|
|
// ----------------------------------------------------------------------
// Copyright (c) 2016, Gregory Popovitch - greg7mdp@gmail.com
// All rights reserved.
//
// This work is derived from Google's sparsehash library
//
// Copyright (c) 2010, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// ----------------------------------------------------------------------
#ifdef _MSC_VER
#pragma warning( disable : 4820 ) // '6' bytes padding added after data member...
#pragma warning( disable : 4710 ) // function not inlined
#pragma warning( disable : 4514 ) // unreferenced inline function has been removed
#pragma warning( disable : 4996 ) // 'fopen': This function or variable may be unsafe
#endif
#include "sparsepp.h"
#ifdef _MSC_VER
#pragma warning( disable : 4127 ) // conditional expression is constant
#pragma warning(push, 0)
#endif
#include <math.h>
#include <stddef.h> // for size_t
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <set>
#include <sstream>
#include <typeinfo> // for class typeinfo (returned by typeid)
#include <vector>
#include <stdexcept> // for length_error
namespace sparsehash_internal = SPP_NAMESPACE::sparsehash_internal; using SPP_NAMESPACE::sparsetable; using SPP_NAMESPACE::sparse_hashtable; using SPP_NAMESPACE::sparse_hash_map; using SPP_NAMESPACE::sparse_hash_set;
// ---------------------------------------------------------------------
// ---------------------------------------------------------------------
#ifndef _MSC_VER // windows defines its own version
#define _strdup strdup
#ifdef __MINGW32__ // mingw has trouble writing to /tmp
static std::string TmpFile(const char* basename) { return std::string("./#") + basename; } #endif
#else
#pragma warning(disable : 4996)
#define snprintf sprintf_s
#define WIN32_LEAN_AND_MEAN /* We always want minimal includes */
#include <windows.h>
std::string TmpFile(const char* basename) { char tmppath_buffer[1024]; int tmppath_len = GetTempPathA(sizeof(tmppath_buffer), tmppath_buffer); if (tmppath_len <= 0 || tmppath_len >= sizeof(tmppath_buffer)) return basename; // an error, so just bail on tmppath
sprintf_s(tmppath_buffer + tmppath_len, 1024 - tmppath_len, "\\%s", basename); return tmppath_buffer; } #endif
#ifdef _MSC_VER
#pragma warning(pop)
#endif
// ---------------------------------------------------------------------
// This is the "default" interface, which just passes everything
// through to the underlying hashtable. You'll need to subclass it to
// specialize behavior for an individual hashtable.
// ---------------------------------------------------------------------
template <class HT> class BaseHashtableInterface { public: virtual ~BaseHashtableInterface() {}
typedef typename HT::key_type key_type; typedef typename HT::value_type value_type; typedef typename HT::hasher hasher; typedef typename HT::key_equal key_equal; typedef typename HT::allocator_type allocator_type;
typedef typename HT::size_type size_type; typedef typename HT::difference_type difference_type; typedef typename HT::pointer pointer; typedef typename HT::const_pointer const_pointer; typedef typename HT::reference reference; typedef typename HT::const_reference const_reference;
class const_iterator;
class iterator : public HT::iterator { public: iterator() : parent_(NULL) { } // this allows code like "iterator it;"
iterator(typename HT::iterator it, const BaseHashtableInterface* parent) : HT::iterator(it), parent_(parent) { } key_type key() { return parent_->it_to_key(*this); }
private: friend class BaseHashtableInterface::const_iterator; // for its ctor
const BaseHashtableInterface* parent_; };
class const_iterator : public HT::const_iterator { public: const_iterator() : parent_(NULL) { } const_iterator(typename HT::const_iterator it, const BaseHashtableInterface* parent) : HT::const_iterator(it), parent_(parent) { }
const_iterator(typename HT::iterator it, BaseHashtableInterface* parent) : HT::const_iterator(it), parent_(parent) { }
// The parameter type here *should* just be "iterator", but MSVC
// gets confused by that, so I'm overly specific.
const_iterator(typename BaseHashtableInterface<HT>::iterator it) : HT::const_iterator(it), parent_(it.parent_) { }
key_type key() { return parent_->it_to_key(*this); }
private: const BaseHashtableInterface* parent_; };
class const_local_iterator;
class local_iterator : public HT::local_iterator { public: local_iterator() : parent_(NULL) { } local_iterator(typename HT::local_iterator it, const BaseHashtableInterface* parent) : HT::local_iterator(it), parent_(parent) { } key_type key() { return parent_->it_to_key(*this); }
private: friend class BaseHashtableInterface::const_local_iterator; // for its ctor
const BaseHashtableInterface* parent_; };
class const_local_iterator : public HT::const_local_iterator { public: const_local_iterator() : parent_(NULL) { } const_local_iterator(typename HT::const_local_iterator it, const BaseHashtableInterface* parent) : HT::const_local_iterator(it), parent_(parent) { } const_local_iterator(typename HT::local_iterator it, BaseHashtableInterface* parent) : HT::const_local_iterator(it), parent_(parent) { } const_local_iterator(local_iterator it) : HT::const_local_iterator(it), parent_(it.parent_) { } key_type key() { return parent_->it_to_key(*this); }
private: const BaseHashtableInterface* parent_; };
iterator begin() { return iterator(ht_.begin(), this); } iterator end() { return iterator(ht_.end(), this); } const_iterator begin() const { return const_iterator(ht_.begin(), this); } const_iterator end() const { return const_iterator(ht_.end(), this); } local_iterator begin(size_type i) { return local_iterator(ht_.begin(i), this); } local_iterator end(size_type i) { return local_iterator(ht_.end(i), this); } const_local_iterator begin(size_type i) const { return const_local_iterator(ht_.begin(i), this); } const_local_iterator end(size_type i) const { return const_local_iterator(ht_.end(i), this); }
hasher hash_funct() const { return ht_.hash_funct(); } hasher hash_function() const { return ht_.hash_function(); } key_equal key_eq() const { return ht_.key_eq(); } allocator_type get_allocator() const { return ht_.get_allocator(); }
BaseHashtableInterface(size_type expected_max_items_in_table, const hasher& hf, const key_equal& eql, const allocator_type& alloc) : ht_(expected_max_items_in_table, hf, eql, alloc) { }
// Not all ht_'s support this constructor: you should only call it
// from a subclass if you know your ht supports it. Otherwise call
// the previous constructor, followed by 'insert(f, l);'.
template <class InputIterator> BaseHashtableInterface(InputIterator f, InputIterator l, size_type expected_max_items_in_table, const hasher& hf, const key_equal& eql, const allocator_type& alloc) : ht_(f, l, expected_max_items_in_table, hf, eql, alloc) { }
// This is the version of the constructor used by dense_*, which
// requires an empty key in the constructor.
