|
|
/* zhbmv.f -- translated by f2c (version 20100827).
You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "datatypes.h"
/* Subroutine */ int zhbmv_(char *uplo, integer *n, integer *k, doublecomplex *alpha, doublecomplex *a, integer *lda, doublecomplex *x, integer * incx, doublecomplex *beta, doublecomplex *y, integer *incy, ftnlen uplo_len) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; doublereal d__1; doublecomplex z__1, z__2, z__3, z__4;
/* Builtin functions */ void d_cnjg(doublecomplex *, doublecomplex *);
/* Local variables */ integer i__, j, l, ix, iy, jx, jy, kx, ky, info; doublecomplex temp1, temp2; extern logical lsame_(char *, char *, ftnlen, ftnlen); integer kplus1; extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
/* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */
/* Purpose */ /* ======= */
/* ZHBMV performs the matrix-vector operation */
/* y := alpha*A*x + beta*y, */
/* where alpha and beta are scalars, x and y are n element vectors and */ /* A is an n by n hermitian band matrix, with k super-diagonals. */
/* Arguments */ /* ========== */
/* UPLO - CHARACTER*1. */ /* On entry, UPLO specifies whether the upper or lower */ /* triangular part of the band matrix A is being supplied as */ /* follows: */
/* UPLO = 'U' or 'u' The upper triangular part of A is */ /* being supplied. */
/* UPLO = 'L' or 'l' The lower triangular part of A is */ /* being supplied. */
/* Unchanged on exit. */
/* N - INTEGER. */ /* On entry, N specifies the order of the matrix A. */ /* N must be at least zero. */ /* Unchanged on exit. */
/* K - INTEGER. */ /* On entry, K specifies the number of super-diagonals of the */ /* matrix A. K must satisfy 0 .le. K. */ /* Unchanged on exit. */
/* ALPHA - COMPLEX*16 . */ /* On entry, ALPHA specifies the scalar alpha. */ /* Unchanged on exit. */
/* A - COMPLEX*16 array of DIMENSION ( LDA, n ). */ /* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */ /* by n part of the array A must contain the upper triangular */ /* band part of the hermitian matrix, supplied column by */ /* column, with the leading diagonal of the matrix in row */ /* ( k + 1 ) of the array, the first super-diagonal starting at */ /* position 2 in row k, and so on. The top left k by k triangle */ /* of the array A is not referenced. */ /* The following program segment will transfer the upper */ /* triangular part of a hermitian band matrix from conventional */ /* full matrix storage to band storage: */
/* DO 20, J = 1, N */ /* M = K + 1 - J */ /* DO 10, I = MAX( 1, J - K ), J */ /* A( M + I, J ) = matrix( I, J ) */ /* 10 CONTINUE */ /* 20 CONTINUE */
/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */ /* by n part of the array A must contain the lower triangular */ /* band part of the hermitian matrix, supplied column by */ /* column, with the leading diagonal of the matrix in row 1 of */ /* the array, the first sub-diagonal starting at position 1 in */ /* row 2, and so on. The bottom right k by k triangle of the */ /* array A is not referenced. */ /* The following program segment will transfer the lower */ /* triangular part of a hermitian band matrix from conventional */ /* full matrix storage to band storage: */
/* DO 20, J = 1, N */ /* M = 1 - J */ /* DO 10, I = J, MIN( N, J + K ) */ /* A( M + I, J ) = matrix( I, J ) */ /* 10 CONTINUE */ /* 20 CONTINUE */
/* Note that the imaginary parts of the diagonal elements need */ /* not be set and are assumed to be zero. */ /* Unchanged on exit. */
/* LDA - INTEGER. */ /* On entry, LDA specifies the first dimension of A as declared */ /* in the calling (sub) program. LDA must be at least */ /* ( k + 1 ). */ /* Unchanged on exit. */
/* X - COMPLEX*16 array of DIMENSION at least */ /* ( 1 + ( n - 1 )*abs( INCX ) ). */ /* Before entry, the incremented array X must contain the */ /* vector x. */ /* Unchanged on exit. */
/* INCX - INTEGER. */ /* On entry, INCX specifies the increment for the elements of */ /* X. INCX must not be zero. */ /* Unchanged on exit. */
/* BETA - COMPLEX*16 . */ /* On entry, BETA specifies the scalar beta. */ /* Unchanged on exit. */
