd *)tl_emalloc(sizeof(AProd)); /* initialization */ prod->nxt = prod; prod->prv = prod; prod->prod = emalloc_atrans(); clear_set(prod->prod->to, 0); clear_set(prod->prod->pos, 1); clear_set(prod->prod->neg, 1); prod->trans = prod->prod; prod->trans->nxt = prod->prod; list = list_set(s->nodes_set, 0);
for(i = 1; i < list[0]; i++) { AProd *p = (AProd *)tl_emalloc(sizeof(AProd)); p->astate = list[i]; p->trans = transition[list[i]]; if(!p->trans) trans_exist = 0; p->prod = merge_trans(prod->nxt->prod, p->trans); p->nxt = prod->nxt; p->prv = prod; p->nxt->prv = p; p->prv->nxt = p; }
while(trans_exist) { /* calculates all the transitions */ AProd *p = prod->nxt; t1 = p->prod; if(t1) { /* solves the current transition */ GTrans *trans, *t2; clear_set(fin, 0); for(i = 1; i < final[0]; i++) if(is_final(s->nodes_set, t1, final[i])) add_set(fin, final[i]); for(t2 = s->trans->nxt; t2 != s->trans;) { if(tl_simp_fly && included_set(t1->to, t2->to->nodes_set, 0) && included_set(t1->pos, t2->pos, 1) && included_set(t1->neg, t2->neg, 1) && same_sets(fin, t2->final, 0)) { /* t2 is redondant */ GTrans *free = t2->nxt; t2->to->incoming--; t2->to = free->to; copy_set(free->pos, t2->pos, 1); copy_set(free->neg, t2->neg, 1); copy_set(free->final, t2->final, 0); t2->nxt = free->nxt; if(free == s->trans) s->trans = t2; free_gtrans(free, 0, 0); state_trans--; } else if(tl_simp_fly && included_set(t2->to->nodes_set, t1->to, 0) && included_set(t2->pos, t1->pos, 1) && included_set(t2->neg, t1->neg, 1) && same_sets(t2->final, fin, 0)) {/* t1 is redondant */ break; } else { t2 = t2->nxt; } } if(t2 == s->trans) { /* adds the transition */ trans = emalloc_gtrans(); trans->to = find_gstate(t1->to, s); trans->to->incoming++; copy_set(t1->pos, trans->pos, 1); copy_set(t1->neg, trans->neg, 1); copy_set(fin, trans->final, 0); trans->nxt = s->trans->nxt; s->trans->nxt = trans; state_trans++; } } if(!p->trans) break; while(!p->trans->nxt) /* calculates the next transition */ p = p->nxt; if(p == prod) break; p->trans = p->trans->nxt; do_merge_trans(&(p->prod), p->nxt->prod, p->trans); p = p->prv; while(p != prod) { p->trans = transition[p->astate]; do_merge_trans(&(p->prod), p->nxt->prod, p->trans); p = p->prv; } } tfree(list); /* free memory */ while(prod->nxt != prod) { AProd *p = prod->nxt; prod->nxt = p->nxt; free_atrans(p->prod, 0); tfree(p); } free_atrans(prod->prod, 0); tfree(prod);
if(tl_simp_fly) { if(s->trans == s->trans->nxt) { /* s has no transitions */ free_gtrans(s->trans->nxt, s->trans, 1); s->trans = (GTrans *)0; s->prv = (GState *)0; s->nxt = gremoved->nxt; gremoved->nxt = s; for(s1 = gremoved->nxt; s1 != gremoved; s1 = s1->nxt) if(s1->prv == s) s1->prv = (GState *)0; return; } gstates->trans = s->trans; s1 = gstates->nxt; while(!all_gtrans_match(s, s1, 0)) s1 = s1->nxt; if(s1 != gstates) { /* s and s1 are equivalent */ free_gtrans(s->trans->nxt, s->trans, 1); s->trans = (GTrans *)0; s->prv = s1; s->nxt = gremoved->nxt; gremoved->nxt = s; for(s1 = gremoved->nxt; s1 != gremoved; s1 = s1->nxt) if(s1->prv == s) s1->prv = s->prv; return; } }
s->nxt = gstates->nxt; /* adds the current state to 'gstates' */ s->prv = gstates; s->nxt->prv = s; gstates->nxt = s; gtrans_count += state_trans; gstate_count++; }
/********************************************************************\