template <class InputIterator> BaseHashtableInterface(InputIterator f, InputIterator l, key_type empty_k, size_type expected_max_items_in_table, const hasher& hf, const key_equal& eql, const allocator_type& alloc) : ht_(f, l, empty_k, expected_max_items_in_table, hf, eql, alloc) { }
// This is the constructor appropriate for {dense,sparse}hashtable.
template <class ExtractKey, class SetKey> BaseHashtableInterface(size_type expected_max_items_in_table, const hasher& hf, const key_equal& eql, const ExtractKey& ek, const SetKey& sk, const allocator_type& alloc) : ht_(expected_max_items_in_table, hf, eql, ek, sk, alloc) { }
void clear() { ht_.clear(); } void swap(BaseHashtableInterface& other) { ht_.swap(other.ht_); }
// Only part of the API for some hashtable implementations.
void clear_no_resize() { clear(); }
size_type size() const { return ht_.size(); } size_type max_size() const { return ht_.max_size(); } bool empty() const { return ht_.empty(); } size_type bucket_count() const { return ht_.bucket_count(); } size_type max_bucket_count() const { return ht_.max_bucket_count(); }
size_type bucket_size(size_type i) const { return ht_.bucket_size(i); } size_type bucket(const key_type& key) const { return ht_.bucket(key); }
float load_factor() const { return ht_.load_factor(); } float max_load_factor() const { return ht_.max_load_factor(); } void max_load_factor(float grow) { ht_.max_load_factor(grow); } float min_load_factor() const { return ht_.min_load_factor(); } void min_load_factor(float shrink) { ht_.min_load_factor(shrink); } void set_resizing_parameters(float shrink, float grow) { ht_.set_resizing_parameters(shrink, grow); }
void resize(size_type hint) { ht_.resize(hint); } void rehash(size_type hint) { ht_.rehash(hint); }
iterator find(const key_type& key) { return iterator(ht_.find(key), this); }
const_iterator find(const key_type& key) const { return const_iterator(ht_.find(key), this); }
// Rather than try to implement operator[], which doesn't make much
// sense for set types, we implement two methods: bracket_equal and
// bracket_assign. By default, bracket_equal(a, b) returns true if
// ht[a] == b, and false otherwise. (Note that this follows
// operator[] semantics exactly, including inserting a if it's not
// already in the hashtable, before doing the equality test.) For
// sets, which have no operator[], b is ignored, and bracket_equal
// returns true if key is in the set and false otherwise.
// bracket_assign(a, b) is equivalent to ht[a] = b. For sets, b is
// ignored, and bracket_assign is equivalent to ht.insert(a).
template<typename AssignValue> bool bracket_equal(const key_type& key, const AssignValue& expected) { return ht_[key] == expected; }
template<typename AssignValue> void bracket_assign(const key_type& key, const AssignValue& value) { ht_[key] = value; }
size_type count(const key_type& key) const { return ht_.count(key); }
std::pair<iterator, iterator> equal_range(const key_type& key) { std::pair<typename HT::iterator, typename HT::iterator> r = ht_.equal_range(key); return std::pair<iterator, iterator>(iterator(r.first, this), iterator(r.second, this)); } std::pair<const_iterator, const_iterator> equal_range(const key_type& key) const { std::pair<typename HT::const_iterator, typename HT::const_iterator> r = ht_.equal_range(key); return std::pair<const_iterator, const_iterator>( const_iterator(r.first, this), const_iterator(r.second, this)); }
const_iterator random_element(class ACMRandom* r) const { return const_iterator(ht_.random_element(r), this); }
iterator random_element(class ACMRandom* r) { return iterator(ht_.random_element(r), this); }
std::pair<iterator, bool> insert(const value_type& obj) { std::pair<typename HT::iterator, bool> r = ht_.insert(obj); return std::pair<iterator, bool>(iterator(r.first, this), r.second); } template <class InputIterator> void insert(InputIterator f, InputIterator l) { ht_.insert(f, l); } void insert(typename HT::const_iterator f, typename HT::const_iterator l) { ht_.insert(f, l); } iterator insert(typename HT::iterator, const value_type& obj) { return iterator(insert(obj).first, this); }
// These will commonly need to be overridden by the child.
void set_empty_key(const key_type& k) { ht_.set_empty_key(k); } void clear_empty_key() { ht_.clear_empty_key(); } key_type empty_key() const { return ht_.empty_key(); }
void set_deleted_key(const key_type& k) { ht_.set_deleted_key(k); } void clear_deleted_key() { ht_.clear_deleted_key(); } key_type deleted_key() const { return ht_.deleted_key(); }
size_type erase(const key_type& key) { return ht_.erase(key); } void erase(typename HT::iterator it) { ht_.erase(it); } void erase(typename HT::iterator f, typename HT::iterator l) { ht_.erase(f, l); }
bool operator==(const BaseHashtableInterface& other) const { return ht_ == other.ht_; } bool operator!=(const BaseHashtableInterface& other) const { return ht_ != other.ht_; }
template <typename ValueSerializer, typename OUTPUT> bool serialize(ValueSerializer serializer, OUTPUT *fp) { return ht_.serialize(serializer, fp); } template <typename ValueSerializer, typename INPUT> bool unserialize(ValueSerializer serializer, INPUT *fp) { return ht_.unserialize(serializer, fp); }
template <typename OUTPUT> bool write_metadata(OUTPUT *fp) { return ht_.write_metadata(fp); } template <typename INPUT> bool read_metadata(INPUT *fp) { return ht_.read_metadata(fp); } template <typename OUTPUT> bool write_nopointer_data(OUTPUT *fp) { return ht_.write_nopointer_data(fp); } template <typename INPUT> bool read_nopointer_data(INPUT *fp) { return ht_.read_nopointer_data(fp); }
// low-level stats
int num_table_copies() const { return (int)ht_.num_table_copies(); }
// Not part of the hashtable API, but is provided to make testing easier.
virtual key_type get_key(const value_type& value) const = 0; // All subclasses should define get_data(value_type) as well. I don't
// provide an abstract-virtual definition here, because the return type
// differs between subclasses (not all subclasses define data_type).
