|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include <cstdlib>
#include <cerrno>
#include <ctime>
#include <iostream>
#include <fstream>
#include <string>
#include <sstream>
#include <vector>
#include <typeinfo>
// The following includes of STL headers have to be done _before_ the
// definition of macros min() and max(). The reason is that many STL
// implementations will not work properly as the min and max symbols collide
// with the STL functions std:min() and std::max(). The STL headers may check
// for the macro definition of min/max and issue a warning or undefine the
// macros.
//
// Still, Windows defines min() and max() in windef.h as part of the regular
// Windows system interfaces and many other Windows APIs depend on these
// macros being available. To prevent the macro expansion of min/max and to
// make Eigen compatible with the Windows environment all function calls of
// std::min() and std::max() have to be written with parenthesis around the
// function name.
//
// All STL headers used by Eigen should be included here. Because main.h is
// included before any Eigen header and because the STL headers are guarded
// against multiple inclusions, no STL header will see our own min/max macro
// definitions.
#include <limits>
#include <algorithm>
#include <complex>
#include <deque>
#include <queue>
#include <list>
#if __cplusplus >= 201103L
#include <random>
#ifdef EIGEN_USE_THREADS
#include <future>
#endif
#endif
// To test that all calls from Eigen code to std::min() and std::max() are
// protected by parenthesis against macro expansion, the min()/max() macros
// are defined here and any not-parenthesized min/max call will cause a
// compiler error.
#define min(A,B) please_protect_your_min_with_parentheses
#define max(A,B) please_protect_your_max_with_parentheses
#define isnan(X) please_protect_your_isnan_with_parentheses
#define isinf(X) please_protect_your_isinf_with_parentheses
#define isfinite(X) please_protect_your_isfinite_with_parentheses
#define FORBIDDEN_IDENTIFIER (this_identifier_is_forbidden_to_avoid_clashes) this_identifier_is_forbidden_to_avoid_clashes
// B0 is defined in POSIX header termios.h
#define B0 FORBIDDEN_IDENTIFIER
// Unit tests calling Eigen's blas library must preserve the default blocking size
// to avoid troubles.
#ifndef EIGEN_NO_DEBUG_SMALL_PRODUCT_BLOCKS
#define EIGEN_DEBUG_SMALL_PRODUCT_BLOCKS
#endif
// shuts down ICC's remark #593: variable "XXX" was set but never used
#define TEST_SET_BUT_UNUSED_VARIABLE(X) EIGEN_UNUSED_VARIABLE(X)
#ifdef TEST_ENABLE_TEMPORARY_TRACKING
static long int nb_temporaries;
inline void on_temporary_creation(long int size) { // here's a great place to set a breakpoint when debugging failures in this test!
if(size!=0) nb_temporaries++; }
#define EIGEN_DENSE_STORAGE_CTOR_PLUGIN { on_temporary_creation(size); }
#define VERIFY_EVALUATION_COUNT(XPR,N) {\
nb_temporaries = 0; \ XPR; \ if(nb_temporaries!=N) std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; \ VERIFY( (#XPR) && nb_temporaries==N ); \ } #endif
// the following file is automatically generated by cmake
#include "split_test_helper.h"
#ifdef NDEBUG
#undef NDEBUG
#endif
// On windows CE, NDEBUG is automatically defined <assert.h> if NDEBUG is not defined.
