|
|
/* chpmv.f -- translated by f2c (version 20100827).
You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "datatypes.h"
/* Subroutine */ int chpmv_(char *uplo, integer *n, complex *alpha, complex * ap, complex *x, integer *incx, complex *beta, complex *y, integer * incy, ftnlen uplo_len) { /* System generated locals */ integer i__1, i__2, i__3, i__4, i__5; real r__1; complex q__1, q__2, q__3, q__4;
/* Builtin functions */ void r_cnjg(complex *, complex *);
/* Local variables */ integer i__, j, k, kk, ix, iy, jx, jy, kx, ky, info; complex temp1, temp2; extern logical lsame_(char *, char *, ftnlen, ftnlen); extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
/* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */
/* Purpose */ /* ======= */
/* CHPMV performs the matrix-vector operation */
/* y := alpha*A*x + beta*y, */
/* where alpha and beta are scalars, x and y are n element vectors and */ /* A is an n by n hermitian matrix, supplied in packed form. */
/* Arguments */ /* ========== */
/* UPLO - CHARACTER*1. */ /* On entry, UPLO specifies whether the upper or lower */ /* triangular part of the matrix A is supplied in the packed */ /* array AP as follows: */
/* UPLO = 'U' or 'u' The upper triangular part of A is */ /* supplied in AP. */
/* UPLO = 'L' or 'l' The lower triangular part of A is */ /* supplied in AP. */
/* Unchanged on exit. */
/* N - INTEGER. */ /* On entry, N specifies the order of the matrix A. */ /* N must be at least zero. */ /* Unchanged on exit. */
/* ALPHA - COMPLEX . */ /* On entry, ALPHA specifies the scalar alpha. */ /* Unchanged on exit. */
/* AP - COMPLEX array of DIMENSION at least */ /* ( ( n*( n + 1 ) )/2 ). */ /* Before entry with UPLO = 'U' or 'u', the array AP must */ /* contain the upper triangular part of the hermitian matrix */ /* packed sequentially, column by column, so that AP( 1 ) */ /* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */ /* and a( 2, 2 ) respectively, and so on. */ /* Before entry with UPLO = 'L' or 'l', the array AP must */ /* contain the lower triangular part of the hermitian matrix */ /* packed sequentially, column by column, so that AP( 1 ) */ /* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */ /* and a( 3, 1 ) respectively, and so on. */ /* Note that the imaginary parts of the diagonal elements need */ /* not be set and are assumed to be zero. */ /* Unchanged on exit. */
/* X - COMPLEX array of dimension at least */ /* ( 1 + ( n - 1 )*abs( INCX ) ). */ /* Before entry, the incremented array X must contain the n */ /* element vector x. */ /* Unchanged on exit. */
/* INCX - INTEGER. */ /* On entry, INCX specifies the increment for the elements of */ /* X. INCX must not be zero. */ /* Unchanged on exit. */
/* BETA - COMPLEX . */ /* On entry, BETA specifies the scalar beta. When BETA is */ /* supplied as zero then Y need not be set on input. */ /* Unchanged on exit. */
/* Y - COMPLEX array of dimension at least */ /* ( 1 + ( n - 1 )*abs( INCY ) ). */ /* Before entry, the incremented array Y must contain the n */ /* element vector y. On exit, Y is overwritten by the updated */ /* vector y. */
/* INCY - INTEGER. */ /* On entry, INCY specifies the increment for the elements of */ /* Y. INCY must not be zero. */ /* Unchanged on exit. */
/* Further Details */ /* =============== */
/* Level 2 Blas routine. */
/* -- Written on 22-October-1986. */ /* Jack Dongarra, Argonne National Lab. */ /* Jeremy Du Croz, Nag Central Office. */ /* Sven Hammarling, Nag Central Office. */ /* Richard Hanson, Sandia National Labs. */
/* ===================================================================== */
/* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */
/* Test the input parameters. */
/* Parameter adjustments */ --y; --x; --ap;
/* Function Body */ info = 0; if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", ( ftnlen)1, (ftnlen)1)) { info = 1; } else if (*n < 0) { info = 2; } else if (*incx == 0) { info = 6; } else if (*incy == 0) { info = 9; } if (info != 0) { xerbla_("CHPMV ", &info, (ftnlen)6); return 0; }
/* Quick return if possible. */
if (*n == 0 || (alpha->r == 0.f && alpha->i == 0.f && (beta->r == 1.f && beta->i == 0.f))) { return 0; }
/* Set up the start points in X and Y. */
if (*incx > 0) { kx = 1; } else { kx = 1 - (*n - 1) * *incx; } if (*incy > 0) { ky = 1; } else { ky = 1 - (*n - 1) * *incy; }
/* Start the operations. In this version the elements of the array AP */ /* are accessed sequentially with one pass through AP. */
/* First form y := beta*y. */
if (beta->r != 1.f || beta->i != 0.f) { if (*incy == 1) { if (beta->r == 0.f && beta->i == 0.f) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__; y[i__2].r = 0.f, y[i__2].i = 0.f; /* L10: */ } } else { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__; i__3 = i__; q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, q__1.i = beta->r * y[i__3].i + beta->i * y[i__3] .r; y[i__2].r = q__1.r, y[i__2].i = q__1.i; /* L20: */ } } } else { iy = ky; if (beta->r == 0.f && beta->i == 0.f) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = iy; y[i__2].r = 0.f, y[i__2].i = 0.f; iy += *incy; /* L30: */ } } else { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = iy; i__3 = iy; q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, q__1.i = beta->r * y[i__3].i + beta->i * y[i__3] .r; y[i__2].r = q__1.r, y[i__2].i = q__1.i; iy += *incy; /* L40: */ } } } } if (alpha->r == 0.f && alpha->i == 0.f) { return 0; } kk = 1; if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