|* Display of the generalized Buchi automaton *| \********************************************************************/
void reverse_print_generalized(GState *s) /* dumps the generalized Buchi automaton */ { GTrans *t; if(s == gstates) return;
reverse_print_generalized(s->nxt); /* begins with the last state */
fprintf(tl_out, "state %i (", s->id); print_set(s->nodes_set, 0); fprintf(tl_out, ") : %i\n", s->incoming); for(t = s->trans->nxt; t != s->trans; t = t->nxt) { if (empty_set(t->pos, 1) && empty_set(t->neg, 1)) fprintf(tl_out, "1"); print_set(t->pos, 1); if (!empty_set(t->pos, 1) && !empty_set(t->neg, 1)) fprintf(tl_out, " & "); print_set(t->neg, 1); fprintf(tl_out, " -> %i : ", t->to->id); print_set(t->final, 0); fprintf(tl_out, "\n"); } }
void print_generalized() { /* prints intial states and calls 'reverse_print' */ int i; fprintf(tl_out, "init :\n"); for(i = 0; i < init_size; i++) if(init[i]) fprintf(tl_out, "%i\n", init[i]->id); reverse_print_generalized(gstates->nxt); }
/********************************************************************\
|* Main method *| \********************************************************************/
void mk_generalized() { /* generates a generalized Buchi automaton from the alternating automaton */ ATrans *t; GState *s; int i;
if(tl_stats) getrusage(RUSAGE_SELF, &tr_debut);
fin = new_set(0); bad_scc = 0; /* will be initialized in simplify_gscc */ final = list_set(final_set, 0);
gstack = (GState *)tl_emalloc(sizeof(GState)); /* sentinel */ gstack->nxt = gstack; gremoved = (GState *)tl_emalloc(sizeof(GState)); /* sentinel */ gremoved->nxt = gremoved; gstates = (GState *)tl_emalloc(sizeof(GState)); /* sentinel */ gstates->nxt = gstates; gstates->prv = gstates;
for(t = transition[0]; t; t = t->nxt) { /* puts initial states in the stack */ s = (GState *)tl_emalloc(sizeof(GState)); s->id = (empty_set(t->to, 0)) ? 0 : gstate_id++; s->incoming = 1; s->nodes_set = dup_set(t->to, 0); s->trans = emalloc_gtrans(); /* sentinel */ s->trans->nxt = s->trans; s->nxt = gstack->nxt; gstack->nxt = s; init_size++; }
if(init_size) init = (GState **)tl_emalloc(init_size * sizeof(GState *)); init_size = 0; for(s = gstack->nxt; s != gstack; s = s->nxt) init[init_size++] = s;
while(gstack->nxt != gstack) { /* solves all states in the stack until it is empty */ s = gstack->nxt; gstack->nxt = gstack->nxt->nxt; if(!s->incoming) { free_gstate(s); continue; } make_gtrans(s); }
retarget_all_gtrans();
if(tl_stats) { getrusage(RUSAGE_SELF, &tr_fin); timeval_subtract (&t_diff, &tr_fin.ru_utime, &tr_debut.ru_utime); fprintf(tl_out, "\nBuilding the generalized Buchi automaton : %i.%06is", t_diff.tv_sec, t_diff.tv_usec); fprintf(tl_out, "\n%i states, %i transitions\n", gstate_count, gtrans_count); }
tfree(gstack); /*for(i = 0; i < node_id; i++) /* frees the data from the alternating automaton */ /*free_atrans(transition[i], 1);*/ free_all_atrans(); tfree(transition);
if(tl_verbose) { fprintf(tl_out, "\nGeneralized Buchi automaton before simplification\n"); print_generalized(); }
if(tl_simp_diff) { if (tl_simp_scc) simplify_gscc(); simplify_gtrans(); if (tl_simp_scc) simplify_gscc(); while(simplify_gstates()) { /* simplifies as much as possible */ if (tl_simp_scc) simplify_gscc(); simplify_gtrans(); if (tl_simp_scc) simplify_gscc(); } if(tl_verbose) { fprintf(tl_out, "\nGeneralized Buchi automaton after simplification\n"); print_generalized(); } } }
|