#ifndef DEBUG
#define DEBUG
#endif
// bounds integer values for AltiVec
#if defined(__ALTIVEC__) || defined(__VSX__)
#define EIGEN_MAKING_DOCS
#endif
#ifndef EIGEN_TEST_FUNC
#error EIGEN_TEST_FUNC must be defined
#endif
#define DEFAULT_REPEAT 10
namespace StormEigen { static std::vector<std::string> g_test_stack; // level == 0 <=> abort if test fail
// level >= 1 <=> warning message to std::cerr if test fail
static int g_test_level = 0; static int g_repeat; static unsigned int g_seed; static bool g_has_set_repeat, g_has_set_seed; }
#define TRACK std::cerr << __FILE__ << " " << __LINE__ << std::endl
// #define TRACK while()
#define EI_PP_MAKE_STRING2(S) #S
#define EI_PP_MAKE_STRING(S) EI_PP_MAKE_STRING2(S)
#define EIGEN_DEFAULT_IO_FORMAT IOFormat(4, 0, " ", "\n", "", "", "", "")
#if (defined(_CPPUNWIND) || defined(__EXCEPTIONS)) && !defined(__CUDA_ARCH__)
#define EIGEN_EXCEPTIONS
#endif
#ifndef EIGEN_NO_ASSERTION_CHECKING
namespace StormEigen { static const bool should_raise_an_assert = false;
// Used to avoid to raise two exceptions at a time in which
// case the exception is not properly caught.
// This may happen when a second exceptions is triggered in a destructor.
static bool no_more_assert = false; static bool report_on_cerr_on_assert_failure = true;
struct eigen_assert_exception { eigen_assert_exception(void) {} ~eigen_assert_exception() { StormEigen::no_more_assert = false; } }; } // If EIGEN_DEBUG_ASSERTS is defined and if no assertion is triggered while
// one should have been, then the list of excecuted assertions is printed out.
//
// EIGEN_DEBUG_ASSERTS is not enabled by default as it
// significantly increases the compilation time
// and might even introduce side effects that would hide
// some memory errors.
#ifdef EIGEN_DEBUG_ASSERTS
namespace StormEigen { namespace internal { static bool push_assert = false; } static std::vector<std::string> eigen_assert_list; } #define eigen_assert(a) \
if( (!(a)) && (!no_more_assert) ) \ { \ if(report_on_cerr_on_assert_failure) \ std::cerr << #a << " " __FILE__ << "(" << __LINE__ << ")\n"; \ StormEigen::no_more_assert = true; \ EIGEN_THROW_X(StormEigen::eigen_assert_exception()); \ } \ else if (StormEigen::internal::push_assert) \ { \ eigen_assert_list.push_back(std::string(EI_PP_MAKE_STRING(__FILE__) " (" EI_PP_MAKE_STRING(__LINE__) ") : " #a) ); \ }
#ifdef EIGEN_EXCEPTIONS
#define VERIFY_RAISES_ASSERT(a) \
{ \ StormEigen::no_more_assert = false; \ StormEigen::eigen_assert_list.clear(); \ StormEigen::internal::push_assert = true; \ StormEigen::report_on_cerr_on_assert_failure = false; \ try { \ a; \ std::cerr << "One of the following asserts should have been triggered:\n"; \ for (uint ai=0 ; ai<eigen_assert_list.size() ; ++ai) \ std::cerr << " " << eigen_assert_list[ai] << "\n"; \ VERIFY(StormEigen::should_raise_an_assert && # a); \ } catch (StormEigen::eigen_assert_exception) { \ StormEigen::internal::push_assert = false; VERIFY(true); \ } \ StormEigen::report_on_cerr_on_assert_failure = true; \ StormEigen::internal::push_assert = false; \ } #endif //EIGEN_EXCEPTIONS
#elif !defined(__CUDACC__) // EIGEN_DEBUG_ASSERTS
