|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#if defined(EIGEN_TEST_PART_1)
// default
#elif defined(EIGEN_TEST_PART_2)
#define EIGEN_MAX_STATIC_ALIGN_BYTES 16
#define EIGEN_MAX_ALIGN_BYTES 16
#elif defined(EIGEN_TEST_PART_3)
#define EIGEN_MAX_STATIC_ALIGN_BYTES 32
#define EIGEN_MAX_ALIGN_BYTES 32
#elif defined(EIGEN_TEST_PART_4)
#define EIGEN_MAX_STATIC_ALIGN_BYTES 64
#define EIGEN_MAX_ALIGN_BYTES 64
#endif
#include "main.h"
typedef Matrix<float, 6,1> Vector6f; typedef Matrix<float, 8,1> Vector8f; typedef Matrix<float, 12,1> Vector12f;
typedef Matrix<double, 5,1> Vector5d; typedef Matrix<double, 6,1> Vector6d; typedef Matrix<double, 7,1> Vector7d; typedef Matrix<double, 8,1> Vector8d; typedef Matrix<double, 9,1> Vector9d; typedef Matrix<double,10,1> Vector10d; typedef Matrix<double,12,1> Vector12d;
struct TestNew1 { MatrixXd m; // good: m will allocate its own array, taking care of alignment.
TestNew1() : m(20,20) {} };
struct TestNew2 { Matrix3d m; // good: m's size isn't a multiple of 16 bytes, so m doesn't have to be 16-byte aligned,
// 8-byte alignment is good enough here, which we'll get automatically
};
struct TestNew3 { Vector2f m; // good: m's size isn't a multiple of 16 bytes, so m doesn't have to be 16-byte aligned
};
struct TestNew4 { EIGEN_MAKE_ALIGNED_OPERATOR_NEW Vector2d m; float f; // make the struct have sizeof%16!=0 to make it a little more tricky when we allow an array of 2 such objects
};
struct TestNew5 { EIGEN_MAKE_ALIGNED_OPERATOR_NEW float f; // try the f at first -- the EIGEN_ALIGN_MAX attribute of m should make that still work
Matrix4f m; };
struct TestNew6 { Matrix<float,2,2,DontAlign> m; // good: no alignment requested
float f; };
template<bool Align> struct Depends { EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(Align) Vector2d m; float f; };
template<typename T> void check_unalignedassert_good() { T *x, *y; x = new T; delete x; y = new T[2]; delete[] y; }
#if EIGEN_MAX_STATIC_ALIGN_BYTES>0
template<typename T> void construct_at_boundary(int boundary) { char buf[sizeof(T)+256]; size_t _buf = reinterpret_cast<size_t>(buf); _buf += (EIGEN_MAX_ALIGN_BYTES - (_buf % EIGEN_MAX_ALIGN_BYTES)); // make 16/32/...-byte aligned
_buf += boundary; // make exact boundary-aligned
T *x = ::new(reinterpret_cast<void*>(_buf)) T; x[0].setZero(); // just in order to silence warnings
x->~T(); } #endif
void unalignedassert() { #if EIGEN_MAX_STATIC_ALIGN_BYTES>0
construct_at_boundary<Vector2f>(4); construct_at_boundary<Vector3f>(4); construct_at_boundary<Vector4f>(16); construct_at_boundary<Vector6f>(4); construct_at_boundary<Vector8f>(EIGEN_MAX_ALIGN_BYTES); construct_at_boundary<Vector12f>(16); construct_at_boundary<Matrix2f>(16); construct_at_boundary<Matrix3f>(4); construct_at_boundary<Matrix4f>(EIGEN_MAX_ALIGN_BYTES);
construct_at_boundary<Vector2d>(16); construct_at_boundary<Vector3d>(4); construct_at_boundary<Vector4d>(EIGEN_MAX_ALIGN_BYTES); construct_at_boundary<Vector5d>(4); construct_at_boundary<Vector6d>(16); construct_at_boundary<Vector7d>(4); construct_at_boundary<Vector8d>(EIGEN_MAX_ALIGN_BYTES); construct_at_boundary<Vector9d>(4); construct_at_boundary<Vector10d>(16); construct_at_boundary<Vector12d>(EIGEN_MAX_ALIGN_BYTES); construct_at_boundary<Matrix2d>(EIGEN_MAX_ALIGN_BYTES); construct_at_boundary<Matrix3d>(4); construct_at_boundary<Matrix4d>(EIGEN_MAX_ALIGN_BYTES);
construct_at_boundary<Vector2cf>(16); construct_at_boundary<Vector3cf>(4); construct_at_boundary<Vector2cd>(EIGEN_MAX_ALIGN_BYTES); construct_at_boundary<Vector3cd>(16); #endif
check_unalignedassert_good<TestNew1>(); check_unalignedassert_good<TestNew2>(); check_unalignedassert_good<TestNew3>();
check_unalignedassert_good<TestNew4>(); check_unalignedassert_good<TestNew5>(); check_unalignedassert_good<TestNew6>(); check_unalignedassert_good<Depends<true> >();
#if EIGEN_MAX_STATIC_ALIGN_BYTES>0
if(EIGEN_MAX_ALIGN_BYTES>=16) { VERIFY_RAISES_ASSERT(construct_at_boundary<Vector4f>(8)); VERIFY_RAISES_ASSERT(construct_at_boundary<Vector8f>(8)); VERIFY_RAISES_ASSERT(construct_at_boundary<Vector12f>(8)); VERIFY_RAISES_ASSERT(construct_at_boundary<Vector2d>(8)); VERIFY_RAISES_ASSERT(construct_at_boundary<Vector4d>(8)); VERIFY_RAISES_ASSERT(construct_at_boundary<Vector6d>(8)); VERIFY_RAISES_ASSERT(construct_at_boundary<Vector8d>(8)); VERIFY_RAISES_ASSERT(construct_at_boundary<Vector10d>(8)); VERIFY_RAISES_ASSERT(construct_at_boundary<Vector12d>(8)); // Complexes are disabled because the compiler might aggressively vectorize
// the initialization of complex coeffs to 0 before we can check for alignedness
//VERIFY_RAISES_ASSERT(construct_at_boundary<Vector2cf>(8));
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector4i>(8)); } for(int b=8; b<EIGEN_MAX_ALIGN_BYTES; b+=8) { if(b<32) VERIFY_RAISES_ASSERT(construct_at_boundary<Vector8f>(b)); if(b<64) VERIFY_RAISES_ASSERT(construct_at_boundary<Matrix4f>(b)); if(b<32) VERIFY_RAISES_ASSERT(construct_at_boundary<Vector4d>(b)); if(b<32) VERIFY_RAISES_ASSERT(construct_at_boundary<Matrix2d>(b)); if(b<128) VERIFY_RAISES_ASSERT(construct_at_boundary<Matrix4d>(b)); //if(b<32) VERIFY_RAISES_ASSERT(construct_at_boundary<Vector2cd>(b));
} #endif
}
void test_unalignedassert() { CALL_SUBTEST(unalignedassert()); }
|