//virtual data_type get_data(const value_type& value) const = 0;
//virtual data_type default_data() const = 0;
// These allow introspection into the interface. "Supports" means
// that the implementation of this functionality isn't a noop.
virtual bool supports_clear_no_resize() const = 0; virtual bool supports_empty_key() const = 0; virtual bool supports_deleted_key() const = 0; virtual bool supports_brackets() const = 0; // has a 'real' operator[]
virtual bool supports_readwrite() const = 0; virtual bool supports_num_table_copies() const = 0; virtual bool supports_serialization() const = 0;
protected: HT ht_;
// These are what subclasses have to define to get class-specific behavior
virtual key_type it_to_key(const iterator& it) const = 0; virtual key_type it_to_key(const const_iterator& it) const = 0; virtual key_type it_to_key(const local_iterator& it) const = 0; virtual key_type it_to_key(const const_local_iterator& it) const = 0; };
// ---------------------------------------------------------------------
// ---------------------------------------------------------------------
template <class Key, class T, class HashFcn = SPP_HASH_CLASS<Key>, class EqualKey = std::equal_to<Key>, class Alloc = spp::libc_allocator_with_realloc<std::pair<const Key, T> > > class HashtableInterface_SparseHashMap : public BaseHashtableInterface< sparse_hash_map<Key, T, HashFcn, EqualKey, Alloc> > { private: typedef sparse_hash_map<Key, T, HashFcn, EqualKey, Alloc> ht; typedef BaseHashtableInterface<ht> p; // parent
public: explicit HashtableInterface_SparseHashMap( typename p::size_type expected_max_items = 0, const typename p::hasher& hf = typename p::hasher(), const typename p::key_equal& eql = typename p::key_equal(), const typename p::allocator_type& alloc = typename p::allocator_type()) : BaseHashtableInterface<ht>(expected_max_items, hf, eql, alloc) { }
template <class InputIterator> HashtableInterface_SparseHashMap( InputIterator f, InputIterator l, typename p::size_type expected_max_items = 0, const typename p::hasher& hf = typename p::hasher(), const typename p::key_equal& eql = typename p::key_equal(), const typename p::allocator_type& alloc = typename p::allocator_type()) : BaseHashtableInterface<ht>(f, l, expected_max_items, hf, eql, alloc) { }
typename p::key_type get_key(const typename p::value_type& value) const { return value.first; } typename ht::data_type get_data(const typename p::value_type& value) const { return value.second; } typename ht::data_type default_data() const { return typename ht::data_type(); }
bool supports_clear_no_resize() const { return false; } bool supports_empty_key() const { return false; } bool supports_deleted_key() const { return false; } bool supports_brackets() const { return true; } bool supports_readwrite() const { return true; } bool supports_num_table_copies() const { return false; } bool supports_serialization() const { return true; }
void set_empty_key(const typename p::key_type&) { } void clear_empty_key() { } typename p::key_type empty_key() const { return typename p::key_type(); }
int num_table_copies() const { return 0; }
typedef typename ht::NopointerSerializer NopointerSerializer;
protected: template <class K2, class T2, class H2, class E2, class A2> friend void swap(HashtableInterface_SparseHashMap<K2,T2,H2,E2,A2>& a, HashtableInterface_SparseHashMap<K2,T2,H2,E2,A2>& b);
typename p::key_type it_to_key(const typename p::iterator& it) const { return it->first; } typename p::key_type it_to_key(const typename p::const_iterator& it) const { return it->first; } typename p::key_type it_to_key(const typename p::local_iterator& it) const { return it->first; } typename p::key_type it_to_key(const typename p::const_local_iterator& it) const { return it->first; } };
// ---------------------------------------------------------------------
// ---------------------------------------------------------------------
template <class K, class T, class H, class E, class A> void swap(HashtableInterface_SparseHashMap<K,T,H,E,A>& a, HashtableInterface_SparseHashMap<K,T,H,E,A>& b) { swap(a.ht_, b.ht_); }
// ---------------------------------------------------------------------
// ---------------------------------------------------------------------
template <class Value, class HashFcn = SPP_HASH_CLASS<Value>, class EqualKey = std::equal_to<Value>, class Alloc = spp::libc_allocator_with_realloc<Value> > class HashtableInterface_SparseHashSet : public BaseHashtableInterface< sparse_hash_set<Value, HashFcn, EqualKey, Alloc> > { private: typedef sparse_hash_set<Value, HashFcn, EqualKey, Alloc> ht; typedef BaseHashtableInterface<ht> p; // parent
public: explicit HashtableInterface_SparseHashSet( typename p::size_type expected_max_items = 0, const typename p::hasher& hf = typename p::hasher(), const typename p::key_equal& eql = typename p::key_equal(), const typename p::allocator_type& alloc = typename p::allocator_type()) : BaseHashtableInterface<ht>(expected_max_items, hf, eql, alloc) { }
template <class InputIterator> HashtableInterface_SparseHashSet( InputIterator f, InputIterator l, typename p::size_type expected_max_items = 0, const typename p::hasher& hf = typename p::hasher(), const typename p::key_equal& eql = typename p::key_equal(), const typename p::allocator_type& alloc = typename p::allocator_type()) : BaseHashtableInterface<ht>(f, l, expected_max_items, hf, eql, alloc) { }
template<typename AssignValue> bool bracket_equal(const typename p::key_type& key, const AssignValue&) { return this->ht_.find(key) != this->ht_.end(); }
template<typename AssignValue> void bracket_assign(const typename p::key_type& key, const AssignValue&) { this->ht_.insert(key); }
typename p::key_type get_key(const typename p::value_type& value) const { return value; } // For sets, the only 'data' is that an item is actually inserted.