// see bug 89. The copy_bool here is working around a bug in gcc <= 4.3
#define eigen_assert(a) \
if( (!StormEigen::internal::copy_bool(a)) && (!no_more_assert) )\ { \ StormEigen::no_more_assert = true; \ if(report_on_cerr_on_assert_failure) \ eigen_plain_assert(a); \ else \ EIGEN_THROW_X(StormEigen::eigen_assert_exception()); \ } #ifdef EIGEN_EXCEPTIONS
#define VERIFY_RAISES_ASSERT(a) { \
StormEigen::no_more_assert = false; \ StormEigen::report_on_cerr_on_assert_failure = false; \ try { \ a; \ VERIFY(StormEigen::should_raise_an_assert && # a); \ } \ catch (StormEigen::eigen_assert_exception&) { VERIFY(true); } \ StormEigen::report_on_cerr_on_assert_failure = true; \ } #endif //EIGEN_EXCEPTIONS
#endif // EIGEN_DEBUG_ASSERTS
#ifndef VERIFY_RAISES_ASSERT
#define VERIFY_RAISES_ASSERT(a) \
std::cout << "Can't VERIFY_RAISES_ASSERT( " #a " ) with exceptions disabled\n"; #endif
#if !defined(__CUDACC__)
#define EIGEN_USE_CUSTOM_ASSERT
#endif
#else // EIGEN_NO_ASSERTION_CHECKING
#define VERIFY_RAISES_ASSERT(a) {}
#endif // EIGEN_NO_ASSERTION_CHECKING
#define EIGEN_INTERNAL_DEBUGGING
#include <Eigen/QR> // required for createRandomPIMatrixOfRank
inline void verify_impl(bool condition, const char *testname, const char *file, int line, const char *condition_as_string) { if (!condition) { if(StormEigen::g_test_level>0) std::cerr << "WARNING: "; std::cerr << "Test " << testname << " failed in " << file << " (" << line << ")" << std::endl << " " << condition_as_string << std::endl; std::cerr << "Stack:\n"; const int test_stack_size = static_cast<int>(StormEigen::g_test_stack.size()); for(int i=test_stack_size-1; i>=0; --i) std::cerr << " - " << StormEigen::g_test_stack[i] << "\n"; std::cerr << "\n"; if(StormEigen::g_test_level==0) abort(); } }
#define VERIFY(a) ::verify_impl(a, g_test_stack.back().c_str(), __FILE__, __LINE__, EI_PP_MAKE_STRING(a))
#define VERIFY_IS_EQUAL(a, b) VERIFY(test_is_equal(a, b))
#define VERIFY_IS_NOT_EQUAL(a, b) VERIFY(!test_is_equal(a, b))
#define VERIFY_IS_APPROX(a, b) VERIFY(verifyIsApprox(a, b))
#define VERIFY_IS_NOT_APPROX(a, b) VERIFY(!test_isApprox(a, b))
#define VERIFY_IS_MUCH_SMALLER_THAN(a, b) VERIFY(test_isMuchSmallerThan(a, b))
#define VERIFY_IS_NOT_MUCH_SMALLER_THAN(a, b) VERIFY(!test_isMuchSmallerThan(a, b))
#define VERIFY_IS_APPROX_OR_LESS_THAN(a, b) VERIFY(test_isApproxOrLessThan(a, b))
#define VERIFY_IS_NOT_APPROX_OR_LESS_THAN(a, b) VERIFY(!test_isApproxOrLessThan(a, b))
#define VERIFY_IS_UNITARY(a) VERIFY(test_isUnitary(a))
#define CALL_SUBTEST(FUNC) do { \
g_test_stack.push_back(EI_PP_MAKE_STRING(FUNC)); \ FUNC; \ g_test_stack.pop_back(); \ } while (0)
namespace StormEigen {
template<typename T> inline typename NumTraits<T>::Real test_precision() { return NumTraits<T>::dummy_precision(); } template<> inline float test_precision<float>() { return 1e-3f; } template<> inline double test_precision<double>() { return 1e-6; } template<> inline long double test_precision<long double>() { return 1e-6; } template<> inline float test_precision<std::complex<float> >() { return test_precision<float>(); } template<> inline double test_precision<std::complex<double> >() { return test_precision<double>(); } template<> inline long double test_precision<std::complex<long double> >() { return test_precision<long double>(); }
