|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
static long int nb_transposed_copies; #define EIGEN_SPARSE_TRANSPOSED_COPY_PLUGIN {nb_transposed_copies++;}
#define VERIFY_TRANSPOSITION_COUNT(XPR,N) {\
nb_transposed_copies = 0; \ XPR; \ if(nb_transposed_copies!=N) std::cerr << "nb_transposed_copies == " << nb_transposed_copies << "\n"; \ VERIFY( (#XPR) && nb_transposed_copies==N ); \ }
#include "sparse.h"
template<typename T> bool is_sorted(const T& mat) { for(Index k = 0; k<mat.outerSize(); ++k) { Index prev = -1; for(typename T::InnerIterator it(mat,k); it; ++it) { if(prev>=it.index()) return false; prev = it.index(); } } return true; }
template<typename T> typename internal::nested_eval<T,1>::type eval(const T &xpr) { VERIFY( int(internal::nested_eval<T,1>::type::Flags&RowMajorBit) == int(internal::evaluator<T>::Flags&RowMajorBit) ); return xpr; }
template<int OtherStorage, typename SparseMatrixType> void sparse_permutations(const SparseMatrixType& ref) { const Index rows = ref.rows(); const Index cols = ref.cols(); typedef typename SparseMatrixType::Scalar Scalar; typedef typename SparseMatrixType::StorageIndex StorageIndex; typedef SparseMatrix<Scalar, OtherStorage, StorageIndex> OtherSparseMatrixType; typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; typedef Matrix<StorageIndex,Dynamic,1> VectorI; // bool IsRowMajor1 = SparseMatrixType::IsRowMajor;
// bool IsRowMajor2 = OtherSparseMatrixType::IsRowMajor;
double density = (std::max)(8./(rows*cols), 0.01); SparseMatrixType mat(rows, cols), up(rows,cols), lo(rows,cols); OtherSparseMatrixType res; DenseMatrix mat_d = DenseMatrix::Zero(rows, cols), up_sym_d, lo_sym_d, res_d; initSparse<Scalar>(density, mat_d, mat, 0);
up = mat.template triangularView<Upper>(); lo = mat.template triangularView<Lower>(); up_sym_d = mat_d.template selfadjointView<Upper>(); lo_sym_d = mat_d.template selfadjointView<Lower>(); VERIFY_IS_APPROX(mat, mat_d); VERIFY_IS_APPROX(up, DenseMatrix(mat_d.template triangularView<Upper>())); VERIFY_IS_APPROX(lo, DenseMatrix(mat_d.template triangularView<Lower>())); PermutationMatrix<Dynamic> p, p_null; VectorI pi; randomPermutationVector(pi, cols); p.indices() = pi;
VERIFY( is_sorted( ::eval(mat*p) )); VERIFY( is_sorted( res = mat*p )); VERIFY_TRANSPOSITION_COUNT( ::eval(mat*p), 0); //VERIFY_TRANSPOSITION_COUNT( res = mat*p, IsRowMajor ? 1 : 0 );
res_d = mat_d*p; VERIFY(res.isApprox(res_d) && "mat*p");
VERIFY( is_sorted( ::eval(p*mat) )); VERIFY( is_sorted( res = p*mat )); VERIFY_TRANSPOSITION_COUNT( ::eval(p*mat), 0); res_d = p*mat_d; VERIFY(res.isApprox(res_d) && "p*mat");
VERIFY( is_sorted( (mat*p).eval() )); VERIFY( is_sorted( res = mat*p.inverse() )); VERIFY_TRANSPOSITION_COUNT( ::eval(mat*p.inverse()), 0); res_d = mat*p.inverse(); VERIFY(res.isApprox(res_d) && "mat*inv(p)");
VERIFY( is_sorted( (p*mat+p*mat).eval() )); VERIFY( is_sorted( res = p.inverse()*mat )); VERIFY_TRANSPOSITION_COUNT( ::eval(p.inverse()*mat), 0); res_d = p.inverse()*mat_d; VERIFY(res.isApprox(res_d) && "inv(p)*mat");