bool get_data(const typename p::value_type&) const { return true; } bool default_data() const { return true; }
bool supports_clear_no_resize() const { return false; } bool supports_empty_key() const { return false; } bool supports_deleted_key() const { return false; } bool supports_brackets() const { return false; } bool supports_readwrite() const { return true; } bool supports_num_table_copies() const { return false; } bool supports_serialization() const { return true; }
void set_empty_key(const typename p::key_type&) { } void clear_empty_key() { } typename p::key_type empty_key() const { return typename p::key_type(); }
int num_table_copies() const { return 0; }
typedef typename ht::NopointerSerializer NopointerSerializer;
protected: template <class K2, class H2, class E2, class A2> friend void swap(HashtableInterface_SparseHashSet<K2,H2,E2,A2>& a, HashtableInterface_SparseHashSet<K2,H2,E2,A2>& b);
typename p::key_type it_to_key(const typename p::iterator& it) const { return *it; } typename p::key_type it_to_key(const typename p::const_iterator& it) const { return *it; } typename p::key_type it_to_key(const typename p::local_iterator& it) const { return *it; } typename p::key_type it_to_key(const typename p::const_local_iterator& it) const { return *it; } };
// ---------------------------------------------------------------------
// ---------------------------------------------------------------------
template <class K, class H, class E, class A> void swap(HashtableInterface_SparseHashSet<K,H,E,A>& a, HashtableInterface_SparseHashSet<K,H,E,A>& b) { swap(a.ht_, b.ht_); }
// ---------------------------------------------------------------------
// ---------------------------------------------------------------------
template <class Value, class Key, class HashFcn, class ExtractKey, class SetKey, class EqualKey, class Alloc> class HashtableInterface_SparseHashtable : public BaseHashtableInterface< sparse_hashtable<Value, Key, HashFcn, ExtractKey, SetKey, EqualKey, Alloc> > { private: typedef sparse_hashtable<Value, Key, HashFcn, ExtractKey, SetKey, EqualKey, Alloc> ht; typedef BaseHashtableInterface<ht> p; // parent
public: explicit HashtableInterface_SparseHashtable( typename p::size_type expected_max_items = 0, const typename p::hasher& hf = typename p::hasher(), const typename p::key_equal& eql = typename p::key_equal(), const typename p::allocator_type& alloc = typename p::allocator_type()) : BaseHashtableInterface<ht>(expected_max_items, hf, eql, ExtractKey(), SetKey(), alloc) { }
template <class InputIterator> HashtableInterface_SparseHashtable( InputIterator f, InputIterator l, typename p::size_type expected_max_items = 0, const typename p::hasher& hf = typename p::hasher(), const typename p::key_equal& eql = typename p::key_equal(), const typename p::allocator_type& alloc = typename p::allocator_type()) : BaseHashtableInterface<ht>(expected_max_items, hf, eql, ExtractKey(), SetKey(), alloc) { this->insert(f, l); }
float max_load_factor() const { float shrink, grow; this->ht_.get_resizing_parameters(&shrink, &grow); return grow; } void max_load_factor(float new_grow) { float shrink, grow; this->ht_.get_resizing_parameters(&shrink, &grow); this->ht_.set_resizing_parameters(shrink, new_grow); } float min_load_factor() const { float shrink, grow; this->ht_.get_resizing_parameters(&shrink, &grow); return shrink; } void min_load_factor(float new_shrink) { float shrink, grow; this->ht_.get_resizing_parameters(&shrink, &grow); this->ht_.set_resizing_parameters(new_shrink, grow); }
template<typename AssignValue> bool bracket_equal(const typename p::key_type&, const AssignValue&) { return false; }
template<typename AssignValue> void bracket_assign(const typename p::key_type&, const AssignValue&) { }
typename p::key_type get_key(const typename p::value_type& value) const { return extract_key(value); } typename p::value_type get_data(const typename p::value_type& value) const { return value; } typename p::value_type default_data() const { return typename p::value_type(); }
bool supports_clear_no_resize() const { return false; } bool supports_empty_key() const { return false; } bool supports_deleted_key() const { return false; } bool supports_brackets() const { return false; } bool supports_readwrite() const { return true; } bool supports_num_table_copies() const { return true; } bool supports_serialization() const { return true; }
void set_empty_key(const typename p::key_type&) { } void clear_empty_key() { } typename p::key_type empty_key() const { return typename p::key_type(); }
// These tr1 names aren't defined for sparse_hashtable.
typename p::hasher hash_function() { return this->hash_funct(); } void rehash(typename p::size_type hint) { this->resize(hint); }
// TODO(csilvers): also support/test destructive_begin()/destructive_end()?
typedef typename ht::NopointerSerializer NopointerSerializer;
protected: template <class V2, class K2, class HF2, class EK2, class SK2, class Eq2, class A2> friend void swap( HashtableInterface_SparseHashtable<V2,K2,HF2,EK2,SK2,Eq2,A2>& a, HashtableInterface_SparseHashtable<V2,K2,HF2,EK2,SK2,Eq2,A2>& b);
typename p::key_type it_to_key(const typename p::iterator& it) const { return extract_key(*it); } typename p::key_type it_to_key(const typename p::const_iterator& it) const { return extract_key(*it); } typename p::key_type it_to_key(const typename p::local_iterator& it) const { return extract_key(*it); } typename p::key_type it_to_key(const typename p::const_local_iterator& it) const { return extract_key(*it); }
private: ExtractKey extract_key; };
// ---------------------------------------------------------------------
// ---------------------------------------------------------------------
template <class V, class K, class HF, class EK, class SK, class Eq, class A> void swap(HashtableInterface_SparseHashtable<V,K,HF,EK,SK,Eq,A>& a, HashtableInterface_SparseHashtable<V,K,HF,EK,SK,Eq,A>& b) { swap(a.ht_, b.ht_); }
void EXPECT_TRUE(bool cond) { if (!cond) { ::fputs("Test failed:\n", stderr); ::exit(1); } }
SPP_START_NAMESPACE
namespace testing {
#define EXPECT_FALSE(a) EXPECT_TRUE(!(a))
#define EXPECT_EQ(a, b) EXPECT_TRUE((a) == (b))
#define EXPECT_NE(a, b) EXPECT_TRUE((a) != (b))
#define EXPECT_LT(a, b) EXPECT_TRUE((a) < (b))
#define EXPECT_GT(a, b) EXPECT_TRUE((a) > (b))
#define EXPECT_LE(a, b) EXPECT_TRUE((a) <= (b))
#define EXPECT_GE(a, b) EXPECT_TRUE((a) >= (b))
#define EXPECT_DEATH(cmd, expected_error_string) \
try { \ cmd; \ EXPECT_FALSE("did not see expected error: " #expected_error_string); \ } catch (const std::length_error&) { \ /* Good, the cmd failed. */ \ }
#define TEST(suitename, testname) \
class TEST_##suitename##_##testname { \ public: \ TEST_##suitename##_##testname() { \ ::fputs("Running " #suitename "." #testname "\n", stderr); \ Run(); \ } \ void Run(); \ }; \ static TEST_##suitename##_##testname \ test_instance_##suitename##_##testname; \ void TEST_##suitename##_##testname::Run()
template<typename C1, typename C2, typename C3> struct TypeList3 { typedef C1 type1; typedef C2 type2; typedef C3 type3; };
// I need to list 9 types here, for code below to compile, though
// only the first 3 are ever used.
