|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_NO_STATIC_ASSERT
#define EIGEN_NO_STATIC_ASSERT // turn static asserts into runtime asserts in order to check them
#endif
#include "main.h"
#define EIGEN_TESTMAP_MAX_SIZE 256
template<typename VectorType> void map_class_vector(const VectorType& m) { typedef typename VectorType::Index Index; typedef typename VectorType::Scalar Scalar;
Index size = m.size();
Scalar* array1 = internal::aligned_new<Scalar>(size); Scalar* array2 = internal::aligned_new<Scalar>(size); Scalar* array3 = new Scalar[size+1]; Scalar* array3unaligned = (std::size_t(array3)%EIGEN_MAX_ALIGN_BYTES) == 0 ? array3+1 : array3; Scalar array4[EIGEN_TESTMAP_MAX_SIZE];
Map<VectorType, AlignedMax>(array1, size) = VectorType::Random(size); Map<VectorType, AlignedMax>(array2, size) = Map<VectorType,AlignedMax>(array1, size); Map<VectorType>(array3unaligned, size) = Map<VectorType>(array1, size); Map<VectorType>(array4, size) = Map<VectorType,AlignedMax>(array1, size); VectorType ma1 = Map<VectorType, AlignedMax>(array1, size); VectorType ma2 = Map<VectorType, AlignedMax>(array2, size); VectorType ma3 = Map<VectorType>(array3unaligned, size); VectorType ma4 = Map<VectorType>(array4, size); VERIFY_IS_EQUAL(ma1, ma2); VERIFY_IS_EQUAL(ma1, ma3); VERIFY_IS_EQUAL(ma1, ma4); #ifdef EIGEN_VECTORIZE
if(internal::packet_traits<Scalar>::Vectorizable) VERIFY_RAISES_ASSERT((Map<VectorType,AlignedMax>(array3unaligned, size))) #endif
internal::aligned_delete(array1, size); internal::aligned_delete(array2, size); delete[] array3; }
template<typename MatrixType> void map_class_matrix(const MatrixType& m) { typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar;
Index rows = m.rows(), cols = m.cols(), size = rows*cols; Scalar s1 = internal::random<Scalar>();
// array1 and array2 -> aligned heap allocation
Scalar* array1 = internal::aligned_new<Scalar>(size); for(int i = 0; i < size; i++) array1[i] = Scalar(1); Scalar* array2 = internal::aligned_new<Scalar>(size); for(int i = 0; i < size; i++) array2[i] = Scalar(1); // array3unaligned -> unaligned pointer to heap
Scalar* array3 = new Scalar[size+1]; for(int i = 0; i < size+1; i++) array3[i] = Scalar(1); Scalar* array3unaligned = size_t(array3)%EIGEN_MAX_ALIGN_BYTES == 0 ? array3+1 : array3; Scalar array4[256]; if(size<=256) for(int i = 0; i < size; i++) array4[i] = Scalar(1); Map<MatrixType> map1(array1, rows, cols); Map<MatrixType, AlignedMax> map2(array2, rows, cols); Map<MatrixType> map3(array3unaligned, rows, cols); Map<MatrixType> map4(array4, rows, cols); VERIFY_IS_EQUAL(map1, MatrixType::Ones(rows,cols)); VERIFY_IS_EQUAL(map2, MatrixType::Ones(rows,cols)); VERIFY_IS_EQUAL(map3, MatrixType::Ones(rows,cols)); map1 = MatrixType::Random(rows,cols); map2 = map1; map3 = map1; MatrixType ma1 = map1; MatrixType ma2 = map2; MatrixType ma3 = map3; VERIFY_IS_EQUAL(map1, map2); VERIFY_IS_EQUAL(map1, map3); VERIFY_IS_EQUAL(ma1, ma2); VERIFY_IS_EQUAL(ma1, ma3); VERIFY_IS_EQUAL(ma1, map3); VERIFY_IS_APPROX(s1*map1, s1*map2); VERIFY_IS_APPROX(s1*ma1, s1*ma2); VERIFY_IS_EQUAL(s1*ma1, s1*ma3); VERIFY_IS_APPROX(s1*map1, s1*map3); map2 *= s1; map3 *= s1; VERIFY_IS_APPROX(s1*map1, map2); VERIFY_IS_APPROX(s1*map1, map3); if(size<=256) { VERIFY_IS_EQUAL(map4, MatrixType::Ones(rows,cols)); map4 = map1; MatrixType ma4 = map4; VERIFY_IS_EQUAL(map1, map4); VERIFY_IS_EQUAL(ma1, map4); VERIFY_IS_EQUAL(ma1, ma4); VERIFY_IS_APPROX(s1*map1, s1*map4); map4 *= s1; VERIFY_IS_APPROX(s1*map1, map4); }
internal::aligned_delete(array1, size); internal::aligned_delete(array2, size); delete[] array3; }
template<typename VectorType> void map_static_methods(const VectorType& m) { typedef typename VectorType::Index Index; typedef typename VectorType::Scalar Scalar;
Index size = m.size();
Scalar* array1 = internal::aligned_new<Scalar>(size); Scalar* array2 = internal::aligned_new<Scalar>(size); Scalar* array3 = new Scalar[size+1]; Scalar* array3unaligned = size_t(array3)%EIGEN_MAX_ALIGN_BYTES == 0 ? array3+1 : array3;
VectorType::MapAligned(array1, size) = VectorType::Random(size); VectorType::Map(array2, size) = VectorType::Map(array1, size); VectorType::Map(array3unaligned, size) = VectorType::Map(array1, size); VectorType ma1 = VectorType::Map(array1, size); VectorType ma2 = VectorType::MapAligned(array2, size); VectorType ma3 = VectorType::Map(array3unaligned, size); VERIFY_IS_EQUAL(ma1, ma2); VERIFY_IS_EQUAL(ma1, ma3);
internal::aligned_delete(array1, size); internal::aligned_delete(array2, size); delete[] array3; }
template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&) { // there's a lot that we can't test here while still having this test compile!