/* Form y when AP contains the upper triangle. */
if (*incx == 1 && *incy == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j; q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2].r; temp1.r = q__1.r, temp1.i = q__1.i; temp2.r = 0.f, temp2.i = 0.f; k = kk; i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__; i__4 = i__; i__5 = k; q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i, q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5] .r; q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i; y[i__3].r = q__1.r, y[i__3].i = q__1.i; r_cnjg(&q__3, &ap[k]); i__3 = i__; q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i = q__3.r * x[i__3].i + q__3.i * x[i__3].r; q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i; temp2.r = q__1.r, temp2.i = q__1.i; ++k; /* L50: */ } i__2 = j; i__3 = j; i__4 = kk + j - 1; r__1 = ap[i__4].r; q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i; q__2.r = y[i__3].r + q__3.r, q__2.i = y[i__3].i + q__3.i; q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i = alpha->r * temp2.i + alpha->i * temp2.r; q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i; y[i__2].r = q__1.r, y[i__2].i = q__1.i; kk += j; /* L60: */ } } else { jx = kx; jy = ky; i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = jx; q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2].r; temp1.r = q__1.r, temp1.i = q__1.i; temp2.r = 0.f, temp2.i = 0.f; ix = kx; iy = ky; i__2 = kk + j - 2; for (k = kk; k <= i__2; ++k) { i__3 = iy; i__4 = iy; i__5 = k; q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i, q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5] .r; q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i; y[i__3].r = q__1.r, y[i__3].i = q__1.i; r_cnjg(&q__3, &ap[k]); i__3 = ix; q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i = q__3.r * x[i__3].i + q__3.i * x[i__3].r; q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i; temp2.r = q__1.r, temp2.i = q__1.i; ix += *incx; iy += *incy; /* L70: */ } i__2 = jy; i__3 = jy; i__4 = kk + j - 1; r__1 = ap[i__4].r; q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i; q__2.r = y[i__3].r + q__3.r, q__2.i = y[i__3].i + q__3.i; q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i = alpha->r * temp2.i + alpha->i * temp2.r; q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i; y[i__2].r = q__1.r, y[i__2].i = q__1.i; jx += *incx; jy += *incy; kk += j; /* L80: */ } } } else {
/* Form y when AP contains the lower triangle. */
if (*incx == 1 && *incy == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j; q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2].r; temp1.r = q__1.r, temp1.i = q__1.i; temp2.r = 0.f, temp2.i = 0.f; i__2 = j; i__3 = j; i__4 = kk; r__1 = ap[i__4].r; q__2.r = r__1 * temp1.r, q__2.i = r__1 * temp1.i; q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i; y[i__2].r = q__1.r, y[i__2].i = q__1.i; k = kk + 1; i__2 = *n; for (i__ = j + 1; i__ <= i__2; ++i__) { i__3 = i__; i__4 = i__; i__5 = k; q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i, q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5] .r; q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i; y[i__3].r = q__1.r, y[i__3].i = q__1.i; r_cnjg(&q__3, &ap[k]); i__3 = i__; q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i = q__3.r * x[i__3].i + q__3.i * x[i__3].r; q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i; temp2.r = q__1.r, temp2.i = q__1.i; ++k; /* L90: */ } i__2 = j; i__3 = j; q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i = alpha->r * temp2.i + alpha->i * temp2.r; q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i; y[i__2].r = q__1.r, y[i__2].i = q__1.i; kk += *n - j + 1; /* L100: */ } } else { jx = kx; jy = ky; i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = jx; q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2].r; temp1.r = q__1.r, temp1.i = q__1.i; temp2.r = 0.f, temp2.i = 0.f; i__2 = jy; i__3 = jy; i__4 = kk; r__1 = ap[i__4].r; q__2.r = r__1 * temp1.r, q__2.i = r__1 * temp1.i; q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i; y[i__2].r = q__1.r, y[i__2].i = q__1.i; ix = jx; iy = jy; i__2 = kk + *n - j; for (k = kk + 1; k <= i__2; ++k) { ix += *incx; iy += *incy; i__3 = iy; i__4 = iy; i__5 = k; q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i, q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5] .r; q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i; y[i__3].r = q__1.r, y[i__3].i = q__1.i; r_cnjg(&q__3, &ap[k]); i__3 = ix; q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i = q__3.r * x[i__3].i + q__3.i * x[i__3].r; q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i; temp2.r = q__1.r, temp2.i = q__1.i; /* L110: */ } i__2 = jy; i__3 = jy; q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i = alpha->r * temp2.i + alpha->i * temp2.r; q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i; y[i__2].r = q__1.r, y[i__2].i = q__1.i; jx += *incx; jy += *incy; kk += *n - j + 1; /* L120: */ } } }
return 0;
/* End of CHPMV . */
} /* chpmv_ */
|