#define TYPED_TEST_CASE_3(classname, typelist) \
typedef typelist::type1 classname##_type1; \ typedef typelist::type2 classname##_type2; \ typedef typelist::type3 classname##_type3; \ SPP_ATTRIBUTE_UNUSED static const int classname##_numtypes = 3; \ typedef typelist::type1 classname##_type4; \ typedef typelist::type1 classname##_type5; \ typedef typelist::type1 classname##_type6; \ typedef typelist::type1 classname##_type7; \ typedef typelist::type1 classname##_type8; \ typedef typelist::type1 classname##_type9
template<typename C1, typename C2, typename C3, typename C4, typename C5, typename C6, typename C7, typename C8, typename C9> struct TypeList9 { typedef C1 type1; typedef C2 type2; typedef C3 type3; typedef C4 type4; typedef C5 type5; typedef C6 type6; typedef C7 type7; typedef C8 type8; typedef C9 type9; };
#define TYPED_TEST_CASE_9(classname, typelist) \
typedef typelist::type1 classname##_type1; \ typedef typelist::type2 classname##_type2; \ typedef typelist::type3 classname##_type3; \ typedef typelist::type4 classname##_type4; \ typedef typelist::type5 classname##_type5; \ typedef typelist::type6 classname##_type6; \ typedef typelist::type7 classname##_type7; \ typedef typelist::type8 classname##_type8; \ typedef typelist::type9 classname##_type9; \ static const int classname##_numtypes = 9
#define TYPED_TEST(superclass, testname) \
template<typename TypeParam> \ class TEST_onetype_##superclass##_##testname : \ public superclass<TypeParam> { \ public: \ TEST_onetype_##superclass##_##testname() { \ Run(); \ } \ private: \ void Run(); \ }; \ class TEST_typed_##superclass##_##testname { \ public: \ explicit TEST_typed_##superclass##_##testname() { \ if (superclass##_numtypes >= 1) { \ ::fputs("Running " #superclass "." #testname ".1\n", stderr); \ TEST_onetype_##superclass##_##testname<superclass##_type1> t; \ } \ if (superclass##_numtypes >= 2) { \ ::fputs("Running " #superclass "." #testname ".2\n", stderr); \ TEST_onetype_##superclass##_##testname<superclass##_type2> t; \ } \ if (superclass##_numtypes >= 3) { \ ::fputs("Running " #superclass "." #testname ".3\n", stderr); \ TEST_onetype_##superclass##_##testname<superclass##_type3> t; \ } \ if (superclass##_numtypes >= 4) { \ ::fputs("Running " #superclass "." #testname ".4\n", stderr); \ TEST_onetype_##superclass##_##testname<superclass##_type4> t; \ } \ if (superclass##_numtypes >= 5) { \ ::fputs("Running " #superclass "." #testname ".5\n", stderr); \ TEST_onetype_##superclass##_##testname<superclass##_type5> t; \ } \ if (superclass##_numtypes >= 6) { \ ::fputs("Running " #superclass "." #testname ".6\n", stderr); \ TEST_onetype_##superclass##_##testname<superclass##_type6> t; \ } \ if (superclass##_numtypes >= 7) { \ ::fputs("Running " #superclass "." #testname ".7\n", stderr); \ TEST_onetype_##superclass##_##testname<superclass##_type7> t; \ } \ if (superclass##_numtypes >= 8) { \ ::fputs("Running " #superclass "." #testname ".8\n", stderr); \ TEST_onetype_##superclass##_##testname<superclass##_type8> t; \ } \ if (superclass##_numtypes >= 9) { \ ::fputs("Running " #superclass "." #testname ".9\n", stderr); \ TEST_onetype_##superclass##_##testname<superclass##_type9> t; \ } \ } \ }; \ static TEST_typed_##superclass##_##testname \ test_instance_typed_##superclass##_##testname; \ template<class TypeParam> \ void TEST_onetype_##superclass##_##testname<TypeParam>::Run()
// This is a dummy class just to make converting from internal-google
// to opensourcing easier.
class Test { };
} // namespace testing
SPP_END_NAMESPACE
namespace testing = SPP_NAMESPACE::testing;
using std::cout; using std::pair; using std::set; using std::string; using std::vector;
typedef unsigned char uint8;
#ifdef _MSC_VER
// Below, we purposefully test having a very small allocator size.
// This causes some "type conversion too small" errors when using this
// allocator with sparsetable buckets. We're testing to make sure we
// handle that situation ok, so we don't need the compiler warnings.
#pragma warning(disable:4244)
#define ATTRIBUTE_UNUSED
#else
#define ATTRIBUTE_UNUSED __attribute__((unused))
#endif
namespace {
#ifndef _MSC_VER // windows defines its own version
# ifdef __MINGW32__ // mingw has trouble writing to /tmp
static string TmpFile(const char* basename) { return string("./#") + basename; } # else
static string TmpFile(const char* basename) { string kTmpdir = "/tmp"; return kTmpdir + "/" + basename; } # endif
#endif
// Used as a value in some of the hashtable tests. It's just some
// arbitrary user-defined type with non-trivial memory management.
// ---------------------------------------------------------------
struct ValueType { public: ValueType() : s_(kDefault) { } ValueType(const char* init_s) : s_(kDefault) { set_s(init_s); } ~ValueType() { set_s(NULL); } ValueType(const ValueType& that) : s_(kDefault) { operator=(that); } void operator=(const ValueType& that) { set_s(that.s_); } bool operator==(const ValueType& that) const { return strcmp(this->s(), that.s()) == 0; } void set_s(const char* new_s) { if (s_ != kDefault) free(const_cast<char*>(s_)); s_ = (new_s == NULL ? kDefault : reinterpret_cast<char*>(_strdup(new_s))); } const char* s() const { return s_; } private: const char* s_; static const char* const kDefault; };
const char* const ValueType::kDefault = "hi";
// This is used by the low-level sparse/dense_hashtable classes,
// which support the most general relationship between keys and
// values: the key is derived from the value through some arbitrary
// function. (For classes like sparse_hash_map, the 'value' is a
// key/data pair, and the function to derive the key is
// FirstElementOfPair.) KeyToValue is the inverse of this function,
// so GetKey(KeyToValue(key)) == key. To keep the tests a bit
// simpler, we've chosen to make the key and value actually be the
// same type, which is why we need only one template argument for the
// types, rather than two (one for the key and one for the value).
template<class KeyAndValueT, class KeyToValue> struct SetKey { void operator()(KeyAndValueT* value, const KeyAndValueT& new_key) const { *value = KeyToValue()(new_key); } };
// A hash function that keeps track of how often it's called. We use
// a simple djb-hash so we don't depend on how STL hashes. We use
// this same method to do the key-comparison, so we can keep track
// of comparison-counts too.
struct Hasher { explicit Hasher(int i=0) : id_(i), num_hashes_(0), num_compares_(0) { } int id() const { return id_; } int num_hashes() const { return num_hashes_; } int num_compares() const { return num_compares_; }
size_t operator()(int a) const { num_hashes_++; return static_cast<size_t>(a); } size_t operator()(const char* a) const { num_hashes_++; size_t hash = 0; for (size_t i = 0; a[i]; i++ ) hash = 33 * hash + a[i]; return hash; } size_t operator()(const string& a) const { num_hashes_++; size_t hash = 0; for (size_t i = 0; i < a.length(); i++ ) hash = 33 * hash + a[i]; return hash; } size_t operator()(const int* a) const { num_hashes_++; return static_cast<size_t>(reinterpret_cast<uintptr_t>(a)); } bool operator()(int a, int b) const { num_compares_++; return a == b; } bool operator()(const string& a, const string& b) const { num_compares_++; return a == b; } bool operator()(const char* a, const char* b) const { num_compares_++; // The 'a == b' test is necessary, in case a and b are both NULL.
return (a == b || (a && b && strcmp(a, b) == 0)); }
private: mutable int id_; mutable int num_hashes_; mutable int num_compares_; };
// Allocator that allows controlling its size in various ways, to test
// allocator overflow. Because we use this allocator in a vector, we
// need to define != and swap for gcc.