inline bool test_isApprox(const int& a, const int& b) { return internal::isApprox(a, b, test_precision<int>()); } inline bool test_isMuchSmallerThan(const int& a, const int& b) { return internal::isMuchSmallerThan(a, b, test_precision<int>()); } inline bool test_isApproxOrLessThan(const int& a, const int& b) { return internal::isApproxOrLessThan(a, b, test_precision<int>()); }
inline bool test_isApprox(const float& a, const float& b) { return internal::isApprox(a, b, test_precision<float>()); } inline bool test_isMuchSmallerThan(const float& a, const float& b) { return internal::isMuchSmallerThan(a, b, test_precision<float>()); } inline bool test_isApproxOrLessThan(const float& a, const float& b) { return internal::isApproxOrLessThan(a, b, test_precision<float>()); } inline bool test_isApprox(const double& a, const double& b) { return internal::isApprox(a, b, test_precision<double>()); }
inline bool test_isMuchSmallerThan(const double& a, const double& b) { return internal::isMuchSmallerThan(a, b, test_precision<double>()); } inline bool test_isApproxOrLessThan(const double& a, const double& b) { return internal::isApproxOrLessThan(a, b, test_precision<double>()); }
#ifndef EIGEN_TEST_NO_COMPLEX
inline bool test_isApprox(const std::complex<float>& a, const std::complex<float>& b) { return internal::isApprox(a, b, test_precision<std::complex<float> >()); } inline bool test_isMuchSmallerThan(const std::complex<float>& a, const std::complex<float>& b) { return internal::isMuchSmallerThan(a, b, test_precision<std::complex<float> >()); }
inline bool test_isApprox(const std::complex<double>& a, const std::complex<double>& b) { return internal::isApprox(a, b, test_precision<std::complex<double> >()); } inline bool test_isMuchSmallerThan(const std::complex<double>& a, const std::complex<double>& b) { return internal::isMuchSmallerThan(a, b, test_precision<std::complex<double> >()); }
inline bool test_isApprox(const std::complex<long double>& a, const std::complex<long double>& b) { return internal::isApprox(a, b, test_precision<std::complex<long double> >()); } inline bool test_isMuchSmallerThan(const std::complex<long double>& a, const std::complex<long double>& b) { return internal::isMuchSmallerThan(a, b, test_precision<std::complex<long double> >()); } #endif
#ifndef EIGEN_TEST_NO_LONGDOUBLE
inline bool test_isApprox(const long double& a, const long double& b) { bool ret = internal::isApprox(a, b, test_precision<long double>()); if (!ret) std::cerr << std::endl << " actual = " << a << std::endl << " expected = " << b << std::endl << std::endl; return ret; }
inline bool test_isMuchSmallerThan(const long double& a, const long double& b) { return internal::isMuchSmallerThan(a, b, test_precision<long double>()); } inline bool test_isApproxOrLessThan(const long double& a, const long double& b) { return internal::isApproxOrLessThan(a, b, test_precision<long double>()); } #endif // EIGEN_TEST_NO_LONGDOUBLE
// test_relative_error returns the relative difference between a and b as a real scalar as used in isApprox.
