|
|
/* ctbmv.f -- translated by f2c (version 20100827).
You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "datatypes.h"
/* Subroutine */ int ctbmv_(char *uplo, char *trans, char *diag, integer *n, integer *k, complex *a, integer *lda, complex *x, integer *incx, ftnlen uplo_len, ftnlen trans_len, ftnlen diag_len) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; complex q__1, q__2, q__3;
/* Builtin functions */ void r_cnjg(complex *, complex *);
/* Local variables */ integer i__, j, l, ix, jx, kx, info; complex temp; extern logical lsame_(char *, char *, ftnlen, ftnlen); integer kplus1; extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); logical noconj, nounit;
/* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */
/* Purpose */ /* ======= */
/* CTBMV performs one of the matrix-vector operations */
/* x := A*x, or x := A'*x, or x := conjg( A' )*x, */
/* where x is an n element vector and A is an n by n unit, or non-unit, */ /* upper or lower triangular band matrix, with ( k + 1 ) diagonals. */
/* Arguments */ /* ========== */
/* UPLO - CHARACTER*1. */ /* On entry, UPLO specifies whether the matrix is an upper or */ /* lower triangular matrix as follows: */
/* UPLO = 'U' or 'u' A is an upper triangular matrix. */
/* UPLO = 'L' or 'l' A is a lower triangular matrix. */
/* Unchanged on exit. */
/* TRANS - CHARACTER*1. */ /* On entry, TRANS specifies the operation to be performed as */ /* follows: */
/* TRANS = 'N' or 'n' x := A*x. */
/* TRANS = 'T' or 't' x := A'*x. */
/* TRANS = 'C' or 'c' x := conjg( A' )*x. */
/* Unchanged on exit. */
/* DIAG - CHARACTER*1. */ /* On entry, DIAG specifies whether or not A is unit */ /* triangular as follows: */
/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
/* DIAG = 'N' or 'n' A is not assumed to be unit */ /* triangular. */
/* Unchanged on exit. */
/* N - INTEGER. */ /* On entry, N specifies the order of the matrix A. */ /* N must be at least zero. */ /* Unchanged on exit. */
/* K - INTEGER. */ /* On entry with UPLO = 'U' or 'u', K specifies the number of */ /* super-diagonals of the matrix A. */ /* On entry with UPLO = 'L' or 'l', K specifies the number of */ /* sub-diagonals of the matrix A. */ /* K must satisfy 0 .le. K. */ /* Unchanged on exit. */
/* A - COMPLEX array of DIMENSION ( LDA, n ). */ /* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */ /* by n part of the array A must contain the upper triangular */ /* band part of the matrix of coefficients, supplied column by */ /* column, with the leading diagonal of the matrix in row */ /* ( k + 1 ) of the array, the first super-diagonal starting at */ /* position 2 in row k, and so on. The top left k by k triangle */ /* of the array A is not referenced. */ /* The following program segment will transfer an upper */ /* triangular band matrix from conventional full matrix storage */ /* to band storage: */
/* DO 20, J = 1, N */ /* M = K + 1 - J */ /* DO 10, I = MAX( 1, J - K ), J */ /* A( M + I, J ) = matrix( I, J ) */ /* 10 CONTINUE */ /* 20 CONTINUE */
/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */ /* by n part of the array A must contain the lower triangular */ /* band part of the matrix of coefficients, supplied column by */ /* column, with the leading diagonal of the matrix in row 1 of */ /* the array, the first sub-diagonal starting at position 1 in */ /* row 2, and so on. The bottom right k by k triangle of the */ /* array A is not referenced. */ /* The following program segment will transfer a lower */ /* triangular band matrix from conventional full matrix storage */ /* to band storage: */
/* DO 20, J = 1, N */ /* M = 1 - J */ /* DO 10, I = J, MIN( N, J + K ) */ /* A( M + I, J ) = matrix( I, J ) */ /* 10 CONTINUE */ /* 20 CONTINUE */