// ------------------------------------------------------------------
template<typename T, typename SizeT = size_t, SizeT MAX_SIZE = static_cast<SizeT>(~0)> struct Alloc { typedef T value_type; typedef SizeT size_type; typedef ptrdiff_t difference_type; typedef T* pointer; typedef const T* const_pointer; typedef T& reference; typedef const T& const_reference;
explicit Alloc(int i=0, int* count=NULL) : id_(i), count_(count) {} ~Alloc() {} pointer address(reference r) const { return &r; } const_pointer address(const_reference r) const { return &r; } pointer allocate(size_type n, const_pointer = 0) { if (count_) ++(*count_); return static_cast<pointer>(malloc(n * sizeof(value_type))); } void deallocate(pointer p, size_type) { free(p); } pointer reallocate(pointer p, size_type n) { if (count_) ++(*count_); return static_cast<pointer>(realloc(p, n * sizeof(value_type))); } size_type max_size() const { return static_cast<size_type>(MAX_SIZE); } void construct(pointer p, const value_type& val) { new(p) value_type(val); } void destroy(pointer p) { p->~value_type(); }
bool is_custom_alloc() const { return true; }
template <class U> Alloc(const Alloc<U, SizeT, MAX_SIZE>& that) : id_(that.id_), count_(that.count_) { }
template <class U> struct rebind { typedef Alloc<U, SizeT, MAX_SIZE> other; };
bool operator==(const Alloc& that) const { return this->id_ == that.id_ && this->count_ == that.count_; } bool operator!=(const Alloc& that) const { return !this->operator==(that); }
int id() const { return id_; }
// I have to make these public so the constructor used for rebinding
// can see them. Normally, I'd just make them private and say:
// template<typename U, typename U_SizeT, U_SizeT U_MAX_SIZE> friend struct Alloc;
// but MSVC 7.1 barfs on that. So public it is. But no peeking!
public: int id_; int* count_; };
// Below are a few fun routines that convert a value into a key, used
// for dense_hashtable and sparse_hashtable. It's our responsibility
// to make sure, when we insert values into these objects, that the
// values match the keys we insert them under. To allow us to use
// these routines for SetKey as well, we require all these functions
// be their own inverse: f(f(x)) == x.
template<class Value> struct Negation { typedef Value result_type; Value operator()(Value& v) { return -v; } const Value operator()(const Value& v) const { return -v; } };
struct Capital { typedef string result_type; string operator()(string& s) { return string(1, s[0] ^ 32) + s.substr(1); } const string operator()(const string& s) const { return string(1, s[0] ^ 32) + s.substr(1); } };
struct Identity { // lame, I know, but an important case to test.
typedef const char* result_type; const char* operator()(const char* s) const { return s; } };
// This is just to avoid memory leaks -- it's a global pointer to
// all the memory allocated by UniqueObjectHelper. We'll use it
// to semi-test sparsetable as well. :-)
std::vector<char*> g_unique_charstar_objects(16, (char *)0);
// This is an object-generator: pass in an index, and it will return a
// unique object of type ItemType. We provide specializations for the
// types we actually support.
template <typename ItemType> ItemType UniqueObjectHelper(int index); template<> int UniqueObjectHelper(int index) { return index; } template<> string UniqueObjectHelper(int index) { char buffer[64]; snprintf(buffer, sizeof(buffer), "%d", index); return buffer; } template<> char* UniqueObjectHelper(int index) { // First grow the table if need be.
size_t table_size = g_unique_charstar_objects.size(); while (index >= static_cast<int>(table_size)) { assert(table_size * 2 > table_size); // avoid overflow problems
table_size *= 2; } if (table_size > g_unique_charstar_objects.size()) g_unique_charstar_objects.resize(table_size, (char *)0); if (!g_unique_charstar_objects[static_cast<size_t>(index)]) { char buffer[64]; snprintf(buffer, sizeof(buffer), "%d", index); g_unique_charstar_objects[static_cast<size_t>(index)] = _strdup(buffer); } return g_unique_charstar_objects[static_cast<size_t>(index)]; } template<> const char* UniqueObjectHelper(int index) { return UniqueObjectHelper<char*>(index); } template<> ValueType UniqueObjectHelper(int index) { return ValueType(UniqueObjectHelper<string>(index).c_str()); } template<> pair<const int, int> UniqueObjectHelper(int index) { return pair<const int,int>(index, index + 1); } template<> pair<const string, string> UniqueObjectHelper(int index) { return pair<const string,string>( UniqueObjectHelper<string>(index), UniqueObjectHelper<string>(index + 1)); } template<> pair<const char* const,ValueType> UniqueObjectHelper(int index) { return pair<const char* const,ValueType>( UniqueObjectHelper<char*>(index), UniqueObjectHelper<ValueType>(index+1)); }
class ValueSerializer { public: bool operator()(FILE* fp, const int& value) { return fwrite(&value, sizeof(value), 1, fp) == 1; } bool operator()(FILE* fp, int* value) { return fread(value, sizeof(*value), 1, fp) == 1; } bool operator()(FILE* fp, const string& value) { const size_t size = value.size(); return (*this)(fp, (int)size) && fwrite(value.c_str(), size, 1, fp) == 1; } bool operator()(FILE* fp, string* value) { int size; if (!(*this)(fp, &size)) return false; char* buf = new char[(size_t)size]; if (fread(buf, (size_t)size, 1, fp) != 1) { delete[] buf; return false; } new (value) string(buf, (size_t)size); delete[] buf; return true; } template <typename OUTPUT> bool operator()(OUTPUT* fp, const ValueType& v) { return (*this)(fp, string(v.s())); } template <typename INPUT> bool operator()(INPUT* fp, ValueType* v) { string data; if (!(*this)(fp, &data)) return false; new(v) ValueType(data.c_str()); return true; } template <typename OUTPUT> bool operator()(OUTPUT* fp, const char* const& value) { // Just store the index.
return (*this)(fp, atoi(value)); } template <typename INPUT> bool operator()(INPUT* fp, const char** value) { // Look up via index.