VERIFY( is_sorted( (p * mat * p.inverse()).eval() )); VERIFY( is_sorted( res = mat.twistedBy(p) )); VERIFY_TRANSPOSITION_COUNT( ::eval(p * mat * p.inverse()), 0); res_d = (p * mat_d) * p.inverse(); VERIFY(res.isApprox(res_d) && "p*mat*inv(p)");
VERIFY( is_sorted( res = mat.template selfadjointView<Upper>().twistedBy(p_null) )); res_d = up_sym_d; VERIFY(res.isApprox(res_d) && "full selfadjoint upper to full"); VERIFY( is_sorted( res = mat.template selfadjointView<Lower>().twistedBy(p_null) )); res_d = lo_sym_d; VERIFY(res.isApprox(res_d) && "full selfadjoint lower to full"); VERIFY( is_sorted( res = up.template selfadjointView<Upper>().twistedBy(p_null) )); res_d = up_sym_d; VERIFY(res.isApprox(res_d) && "upper selfadjoint to full"); VERIFY( is_sorted( res = lo.template selfadjointView<Lower>().twistedBy(p_null) )); res_d = lo_sym_d; VERIFY(res.isApprox(res_d) && "lower selfadjoint full");
VERIFY( is_sorted( res = mat.template selfadjointView<Upper>() )); res_d = up_sym_d; VERIFY(res.isApprox(res_d) && "full selfadjoint upper to full");
VERIFY( is_sorted( res = mat.template selfadjointView<Lower>() )); res_d = lo_sym_d; VERIFY(res.isApprox(res_d) && "full selfadjoint lower to full");
VERIFY( is_sorted( res = up.template selfadjointView<Upper>() )); res_d = up_sym_d; VERIFY(res.isApprox(res_d) && "upper selfadjoint to full");
VERIFY( is_sorted( res = lo.template selfadjointView<Lower>() )); res_d = lo_sym_d; VERIFY(res.isApprox(res_d) && "lower selfadjoint full");
res.template selfadjointView<Upper>() = mat.template selfadjointView<Upper>(); res_d = up_sym_d.template triangularView<Upper>(); VERIFY(res.isApprox(res_d) && "full selfadjoint upper to upper");
res.template selfadjointView<Lower>() = mat.template selfadjointView<Upper>(); res_d = up_sym_d.template triangularView<Lower>(); VERIFY(res.isApprox(res_d) && "full selfadjoint upper to lower");
res.template selfadjointView<Upper>() = mat.template selfadjointView<Lower>(); res_d = lo_sym_d.template triangularView<Upper>(); VERIFY(res.isApprox(res_d) && "full selfadjoint lower to upper");
res.template selfadjointView<Lower>() = mat.template selfadjointView<Lower>(); res_d = lo_sym_d.template triangularView<Lower>(); VERIFY(res.isApprox(res_d) && "full selfadjoint lower to lower");
res.template selfadjointView<Upper>() = mat.template selfadjointView<Upper>().twistedBy(p); res_d = ((p * up_sym_d) * p.inverse()).eval().template triangularView<Upper>(); VERIFY(res.isApprox(res_d) && "full selfadjoint upper twisted to upper"); res.template selfadjointView<Upper>() = mat.template selfadjointView<Lower>().twistedBy(p); res_d = ((p * lo_sym_d) * p.inverse()).eval().template triangularView<Upper>(); VERIFY(res.isApprox(res_d) && "full selfadjoint lower twisted to upper"); res.template selfadjointView<Lower>() = mat.template selfadjointView<Lower>().twistedBy(p); res_d = ((p * lo_sym_d) * p.inverse()).eval().template triangularView<Lower>(); VERIFY(res.isApprox(res_d) && "full selfadjoint lower twisted to lower"); res.template selfadjointView<Lower>() = mat.template selfadjointView<Upper>().twistedBy(p); res_d = ((p * up_sym_d) * p.inverse()).eval().template triangularView<Lower>(); VERIFY(res.isApprox(res_d) && "full selfadjoint upper twisted to lower"); res.template selfadjointView<Upper>() = up.template selfadjointView<Upper>().twistedBy(p); res_d = ((p * up_sym_d) * p.inverse()).eval().template triangularView<Upper>(); VERIFY(res.isApprox(res_d) && "upper selfadjoint twisted to upper"); res.template selfadjointView<Upper>() = lo.template selfadjointView<Lower>().twistedBy(p); res_d = ((p * lo_sym_d) * p.inverse()).eval().template triangularView<Upper>(); VERIFY(res.isApprox(res_d) && "lower selfadjoint twisted to upper"); res.template selfadjointView<Lower>() = lo.template selfadjointView<Lower>().twistedBy(p); res_d = ((p * lo_sym_d) * p.inverse()).eval().template triangularView<Lower>(); VERIFY(res.isApprox(res_d) && "lower selfadjoint twisted to lower"); res.template selfadjointView<Lower>() = up.template selfadjointView<Upper>().twistedBy(p); res_d = ((p * up_sym_d) * p.inverse()).eval().template triangularView<Lower>(); VERIFY(res.isApprox(res_d) && "upper selfadjoint twisted to lower");
VERIFY( is_sorted( res = mat.template selfadjointView<Upper>().twistedBy(p) )); res_d = (p * up_sym_d) * p.inverse(); VERIFY(res.isApprox(res_d) && "full selfadjoint upper twisted to full"); VERIFY( is_sorted( res = mat.template selfadjointView<Lower>().twistedBy(p) )); res_d = (p * lo_sym_d) * p.inverse(); VERIFY(res.isApprox(res_d) && "full selfadjoint lower twisted to full"); VERIFY( is_sorted( res = up.template selfadjointView<Upper>().twistedBy(p) )); res_d = (p * up_sym_d) * p.inverse(); VERIFY(res.isApprox(res_d) && "upper selfadjoint twisted to full"); VERIFY( is_sorted( res = lo.template selfadjointView<Lower>().twistedBy(p) )); res_d = (p * lo_sym_d) * p.inverse(); VERIFY(res.isApprox(res_d) && "lower selfadjoint twisted to full"); }
template<typename Scalar> void sparse_permutations_all(int size) { CALL_SUBTEST(( sparse_permutations<ColMajor>(SparseMatrix<Scalar, ColMajor>(size,size)) )); CALL_SUBTEST(( sparse_permutations<ColMajor>(SparseMatrix<Scalar, RowMajor>(size,size)) )); CALL_SUBTEST(( sparse_permutations<RowMajor>(SparseMatrix<Scalar, ColMajor>(size,size)) )); CALL_SUBTEST(( sparse_permutations<RowMajor>(SparseMatrix<Scalar, RowMajor>(size,size)) )); }
void test_sparse_permutations() { for(int i = 0; i < g_repeat; i++) { int s = StormEigen::internal::random<int>(1,50); CALL_SUBTEST_1(( sparse_permutations_all<double>(s) )); CALL_SUBTEST_2(( sparse_permutations_all<std::complex<double> >(s) )); }
VERIFY((internal::is_same<internal::permutation_matrix_product<SparseMatrix<double>,OnTheRight,false,SparseShape>::ReturnType, internal::nested_eval<Product<SparseMatrix<double>,PermutationMatrix<Dynamic,Dynamic>,AliasFreeProduct>,1>::type>::value));
VERIFY((internal::is_same<internal::permutation_matrix_product<SparseMatrix<double>,OnTheLeft,false,SparseShape>::ReturnType, internal::nested_eval<Product<PermutationMatrix<Dynamic,Dynamic>,SparseMatrix<double>,AliasFreeProduct>,1>::type>::value)); }
|