|
|
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ALIGNED_VECTOR3 #define EIGEN_ALIGNED_VECTOR3
#include <Eigen/Geometry>
namespace Eigen {
/** * \defgroup AlignedVector3_Module Aligned vector3 module * * \code * #include <unsupported/Eigen/AlignedVector3> * \endcode */ //@{
/** \class AlignedVector3 * * \brief A vectorization friendly 3D vector * * This class represents a 3D vector internally using a 4D vector * such that vectorization can be seamlessly enabled. Of course, * the same result can be achieved by directly using a 4D vector. * This class makes this process simpler. * */ // TODO specialize Cwise template<typename _Scalar> class AlignedVector3;
namespace internal { template<typename _Scalar> struct traits<AlignedVector3<_Scalar> > : traits<Matrix<_Scalar,3,1,0,4,1> > { }; }
template<typename _Scalar> class AlignedVector3 : public MatrixBase<AlignedVector3<_Scalar> > { typedef Matrix<_Scalar,4,1> CoeffType; CoeffType m_coeffs; public:
typedef MatrixBase<AlignedVector3<_Scalar> > Base; EIGEN_DENSE_PUBLIC_INTERFACE(AlignedVector3) using Base::operator*;
inline Index rows() const { return 3; } inline Index cols() const { return 1; }
inline const Scalar& coeff(Index row, Index col) const { return m_coeffs.coeff(row, col); }
inline Scalar& coeffRef(Index row, Index col) { return m_coeffs.coeffRef(row, col); }
inline const Scalar& coeff(Index index) const { return m_coeffs.coeff(index); }
inline Scalar& coeffRef(Index index) { return m_coeffs.coeffRef(index);}
inline AlignedVector3(const Scalar& x, const Scalar& y, const Scalar& z) : m_coeffs(x, y, z, Scalar(0)) {}
inline AlignedVector3(const AlignedVector3& other) : Base(), m_coeffs(other.m_coeffs) {}
template<typename XprType, int Size=XprType::SizeAtCompileTime> struct generic_assign_selector {};
template<typename XprType> struct generic_assign_selector<XprType,4> { inline static void run(AlignedVector3& dest, const XprType& src) { dest.m_coeffs = src; } };
template<typename XprType> struct generic_assign_selector<XprType,3> { inline static void run(AlignedVector3& dest, const XprType& src) { dest.m_coeffs.template head<3>() = src; dest.m_coeffs.w() = Scalar(0); } };
template<typename Derived> inline explicit AlignedVector3(const MatrixBase<Derived>& other) { generic_assign_selector<Derived>::run(*this,other.derived()); }
inline AlignedVector3& operator=(const AlignedVector3& other) { m_coeffs = other.m_coeffs; return *this; }
inline AlignedVector3 operator+(const AlignedVector3& other) const { return AlignedVector3(m_coeffs + other.m_coeffs); }
inline AlignedVector3& operator+=(const AlignedVector3& other) { m_coeffs += other.m_coeffs; return *this; }
inline AlignedVector3 operator-(const AlignedVector3& other) const { return AlignedVector3(m_coeffs - other.m_coeffs); }
inline AlignedVector3 operator-=(const AlignedVector3& other) { m_coeffs -= other.m_coeffs; return *this; }
inline AlignedVector3 operator*(const Scalar& s) const { return AlignedVector3(m_coeffs * s); }
inline friend AlignedVector3 operator*(const Scalar& s,const AlignedVector3& vec) { return AlignedVector3(s * vec.m_coeffs); }
inline AlignedVector3& operator*=(const Scalar& s) { m_coeffs *= s; return *this; }
inline AlignedVector3 operator/(const Scalar& s) const { return AlignedVector3(m_coeffs / s); }
inline AlignedVector3& operator/=(const Scalar& s) { m_coeffs /= s; return *this; }
inline Scalar dot(const AlignedVector3& other) const { eigen_assert(m_coeffs.w()==Scalar(0)); eigen_assert(other.m_coeffs.w()==Scalar(0)); return m_coeffs.dot(other.m_coeffs); }
inline void normalize() { m_coeffs /= norm(); }
inline AlignedVector3 normalized() { return AlignedVector3(m_coeffs / norm()); }
inline Scalar sum() const { eigen_assert(m_coeffs.w()==Scalar(0)); return m_coeffs.sum(); }
inline Scalar squaredNorm() const { eigen_assert(m_coeffs.w()==Scalar(0)); return m_coeffs.squaredNorm(); }
inline Scalar norm() const { using std::sqrt; return sqrt(squaredNorm()); }
inline AlignedVector3 cross(const AlignedVector3& other) const { return AlignedVector3(m_coeffs.cross3(other.m_coeffs)); }
template<typename Derived> inline bool isApprox(const MatrixBase<Derived>& other, RealScalar eps=NumTraits<Scalar>::dummy_precision()) const { return m_coeffs.template head<3>().isApprox(other,eps); } };
//@}
}
#endif // EIGEN_ALIGNED_VECTOR3
|