/* Y - COMPLEX*16 array of DIMENSION at least */ /* ( 1 + ( n - 1 )*abs( INCY ) ). */ /* Before entry, the incremented array Y must contain the */ /* vector y. On exit, Y is overwritten by the updated vector y. */
/* INCY - INTEGER. */ /* On entry, INCY specifies the increment for the elements of */ /* Y. INCY must not be zero. */ /* Unchanged on exit. */
/* Further Details */ /* =============== */
/* Level 2 Blas routine. */
/* -- Written on 22-October-1986. */ /* Jack Dongarra, Argonne National Lab. */ /* Jeremy Du Croz, Nag Central Office. */ /* Sven Hammarling, Nag Central Office. */ /* Richard Hanson, Sandia National Labs. */
/* ===================================================================== */
/* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */
/* Test the input parameters. */
/* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --x; --y;
/* Function Body */ info = 0; if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", ( ftnlen)1, (ftnlen)1)) { info = 1; } else if (*n < 0) { info = 2; } else if (*k < 0) { info = 3; } else if (*lda < *k + 1) { info = 6; } else if (*incx == 0) { info = 8; } else if (*incy == 0) { info = 11; } if (info != 0) { xerbla_("ZHBMV ", &info, (ftnlen)6); return 0; }
/* Quick return if possible. */
if (*n == 0 || (alpha->r == 0. && alpha->i == 0. && (beta->r == 1. && beta->i == 0.))) { return 0; }
/* Set up the start points in X and Y. */
if (*incx > 0) { kx = 1; } else { kx = 1 - (*n - 1) * *incx; } if (*incy > 0) { ky = 1; } else { ky = 1 - (*n - 1) * *incy; }
/* Start the operations. In this version the elements of the array A */ /* are accessed sequentially with one pass through A. */
/* First form y := beta*y. */
if (beta->r != 1. || beta->i != 0.) { if (*incy == 1) { if (beta->r == 0. && beta->i == 0.) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__; y[i__2].r = 0., y[i__2].i = 0.; /* L10: */ } } else { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__; i__3 = i__; z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, z__1.i = beta->r * y[i__3].i + beta->i * y[i__3] .r; y[i__2].r = z__1.r, y[i__2].i = z__1.i; /* L20: */ } } } else { iy = ky; if (beta->r == 0. && beta->i == 0.) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = iy; y[i__2].r = 0., y[i__2].i = 0.; iy += *incy; /* L30: */ } } else { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = iy; i__3 = iy; z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, z__1.i = beta->r * y[i__3].i + beta->i * y[i__3] .r; y[i__2].r = z__1.r, y[i__2].i = z__1.i; iy += *incy; /* L40: */ } } } } if (alpha->r == 0. && alpha->i == 0.) { return 0; } if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
/* Form y when upper triangle of A is stored. */
kplus1 = *k + 1; if (*incx == 1 && *incy == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j; z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2].r; temp1.r = z__1.r, temp1.i = z__1.i; temp2.r = 0., temp2.i = 0.; l = kplus1 - j; /* Computing MAX */ i__2 = 1, i__3 = j - *k; i__4 = j - 1; for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) { i__2 = i__; i__3 = i__; i__5 = l + i__ + j * a_dim1; z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i, z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5] .r; z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i; y[i__2].r = z__1.r, y[i__2].i = z__1.i; d_cnjg(&z__3, &a[l + i__ + j * a_dim1]); i__2 = i__; z__2.r = z__3.r * x[i__2].r - z__3.i * x[i__2].i, z__2.i = z__3.r * x[i__2].i + z__3.i * x[i__2].r; z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i; temp2.r = z__1.r, temp2.i = z__1.i; /* L50: */ } i__4 = j; i__2 = j; i__3 = kplus1 + j * a_dim1; d__1 = a[i__3].r; z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i; z__2.r = y[i__2].r + z__3.r, z__2.i = y[i__2].i + z__3.i; z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i = alpha->r * temp2.i + alpha->i * temp2.r; z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i; y[i__4].r = z__1.r, y[i__4].i = z__1.i; /* L60: */ } } else { jx = kx; jy = ky; i__1 = *n; for (j = 1; j <= i__1; ++j) { i__4 = jx; z__1.r = alpha->r * x[i__4].r - alpha->i * x[i__4].i, z__1.i = alpha->r * x[i__4].i + alpha->i * x[i__4].r; temp1.r = z__1.r, temp1.i = z__1.i; temp2.r = 0., temp2.i = 0.; ix = kx; iy = ky; l = kplus1 - j; /* Computing MAX */ i__4 = 1, i__2 = j - *k; i__3 = j - 1; for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) { i__4 = iy; i__2 = iy; i__5 = l + i__ + j * a_dim1; z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i, z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5] .r; z__1.r = y[i__2].r + z__2.r, z__1.i = y[i__2].i + z__2.i; y[i__4].r = z__1.r, y[i__4].i = z__1.i; d_cnjg(&z__3, &a[l + i__ + j * a_dim1]); i__4 = ix; z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i = z__3.r * x[i__4].i + z__3.i * x[i__4].r; z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i; temp2.r = z__1.r, temp2.i = z__1.i; ix += *incx; iy += *incy; /* L70: */ } i__3 = jy; i__4 = jy; i__2 = kplus1 + j * a_dim1; d__1 = a[i__2].r; z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i; z__2.r = y[i__4].r + z__3.r, z__2.i = y[i__4].i + z__3.i; z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i = alpha->r * temp2.i + alpha->i * temp2.r; z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i; y[i__3].r = z__1.r, y[i__3].i = z__1.i; jx += *incx; jy += *incy; if (j > *k) { kx += *incx; ky += *incy; } /* L80: */ } } } else {
/* Form y when lower triangle of A is stored. */
if (*incx == 1 && *incy == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__3 = j; z__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, z__1.i = alpha->r * x[i__3].i + alpha->i * x[i__3].r; temp1.r = z__1.r, temp1.i = z__1.i; temp2.r = 0., temp2.i = 0.; i__3 = j; i__4 = j; i__2 = j * a_dim1 + 1; d__1 = a[i__2].r; z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i; z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i; y[i__3].r = z__1.r, y[i__3].i = z__1.i; l = 1 - j; /* Computing MIN */ i__4 = *n, i__2 = j + *k; i__3 = min(i__4,i__2); for (i__ = j + 1; i__ <= i__3; ++i__) { i__4 = i__; i__2 = i__; i__5 = l + i__ + j * a_dim1; z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i, z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5] .r; z__1.r = y[i__2].r + z__2.r, z__1.i = y[i__2].i + z__2.i; y[i__4].r = z__1.r, y[i__4].i = z__1.i; d_cnjg(&z__3, &a[l + i__ + j * a_dim1]); i__4 = i__; z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i = z__3.r * x[i__4].i + z__3.i * x[i__4].r; z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i; temp2.r = z__1.r, temp2.i = z__1.i; /* L90: */ } i__3 = j; i__4 = j; z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i = alpha->r * temp2.i + alpha->i * temp2.r; z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i; y[i__3].r = z__1.r, y[i__3].i = z__1.i; /* L100: */ } } else { jx = kx; jy = ky; i__1 = *n; for (j = 1; j <= i__1; ++j) { i__3 = jx; z__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, z__1.i = alpha->r * x[i__3].i + alpha->i * x[i__3].r; temp1.r = z__1.r, temp1.i = z__1.i; temp2.r = 0., temp2.i = 0.; i__3 = jy; i__4 = jy; i__2 = j * a_dim1 + 1; d__1 = a[i__2].r; z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i; z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i; y[i__3].r = z__1.r, y[i__3].i = z__1.i; l = 1 - j; ix = jx; iy = jy; /* Computing MIN */ i__4 = *n, i__2 = j + *k; i__3 = min(i__4,i__2); for (i__ = j + 1; i__ <= i__3; ++i__) { ix += *incx; iy += *incy; i__4 = iy; i__2 = iy; i__5 = l + i__ + j * a_dim1; z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i, z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5] .r; z__1.r = y[i__2].r + z__2.r, z__1.i = y[i__2].i + z__2.i; y[i__4].r = z__1.r, y[i__4].i = z__1.i; d_cnjg(&z__3, &a[l + i__ + j * a_dim1]); i__4 = ix; z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i = z__3.r * x[i__4].i + z__3.i * x[i__4].r; z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i; temp2.r = z__1.r, temp2.i = z__1.i; /* L110: */ } i__3 = jy; i__4 = jy; z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i = alpha->r * temp2.i + alpha->i * temp2.r; z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i; y[i__3].r = z__1.r, y[i__3].i = z__1.i; jx += *incx; jy += *incy; /* L120: */ } } }
return 0;
/* End of ZHBMV . */
} /* zhbmv_ */
|