int index; if (!(*this)(fp, &index)) return false; *value = UniqueObjectHelper<char*>(index); return true; } template <typename OUTPUT, typename First, typename Second> bool operator()(OUTPUT* fp, std::pair<const First, Second>* value) { return (*this)(fp, const_cast<First*>(&value->first)) && (*this)(fp, &value->second); } template <typename INPUT, typename First, typename Second> bool operator()(INPUT* fp, const std::pair<const First, Second>& value) { return (*this)(fp, value.first) && (*this)(fp, value.second); } };
template <typename HashtableType> class HashtableTest : public ::testing::Test { public: HashtableTest() : ht_() { } // Give syntactically-prettier access to UniqueObjectHelper.
typename HashtableType::value_type UniqueObject(int index) { return UniqueObjectHelper<typename HashtableType::value_type>(index); } typename HashtableType::key_type UniqueKey(int index) { return this->ht_.get_key(this->UniqueObject(index)); } protected: HashtableType ht_; };
}
// These are used to specify the empty key and deleted key in some
// contexts. They can't be in the unnamed namespace, or static,
// because the template code requires external linkage.
extern const string kEmptyString("--empty string--"); extern const string kDeletedString("--deleted string--"); extern const int kEmptyInt = 0; extern const int kDeletedInt = -1234676543; // an unlikely-to-pick int
extern const char* const kEmptyCharStar = "--empty char*--"; extern const char* const kDeletedCharStar = "--deleted char*--";
namespace {
#define INT_HASHTABLES \
HashtableInterface_SparseHashMap<int, int, Hasher, Hasher, \ Alloc<int> >, \ HashtableInterface_SparseHashSet<int, Hasher, Hasher, \ Alloc<int> >, \ /* This is a table where the key associated with a value is -value */ \ HashtableInterface_SparseHashtable<int, int, Hasher, Negation<int>, \ SetKey<int, Negation<int> >, \ Hasher, Alloc<int> >
#define STRING_HASHTABLES \
HashtableInterface_SparseHashMap<string, string, Hasher, Hasher, \ Alloc<string> >, \ HashtableInterface_SparseHashSet<string, Hasher, Hasher, \ Alloc<string> >, \ /* This is a table where the key associated with a value is Cap(value) */ \ HashtableInterface_SparseHashtable<string, string, Hasher, Capital, \ SetKey<string, Capital>, \ Hasher, Alloc<string> >
// ---------------------------------------------------------------------
// I'd like to use ValueType keys for SparseHashtable<> and
// DenseHashtable<> but I can't due to memory-management woes (nobody
// really owns the char* involved). So instead I do something simpler.
// ---------------------------------------------------------------------
#define CHARSTAR_HASHTABLES \
HashtableInterface_SparseHashMap<const char*, ValueType, \ Hasher, Hasher, Alloc<const char*> >, \ HashtableInterface_SparseHashSet<const char*, Hasher, Hasher, \ Alloc<const char*> >, \ HashtableInterface_SparseHashtable<const char*, const char*, \ Hasher, Identity, \ SetKey<const char*, Identity>, \ Hasher, Alloc<const char*> >
// ---------------------------------------------------------------------
// This is the list of types we run each test against.
// We need to define the same class 4 times due to limitations in the
// testing framework. Basically, we associate each class below with
// the set of types we want to run tests on it with.
// ---------------------------------------------------------------------
template <typename HashtableType> class HashtableIntTest : public HashtableTest<HashtableType> { };
template <typename HashtableType> class HashtableStringTest : public HashtableTest<HashtableType> { };
template <typename HashtableType> class HashtableCharStarTest : public HashtableTest<HashtableType> { };
template <typename HashtableType> class HashtableAllTest : public HashtableTest<HashtableType> { };
typedef testing::TypeList3<INT_HASHTABLES> IntHashtables; typedef testing::TypeList3<STRING_HASHTABLES> StringHashtables; typedef testing::TypeList3<CHARSTAR_HASHTABLES> CharStarHashtables; typedef testing::TypeList9<INT_HASHTABLES, STRING_HASHTABLES, CHARSTAR_HASHTABLES> AllHashtables;
TYPED_TEST_CASE_3(HashtableIntTest, IntHashtables); TYPED_TEST_CASE_3(HashtableStringTest, StringHashtables); TYPED_TEST_CASE_3(HashtableCharStarTest, CharStarHashtables); TYPED_TEST_CASE_9(HashtableAllTest, AllHashtables);
// ------------------------------------------------------------------------
// First, some testing of the underlying infrastructure.
#if 0
TEST(HashtableCommonTest, HashMunging) { const Hasher hasher;
// We don't munge the hash value on non-pointer template types.
{ const sparsehash_internal::sh_hashtable_settings<int, Hasher, size_t, 1> settings(hasher, 0.0, 0.0); const int v = 1000; EXPECT_EQ(hasher(v), settings.hash(v)); }
{ // We do munge the hash value on pointer template types.
const sparsehash_internal::sh_hashtable_settings<int*, Hasher, size_t, 1> settings(hasher, 0.0, 0.0); int* v = NULL; v += 0x10000; // get a non-trivial pointer value
EXPECT_NE(hasher(v), settings.hash(v)); } { const sparsehash_internal::sh_hashtable_settings<const int*, Hasher, size_t, 1> settings(hasher, 0.0, 0.0); const int* v = NULL; v += 0x10000; // get a non-trivial pointer value
EXPECT_NE(hasher(v), settings.hash(v)); } }
#endif
// ------------------------------------------------------------------------
// If the first arg to TYPED_TEST is HashtableIntTest, it will run
// this test on all the hashtable types, with key=int and value=int.
// Likewise, HashtableStringTest will have string key/values, and
// HashtableCharStarTest will have char* keys and -- just to mix it up
// a little -- ValueType values. HashtableAllTest will run all three
// key/value types on all 6 hashtables types, for 9 test-runs total
// per test.
//
// In addition, TYPED_TEST makes available the magic keyword
// TypeParam, which is the type being used for the current test.
// This first set of tests just tests the public API, going through
// the public typedefs and methods in turn. It goes approximately
// in the definition-order in sparse_hash_map.h.
// ------------------------------------------------------------------------
TYPED_TEST(HashtableIntTest, Typedefs) { // Make sure all the standard STL-y typedefs are defined. The exact
// key/value types don't matter here, so we only bother testing on
// the int tables. This is just a compile-time "test"; nothing here
// can fail at runtime.
this->ht_.set_deleted_key(-2); // just so deleted_key succeeds
typename TypeParam::key_type kt; typename TypeParam::value_type vt; typename TypeParam::hasher h; typename TypeParam::key_equal ke; typename TypeParam::allocator_type at;
typename TypeParam::size_type st; typename TypeParam::difference_type dt; typename TypeParam::pointer p; typename TypeParam::const_pointer cp; // I can't declare variables of reference-type, since I have nothing
// to point them to, so I just make sure that these types exist.