template<typename T1,typename T2> typename T1::RealScalar test_relative_error(const EigenBase<T1> &a, const EigenBase<T2> &b) { using std::sqrt; typedef typename T1::RealScalar RealScalar; typename internal::nested_eval<T1,2>::type ea(a.derived()); typename internal::nested_eval<T2,2>::type eb(b.derived()); return sqrt(RealScalar((ea-eb).cwiseAbs2().sum()) / RealScalar((std::min)(eb.cwiseAbs2().sum(),ea.cwiseAbs2().sum()))); }
template<typename T1,typename T2> typename T1::RealScalar test_relative_error(const T1 &a, const T2 &b, const typename T1::Coefficients* = 0) { return test_relative_error(a.coeffs(), b.coeffs()); }
template<typename T1,typename T2> typename T1::Scalar test_relative_error(const T1 &a, const T2 &b, const typename T1::MatrixType* = 0) { return test_relative_error(a.matrix(), b.matrix()); }
template<typename S, int D> S test_relative_error(const Translation<S,D> &a, const Translation<S,D> &b) { return test_relative_error(a.vector(), b.vector()); }
template <typename S, int D, int O> S test_relative_error(const ParametrizedLine<S,D,O> &a, const ParametrizedLine<S,D,O> &b) { return (std::max)(test_relative_error(a.origin(), b.origin()), test_relative_error(a.origin(), b.origin())); }
template <typename S, int D> S test_relative_error(const AlignedBox<S,D> &a, const AlignedBox<S,D> &b) { return (std::max)(test_relative_error((a.min)(), (b.min)()), test_relative_error((a.max)(), (b.max)())); }
template<typename Derived> class SparseMatrixBase; template<typename T1,typename T2> typename T1::RealScalar test_relative_error(const MatrixBase<T1> &a, const SparseMatrixBase<T2> &b) { return test_relative_error(a,b.toDense()); }
template<typename Derived> class SparseMatrixBase; template<typename T1,typename T2> typename T1::RealScalar test_relative_error(const SparseMatrixBase<T1> &a, const MatrixBase<T2> &b) { return test_relative_error(a.toDense(),b); }
template<typename Derived> class SparseMatrixBase; template<typename T1,typename T2> typename T1::RealScalar test_relative_error(const SparseMatrixBase<T1> &a, const SparseMatrixBase<T2> &b) { return test_relative_error(a.toDense(),b.toDense()); }
template<typename T1,typename T2> typename NumTraits<T1>::Real test_relative_error(const T1 &a, const T2 &b, typename internal::enable_if<internal::is_arithmetic<typename NumTraits<T1>::Real>::value, T1>::type* = 0) { typedef typename NumTraits<T1>::Real RealScalar; using std::min; using std::sqrt; return sqrt(RealScalar(numext::abs2(a-b))/RealScalar((min)(numext::abs2(a),numext::abs2(b)))); }
template<typename T> T test_relative_error(const Rotation2D<T> &a, const Rotation2D<T> &b) { return test_relative_error(a.angle(), b.angle()); }
template<typename T> T test_relative_error(const AngleAxis<T> &a, const AngleAxis<T> &b) { return (std::max)(test_relative_error(a.angle(), b.angle()), test_relative_error(a.axis(), b.axis())); }
template<typename Type1, typename Type2> inline bool test_isApprox(const Type1& a, const Type2& b) { return a.isApprox(b, test_precision<typename Type1::Scalar>()); }
// get_test_precision is a small wrapper to test_precision allowing to return the scalar precision for either scalars or expressions
template<typename T> typename NumTraits<typename T::Scalar>::Real get_test_precision(const typename T::Scalar* = 0) { return test_precision<typename NumTraits<typename T::Scalar>::Real>(); }
template<typename T> typename NumTraits<T>::Real get_test_precision(typename internal::enable_if<internal::is_arithmetic<typename NumTraits<T>::Real>::value, T>::type* = 0) { return test_precision<typename NumTraits<T>::Real>(); }
// verifyIsApprox is a wrapper to test_isApprox that outputs the relative difference magnitude if the test fails.
template<typename Type1, typename Type2> inline bool verifyIsApprox(const Type1& a, const Type2& b) { bool ret = test_isApprox(a,b); if(!ret) { std::cerr << "Difference too large wrt tolerance " << get_test_precision<Type1>() << ", relative error is: " << test_relative_error(a,b) << std::endl; } return ret; }
// The idea behind this function is to compare the two scalars a and b where
// the scalar ref is a hint about the expected order of magnitude of a and b.
// WARNING: the scalar a and b must be positive
// Therefore, if for some reason a and b are very small compared to ref,
// we won't issue a false negative.