// the only possible approach would be to run a script trying to compile stuff and checking that it fails.
// CMake can help with that.
// verify that map-to-const don't have LvalueBit
typedef typename internal::add_const<PlainObjectType>::type ConstPlainObjectType; VERIFY( !(internal::traits<Map<ConstPlainObjectType> >::Flags & LvalueBit) ); VERIFY( !(internal::traits<Map<ConstPlainObjectType, AlignedMax> >::Flags & LvalueBit) ); VERIFY( !(Map<ConstPlainObjectType>::Flags & LvalueBit) ); VERIFY( !(Map<ConstPlainObjectType, AlignedMax>::Flags & LvalueBit) ); }
template<typename Scalar> void map_not_aligned_on_scalar() { typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType; typedef typename MatrixType::Index Index; Index size = 11; Scalar* array1 = internal::aligned_new<Scalar>((size+1)*(size+1)+1); Scalar* array2 = reinterpret_cast<Scalar*>(sizeof(Scalar)/2+std::size_t(array1)); Map<MatrixType,0,OuterStride<> > map2(array2, size, size, OuterStride<>(size+1)); MatrixType m2 = MatrixType::Random(size,size); map2 = m2; VERIFY_IS_EQUAL(m2, map2); typedef Matrix<Scalar,Dynamic,1> VectorType; Map<VectorType> map3(array2, size); MatrixType v3 = VectorType::Random(size); map3 = v3; VERIFY_IS_EQUAL(v3, map3); internal::aligned_delete(array1, (size+1)*(size+1)+1); }
void test_mapped_matrix() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( map_class_vector(Matrix<float, 1, 1>()) ); CALL_SUBTEST_1( check_const_correctness(Matrix<float, 1, 1>()) ); CALL_SUBTEST_2( map_class_vector(Vector4d()) ); CALL_SUBTEST_2( map_class_vector(VectorXd(13)) ); CALL_SUBTEST_2( check_const_correctness(Matrix4d()) ); CALL_SUBTEST_3( map_class_vector(RowVector4f()) ); CALL_SUBTEST_4( map_class_vector(VectorXcf(8)) ); CALL_SUBTEST_5( map_class_vector(VectorXi(12)) ); CALL_SUBTEST_5( check_const_correctness(VectorXi(12)) );
CALL_SUBTEST_1( map_class_matrix(Matrix<float, 1, 1>()) ); CALL_SUBTEST_2( map_class_matrix(Matrix4d()) ); CALL_SUBTEST_11( map_class_matrix(Matrix<float,3,5>()) ); CALL_SUBTEST_4( map_class_matrix(MatrixXcf(internal::random<int>(1,10),internal::random<int>(1,10))) ); CALL_SUBTEST_5( map_class_matrix(MatrixXi(internal::random<int>(1,10),internal::random<int>(1,10))) );
CALL_SUBTEST_6( map_static_methods(Matrix<double, 1, 1>()) ); CALL_SUBTEST_7( map_static_methods(Vector3f()) ); CALL_SUBTEST_8( map_static_methods(RowVector3d()) ); CALL_SUBTEST_9( map_static_methods(VectorXcd(8)) ); CALL_SUBTEST_10( map_static_methods(VectorXf(12)) ); CALL_SUBTEST_11( map_not_aligned_on_scalar<double>() ); } }
|