/* Note that when DIAG = 'U' or 'u' the elements of the array A */ /* corresponding to the diagonal elements of the matrix are not */ /* referenced, but are assumed to be unity. */ /* Unchanged on exit. */
/* LDA - INTEGER. */ /* On entry, LDA specifies the first dimension of A as declared */ /* in the calling (sub) program. LDA must be at least */ /* ( k + 1 ). */ /* Unchanged on exit. */
/* X - COMPLEX array of dimension at least */ /* ( 1 + ( n - 1 )*abs( INCX ) ). */ /* Before entry, the incremented array X must contain the n */ /* element vector x. On exit, X is overwritten with the */ /* tranformed vector x. */
/* INCX - INTEGER. */ /* On entry, INCX specifies the increment for the elements of */ /* X. INCX must not be zero. */ /* Unchanged on exit. */
/* Further Details */ /* =============== */
/* Level 2 Blas routine. */
/* -- Written on 22-October-1986. */ /* Jack Dongarra, Argonne National Lab. */ /* Jeremy Du Croz, Nag Central Office. */ /* Sven Hammarling, Nag Central Office. */ /* Richard Hanson, Sandia National Labs. */
/* ===================================================================== */
/* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */
/* Test the input parameters. */
/* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --x;
/* Function Body */ info = 0; if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", ( ftnlen)1, (ftnlen)1)) { info = 1; } else if (! lsame_(trans, "N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, "T", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, "C", (ftnlen)1, ( ftnlen)1)) { info = 2; } else if (! lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag, "N", (ftnlen)1, (ftnlen)1)) { info = 3; } else if (*n < 0) { info = 4; } else if (*k < 0) { info = 5; } else if (*lda < *k + 1) { info = 7; } else if (*incx == 0) { info = 9; } if (info != 0) { xerbla_("CTBMV ", &info, (ftnlen)6); return 0; }
/* Quick return if possible. */
if (*n == 0) { return 0; }
noconj = lsame_(trans, "T", (ftnlen)1, (ftnlen)1); nounit = lsame_(diag, "N", (ftnlen)1, (ftnlen)1);
/* Set up the start point in X if the increment is not unity. This */ /* will be ( N - 1 )*INCX too small for descending loops. */
if (*incx <= 0) { kx = 1 - (*n - 1) * *incx; } else if (*incx != 1) { kx = 1; }
/* Start the operations. In this version the elements of A are */ /* accessed sequentially with one pass through A. */
if (lsame_(trans, "N", (ftnlen)1, (ftnlen)1)) {
/* Form x := A*x. */
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) { kplus1 = *k + 1; if (*incx == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j; if (x[i__2].r != 0.f || x[i__2].i != 0.f) { i__2 = j; temp.r = x[i__2].r, temp.i = x[i__2].i; l = kplus1 - j; /* Computing MAX */ i__2 = 1, i__3 = j - *k; i__4 = j - 1; for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) { i__2 = i__; i__3 = i__; i__5 = l + i__ + j * a_dim1; q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i, q__2.i = temp.r * a[i__5].i + temp.i * a[ i__5].r; q__1.r = x[i__3].r + q__2.r, q__1.i = x[i__3].i + q__2.i; x[i__2].r = q__1.r, x[i__2].i = q__1.i; /* L10: */ } if (nounit) { i__4 = j; i__2 = j; i__3 = kplus1 + j * a_dim1; q__1.r = x[i__2].r * a[i__3].r - x[i__2].i * a[ i__3].i, q__1.i = x[i__2].r * a[i__3].i + x[i__2].i * a[i__3].r; x[i__4].r = q__1.r, x[i__4].i = q__1.i; } } /* L20: */ } } else { jx = kx; i__1 = *n; for (j = 1; j <= i__1; ++j) { i__4 = jx; if (x[i__4].r != 0.f || x[i__4].i != 0.f) { i__4 = jx; temp.r = x[i__4].r, temp.i = x[i__4].i; ix = kx; l = kplus1 - j; /* Computing MAX */ i__4 = 1, i__2 = j - *k; i__3 = j - 1; for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) { i__4 = ix; i__2 = ix; i__5 = l + i__ + j * a_dim1; q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i, q__2.i = temp.r * a[i__5].i + temp.i * a[ i__5].r; q__1.r = x[i__2].r + q__2.r, q__1.i = x[i__2].i + q__2.i; x[i__4].r = q__1.r, x[i__4].i = q__1.i; ix += *incx; /* L30: */ } if (nounit) { i__3 = jx; i__4 = jx; i__2 = kplus1 + j * a_dim1; q__1.r = x[i__4].r * a[i__2].r - x[i__4].i * a[ i__2].i, q__1.i = x[i__4].r * a[i__2].i + x[i__4].i * a[i__2].r; x[i__3].r = q__1.r, x[i__3].i = q__1.i; } } jx += *incx; if (j > *k) { kx += *incx; } /* L40: */ } } } else { if (*incx == 1) { for (j = *n; j >= 1; --j) { i__1 = j; if (x[i__1].r != 0.f || x[i__1].i != 0.f) { i__1 = j; temp.r = x[i__1].r, temp.i = x[i__1].i; l = 1 - j; /* Computing MIN */ i__1 = *n, i__3 = j + *k; i__4 = j + 1; for (i__ = min(i__1,i__3); i__ >= i__4; --i__) { i__1 = i__; i__3 = i__; i__2 = l + i__ + j * a_dim1; q__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i, q__2.i = temp.r * a[i__2].i + temp.i * a[ i__2].r; q__1.r = x[i__3].r + q__2.r, q__1.i = x[i__3].i + q__2.i; x[i__1].r = q__1.r, x[i__1].i = q__1.i; /* L50: */ } if (nounit) { i__4 = j; i__1 = j; i__3 = j * a_dim1 + 1; q__1.r = x[i__1].r * a[i__3].r - x[i__1].i * a[ i__3].i, q__1.i = x[i__1].r * a[i__3].i + x[i__1].i * a[i__3].r; x[i__4].r = q__1.r, x[i__4].i = q__1.i; } } /* L60: */ } } else { kx += (*n - 1) * *incx; jx = kx; for (j = *n; j >= 1; --j) { i__4 = jx; if (x[i__4].r != 0.f || x[i__4].i != 0.f) { i__4 = jx; temp.r = x[i__4].r, temp.i = x[i__4].i; ix = kx; l = 1 - j; /* Computing MIN */ i__4 = *n, i__1 = j + *k; i__3 = j + 1; for (i__ = min(i__4,i__1); i__ >= i__3; --i__) { i__4 = ix; i__1 = ix; i__2 = l + i__ + j * a_dim1; q__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i, q__2.i = temp.r * a[i__2].i + temp.i * a[ i__2].r; q__1.r = x[i__1].r + q__2.r, q__1.i = x[i__1].i + q__2.i; x[i__4].r = q__1.r, x[i__4].i = q__1.i; ix -= *incx; /* L70: */ } if (nounit) { i__3 = jx; i__4 = jx; i__1 = j * a_dim1 + 1; q__1.r = x[i__4].r * a[i__1].r - x[i__4].i * a[ i__1].i, q__1.i = x[i__4].r * a[i__1].i + x[i__4].i * a[i__1].r; x[i__3].r = q__1.r, x[i__3].i = q__1.i; } } jx -= *incx; if (*n - j >= *k) { kx -= *incx; } /* L80: */ } } } } else {
/* Form x := A'*x or x := conjg( A' )*x. */
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) { kplus1 = *k + 1; if (*incx == 1) { for (j = *n; j >= 1; --j) { i__3 = j; temp.r = x[i__3].r, temp.i = x[i__3].i; l = kplus1 - j; if (noconj) { if (nounit) { i__3 = kplus1 + j * a_dim1; q__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i, q__1.i = temp.r * a[i__3].i + temp.i * a[ i__3].r; temp.r = q__1.r, temp.i = q__1.i; } /* Computing MAX */ i__4 = 1, i__1 = j - *k; i__3 = max(i__4,i__1); for (i__ = j - 1; i__ >= i__3; --i__) { i__4 = l + i__ + j * a_dim1; i__1 = i__; q__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[ i__1].i, q__2.i = a[i__4].r * x[i__1].i + a[i__4].i * x[i__1].r; q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i; temp.r = q__1.r, temp.i = q__1.i; /* L90: */ } } else { if (nounit) { r_cnjg(&q__2, &a[kplus1 + j * a_dim1]); q__1.r = temp.r * q__2.r - temp.i * q__2.i, q__1.i = temp.r * q__2.i + temp.i * q__2.r; temp.r = q__1.r, temp.i = q__1.i; } /* Computing MAX */ i__4 = 1, i__1 = j - *k; i__3 = max(i__4,i__1); for (i__ = j - 1; i__ >= i__3; --i__) { r_cnjg(&q__3, &a[l + i__ + j * a_dim1]); i__4 = i__; q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, q__2.i = q__3.r * x[i__4].i + q__3.i * x[ i__4].r; q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i; temp.r = q__1.r, temp.i = q__1.i; /* L100: */ } } i__3 = j; x[i__3].r = temp.r, x[i__3].i = temp.i; /* L110: */ } } else { kx += (*n - 1) * *incx; jx = kx; for (j = *n; j >= 1; --j) { i__3 = jx; temp.r = x[i__3].r, temp.i = x[i__3].i; kx -= *incx; ix = kx; l = kplus1 - j; if (noconj) { if (nounit) { i__3 = kplus1 + j * a_dim1; q__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i, q__1.i = temp.r * a[i__3].i + temp.i * a[ i__3].r; temp.r = q__1.r, temp.i = q__1.i; } /* Computing MAX */ i__4 = 1, i__1 = j - *k; i__3 = max(i__4,i__1); for (i__ = j - 1; i__ >= i__3; --i__) { i__4 = l + i__ + j * a_dim1; i__1 = ix; q__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[ i__1].i, q__2.i = a[i__4].r * x[i__1].i + a[i__4].i * x[i__1].r; q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i; temp.r = q__1.r, temp.i = q__1.i; ix -= *incx; /* L120: */ } } else { if (nounit) { r_cnjg(&q__2, &a[kplus1 + j * a_dim1]); q__1.r = temp.r * q__2.r - temp.i * q__2.i, q__1.i = temp.r * q__2.i + temp.i * q__2.r; temp.r = q__1.r, temp.i = q__1.i; } /* Computing MAX */ i__4 = 1, i__1 = j - *k; i__3 = max(i__4,i__1); for (i__ = j - 1; i__ >= i__3; --i__) { r_cnjg(&q__3, &a[l + i__ + j * a_dim1]); i__4 = ix; q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, q__2.i = q__3.r * x[i__4].i + q__3.i * x[ i__4].r; q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i; temp.r = q__1.r, temp.i = q__1.i; ix -= *incx; /* L130: */ } } i__3 = jx; x[i__3].r = temp.r, x[i__3].i = temp.i; jx -= *incx; /* L140: */ } } } else { if (*incx == 1) { i__3 = *n; for (j = 1; j <= i__3; ++j) { i__4 = j; temp.r = x[i__4].r, temp.i = x[i__4].i; l = 1 - j; if (noconj) { if (nounit) { i__4 = j * a_dim1 + 1; q__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i, q__1.i = temp.r * a[i__4].i + temp.i * a[ i__4].r; temp.r = q__1.r, temp.i = q__1.i; } /* Computing MIN */ i__1 = *n, i__2 = j + *k; i__4 = min(i__1,i__2); for (i__ = j + 1; i__ <= i__4; ++i__) { i__1 = l + i__ + j * a_dim1; i__2 = i__; q__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[ i__2].i, q__2.i = a[i__1].r * x[i__2].i + a[i__1].i * x[i__2].r; q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i; temp.r = q__1.r, temp.i = q__1.i; /* L150: */ } } else { if (nounit) { r_cnjg(&q__2, &a[j * a_dim1 + 1]); q__1.r = temp.r * q__2.r - temp.i * q__2.i, q__1.i = temp.r * q__2.i + temp.i * q__2.r; temp.r = q__1.r, temp.i = q__1.i; } /* Computing MIN */ i__1 = *n, i__2 = j + *k; i__4 = min(i__1,i__2); for (i__ = j + 1; i__ <= i__4; ++i__) { r_cnjg(&q__3, &a[l + i__ + j * a_dim1]); i__1 = i__; q__2.r = q__3.r * x[i__1].r - q__3.i * x[i__1].i, q__2.i = q__3.r * x[i__1].i + q__3.i * x[ i__1].r; q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i; temp.r = q__1.r, temp.i = q__1.i; /* L160: */ } } i__4 = j; x[i__4].r = temp.r, x[i__4].i = temp.i; /* L170: */ } } else { jx = kx; i__3 = *n; for (j = 1; j <= i__3; ++j) { i__4 = jx; temp.r = x[i__4].r, temp.i = x[i__4].i; kx += *incx; ix = kx; l = 1 - j; if (noconj) { if (nounit) { i__4 = j * a_dim1 + 1; q__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i, q__1.i = temp.r * a[i__4].i + temp.i * a[ i__4].r; temp.r = q__1.r, temp.i = q__1.i; } /* Computing MIN */ i__1 = *n, i__2 = j + *k; i__4 = min(i__1,i__2); for (i__ = j + 1; i__ <= i__4; ++i__) { i__1 = l + i__ + j * a_dim1; i__2 = ix; q__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[ i__2].i, q__2.i = a[i__1].r * x[i__2].i + a[i__1].i * x[i__2].r; q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i; temp.r = q__1.r, temp.i = q__1.i; ix += *incx; /* L180: */ } } else { if (nounit) { r_cnjg(&q__2, &a[j * a_dim1 + 1]); q__1.r = temp.r * q__2.r - temp.i * q__2.i, q__1.i = temp.r * q__2.i + temp.i * q__2.r; temp.r = q__1.r, temp.i = q__1.i; } /* Computing MIN */ i__1 = *n, i__2 = j + *k; i__4 = min(i__1,i__2); for (i__ = j + 1; i__ <= i__4; ++i__) { r_cnjg(&q__3, &a[l + i__ + j * a_dim1]); i__1 = ix; q__2.r = q__3.r * x[i__1].r - q__3.i * x[i__1].i, q__2.i = q__3.r * x[i__1].i + q__3.i * x[ i__1].r; q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i; temp.r = q__1.r, temp.i = q__1.i; ix += *incx; /* L190: */ } } i__4 = jx; x[i__4].r = temp.r, x[i__4].i = temp.i; jx += *incx; /* L200: */ } } } }
return 0;
/* End of CTBMV . */
} /* ctbmv_ */
|