// This test could be: abs(a-b) <= eps * ref
// However, it seems that simply comparing a+ref and b+ref is more sensitive to true error.
template<typename Scalar,typename ScalarRef> inline bool test_isApproxWithRef(const Scalar& a, const Scalar& b, const ScalarRef& ref) { return test_isApprox(a+ref, b+ref); }
template<typename Derived1, typename Derived2> inline bool test_isMuchSmallerThan(const MatrixBase<Derived1>& m1, const MatrixBase<Derived2>& m2) { return m1.isMuchSmallerThan(m2, test_precision<typename internal::traits<Derived1>::Scalar>()); }
template<typename Derived> inline bool test_isMuchSmallerThan(const MatrixBase<Derived>& m, const typename NumTraits<typename internal::traits<Derived>::Scalar>::Real& s) { return m.isMuchSmallerThan(s, test_precision<typename internal::traits<Derived>::Scalar>()); }
template<typename Derived> inline bool test_isUnitary(const MatrixBase<Derived>& m) { return m.isUnitary(test_precision<typename internal::traits<Derived>::Scalar>()); }
// Forward declaration to avoid ICC warning
template<typename T, typename U> bool test_is_equal(const T& actual, const U& expected);
template<typename T, typename U> bool test_is_equal(const T& actual, const U& expected) { if (actual==expected) return true; // false:
std::cerr << std::endl << " actual = " << actual << std::endl << " expected = " << expected << std::endl << std::endl; return false; }
/** Creates a random Partial Isometry matrix of given rank.
* * A partial isometry is a matrix all of whose singular values are either 0 or 1. * This is very useful to test rank-revealing algorithms. */ // Forward declaration to avoid ICC warning
template<typename MatrixType> void createRandomPIMatrixOfRank(Index desired_rank, Index rows, Index cols, MatrixType& m); template<typename MatrixType> void createRandomPIMatrixOfRank(Index desired_rank, Index rows, Index cols, MatrixType& m) { typedef typename internal::traits<MatrixType>::Scalar Scalar; enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
typedef Matrix<Scalar, Dynamic, 1> VectorType; typedef Matrix<Scalar, Rows, Rows> MatrixAType; typedef Matrix<Scalar, Cols, Cols> MatrixBType;
if(desired_rank == 0) { m.setZero(rows,cols); return; }
if(desired_rank == 1) { // here we normalize the vectors to get a partial isometry
m = VectorType::Random(rows).normalized() * VectorType::Random(cols).normalized().transpose(); return; }
MatrixAType a = MatrixAType::Random(rows,rows); MatrixType d = MatrixType::Identity(rows,cols); MatrixBType b = MatrixBType::Random(cols,cols);
// set the diagonal such that only desired_rank non-zero entries reamain
const Index diag_size = (std::min)(d.rows(),d.cols()); if(diag_size != desired_rank) d.diagonal().segment(desired_rank, diag_size-desired_rank) = VectorType::Zero(diag_size-desired_rank);
HouseholderQR<MatrixAType> qra(a); HouseholderQR<MatrixBType> qrb(b); m = qra.householderQ() * d * qrb.householderQ(); }
// Forward declaration to avoid ICC warning
template<typename PermutationVectorType> void randomPermutationVector(PermutationVectorType& v, Index size); template<typename PermutationVectorType> void randomPermutationVector(PermutationVectorType& v, Index size) { typedef typename PermutationVectorType::Scalar Scalar; v.resize(size); for(Index i = 0; i < size; ++i) v(i) = Scalar(i); if(size == 1) return; for(Index n = 0; n < 3 * size; ++n) { Index i = internal::random<Index>(0, size-1); Index j; do j = internal::random<Index>(0, size-1); while(j==i); std::swap(v(i), v(j)); } }
template<typename T> bool isNotNaN(const T& x) { return x==x; }
template<typename T> bool isPlusInf(const T& x) { return x > NumTraits<T>::highest(); }
template<typename T> bool isMinusInf(const T& x) { return x < NumTraits<T>::lowest(); }
} // end namespace StormEigen
template<typename T> struct GetDifferentType;
template<> struct GetDifferentType<float> { typedef double type; }; template<> struct GetDifferentType<double> { typedef float type; }; template<typename T> struct GetDifferentType<std::complex<T> > { typedef std::complex<typename GetDifferentType<T>::type> type; };
// Forward declaration to avoid ICC warning
template<typename T> std::string type_name(); template<typename T> std::string type_name() { return "other"; } template<> std::string type_name<float>() { return "float"; } template<> std::string type_name<double>() { return "double"; } template<> std::string type_name<long double>() { return "long double"; } template<> std::string type_name<int>() { return "int"; } template<> std::string type_name<std::complex<float> >() { return "complex<float>"; } template<> std::string type_name<std::complex<double> >() { return "complex<double>"; } template<> std::string type_name<std::complex<long double> >() { return "complex<long double>"; } template<> std::string type_name<std::complex<int> >() { return "complex<int>"; }
// forward declaration of the main test function
void EIGEN_CAT(test_,EIGEN_TEST_FUNC)();
using namespace StormEigen;
inline void set_repeat_from_string(const char *str) { errno = 0; g_repeat = int(strtoul(str, 0, 10)); if(errno || g_repeat <= 0) { std::cout << "Invalid repeat value " << str << std::endl; exit(EXIT_FAILURE); } g_has_set_repeat = true; }
inline void set_seed_from_string(const char *str) { errno = 0; g_seed = int(strtoul(str, 0, 10)); if(errno || g_seed == 0) { std::cout << "Invalid seed value " << str << std::endl; exit(EXIT_FAILURE); } g_has_set_seed = true; }
int main(int argc, char *argv[]) { g_has_set_repeat = false; g_has_set_seed = false; bool need_help = false;
for(int i = 1; i < argc; i++) { if(argv[i][0] == 'r') { if(g_has_set_repeat) { std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl; return 1; } set_repeat_from_string(argv[i]+1); } else if(argv[i][0] == 's') { if(g_has_set_seed) { std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl; return 1; } set_seed_from_string(argv[i]+1); } else { need_help = true; } }
if(need_help) { std::cout << "This test application takes the following optional arguments:" << std::endl; std::cout << " rN Repeat each test N times (default: " << DEFAULT_REPEAT << ")" << std::endl; std::cout << " sN Use N as seed for random numbers (default: based on current time)" << std::endl; std::cout << std::endl; std::cout << "If defined, the environment variables EIGEN_REPEAT and EIGEN_SEED" << std::endl; std::cout << "will be used as default values for these parameters." << std::endl; return 1; }
char *env_EIGEN_REPEAT = getenv("EIGEN_REPEAT"); if(!g_has_set_repeat && env_EIGEN_REPEAT) set_repeat_from_string(env_EIGEN_REPEAT); char *env_EIGEN_SEED = getenv("EIGEN_SEED"); if(!g_has_set_seed && env_EIGEN_SEED) set_seed_from_string(env_EIGEN_SEED);
if(!g_has_set_seed) g_seed = (unsigned int) time(NULL); if(!g_has_set_repeat) g_repeat = DEFAULT_REPEAT;
std::cout << "Initializing random number generator with seed " << g_seed << std::endl; std::stringstream ss; ss << "Seed: " << g_seed; g_test_stack.push_back(ss.str()); srand(g_seed); std::cout << "Repeating each test " << g_repeat << " times" << std::endl;
StormEigen::g_test_stack.push_back(std::string(EI_PP_MAKE_STRING(EIGEN_TEST_FUNC)));
EIGEN_CAT(test_,EIGEN_TEST_FUNC)(); return 0; }
// These warning are disabled here such that they are still ON when parsing Eigen's header files.
#if defined __INTEL_COMPILER
// remark #383: value copied to temporary, reference to temporary used
// -> this warning is raised even for legal usage as: g_test_stack.push_back("foo"); where g_test_stack is a std::vector<std::string>
// remark #1418: external function definition with no prior declaration
// -> this warning is raised for all our test functions. Declaring them static would fix the issue.
// warning #279: controlling expression is constant
// remark #1572: floating-point equality and inequality comparisons are unreliable
#pragma warning disable 279 383 1418 1572
#endif
|