ATTRIBUTE_UNUSED typedef typename TypeParam::reference r; ATTRIBUTE_UNUSED typedef typename TypeParam::const_reference cf;
typename TypeParam::iterator i; typename TypeParam::const_iterator ci; typename TypeParam::local_iterator li; typename TypeParam::const_local_iterator cli;
// Now make sure the variables are used, so the compiler doesn't
// complain. Where possible, I "use" the variable by calling the
// method that's supposed to return the unique instance of the
// relevant type (eg. get_allocator()). Otherwise, I try to call a
// different, arbitrary function that returns the type. Sometimes
// the type isn't used at all, and there's no good way to use the
// variable.
kt = this->ht_.deleted_key(); (void)vt; // value_type may not be copyable. Easiest not to try.
h = this->ht_.hash_funct(); ke = this->ht_.key_eq(); at = this->ht_.get_allocator(); st = this->ht_.size(); (void)dt; (void)p; (void)cp; (void)kt; (void)st; i = this->ht_.begin(); ci = this->ht_.begin(); li = this->ht_.begin(0); cli = this->ht_.begin(0); }
TYPED_TEST(HashtableAllTest, NormalIterators) { EXPECT_TRUE(this->ht_.begin() == this->ht_.end()); this->ht_.insert(this->UniqueObject(1)); { typename TypeParam::iterator it = this->ht_.begin(); EXPECT_TRUE(it != this->ht_.end()); ++it; EXPECT_TRUE(it == this->ht_.end()); } }
#if !defined(SPP_NO_CXX11_VARIADIC_TEMPLATES)
template <class T> struct MyHash; typedef std::pair<std::string, std::string> StringPair;
template<> struct MyHash<StringPair> { size_t operator()(StringPair const& p) const { return std::hash<string>()(p.first); } };
class MovableOnlyType { std::string _str; std::uint64_t _int;
public: // Make object movable and non-copyable
MovableOnlyType(MovableOnlyType &&) = default; MovableOnlyType(const MovableOnlyType &) = delete; MovableOnlyType& operator=(MovableOnlyType &&) = default; MovableOnlyType& operator=(const MovableOnlyType &) = delete; MovableOnlyType() : _str("whatever"), _int(2) {} };
void movable_emplace_test(std::size_t iterations, int container_size) { for (std::size_t i=0;i<iterations;++i) { spp::sparse_hash_map<std::string,MovableOnlyType> m; m.reserve(static_cast<size_t>(container_size)); char buff[20]; for (int j=0; j<container_size; ++j) { sprintf(buff, "%d", j); m.emplace(buff, MovableOnlyType()); } } }
TEST(HashtableTest, Emplace) { { sparse_hash_map<std::string, std::string> mymap;
mymap.emplace ("NCC-1701", "J.T. Kirk"); mymap.emplace ("NCC-1701-D", "J.L. Picard"); mymap.emplace ("NCC-74656", "K. Janeway"); EXPECT_TRUE(mymap["NCC-74656"] == std::string("K. Janeway"));
sparse_hash_set<StringPair, MyHash<StringPair> > myset; myset.emplace ("NCC-1701", "J.T. Kirk"); } movable_emplace_test(10, 50); } #endif
#if !defined(SPP_NO_CXX11_VARIADIC_TEMPLATES)
TEST(HashtableTest, IncompleteTypes) { int i; sparse_hash_map<int *, int> ht2; ht2[&i] = 3;
struct Bogus; sparse_hash_map<Bogus *, int> ht3; ht3[(Bogus *)0] = 8; } #endif
#if !defined(SPP_NO_CXX11_VARIADIC_TEMPLATES)
TEST(HashtableTest, ReferenceWrapper) { sparse_hash_map<int, std::reference_wrapper<int>> x; int a = 5; x.insert(std::make_pair(3, std::ref(a))); EXPECT_EQ(x.at(3), 5); } #endif
TEST(HashtableTest, ModifyViaIterator) { // This only works for hash-maps, since only they have non-const values.
{ sparse_hash_map<int, int> ht; ht[1] = 2; sparse_hash_map<int, int>::iterator it = ht.find(1); EXPECT_TRUE(it != ht.end()); EXPECT_EQ(1, it->first); EXPECT_EQ(2, it->second); it->second = 5; it = ht.find(1); EXPECT_TRUE(it != ht.end()); EXPECT_EQ(5, it->second); } }
TYPED_TEST(HashtableAllTest, ConstIterators) { this->ht_.insert(this->UniqueObject(1)); typename TypeParam::const_iterator it = this->ht_.begin(); EXPECT_TRUE(it != (typename TypeParam::const_iterator)this->ht_.end()); ++it; EXPECT_TRUE(it == (typename TypeParam::const_iterator)this->ht_.end()); }
TYPED_TEST(HashtableAllTest, LocalIterators) { // Now, tr1 begin/end (the local iterator that takes a bucket-number).
// ht::bucket() returns the bucket that this key would be inserted in.
this->ht_.insert(this->UniqueObject(1)); const typename TypeParam::size_type bucknum = this->ht_.bucket(this->UniqueKey(1)); typename TypeParam::local_iterator b = this->ht_.begin(bucknum); typename TypeParam::local_iterator e = this->ht_.end(bucknum); EXPECT_TRUE(b != e); b++; EXPECT_TRUE(b == e);
// Check an empty bucket. We can just xor the bottom bit and be sure
// of getting a legal bucket, since #buckets is always a power of 2.
EXPECT_TRUE(this->ht_.begin(bucknum ^ 1) == this->ht_.end(bucknum ^ 1)); // Another test, this time making sure we're using the right types.
typename TypeParam::local_iterator b2 = this->ht_.begin(bucknum ^ 1); typename TypeParam::local_iterator e2 = this->ht_.end(bucknum ^ 1); EXPECT_TRUE(b2 == e2); }
TYPED_TEST(HashtableAllTest, ConstLocalIterators) { this->ht_.insert(this->UniqueObject(1)); const typename TypeParam::size_type bucknum = this->ht_.bucket(this->UniqueKey(1)); typename TypeParam::const_local_iterator b = this->ht_.begin(bucknum); typename TypeParam::const_local_iterator e = this->ht_.end(bucknum); EXPECT_TRUE(b != e); b++; EXPECT_TRUE(b == e); typename TypeParam::const_local_iterator b2 = this->ht_.begin(bucknum ^ 1); typename TypeParam::const_local_iterator e2 = this->ht_.end(bucknum ^ 1); EXPECT_TRUE(b2 == e2); }
TYPED_TEST(HashtableAllTest, Iterating) { // Test a bit more iterating than just one ++.
this->ht_.insert(this->UniqueObject(1)); this->ht_.insert(this->UniqueObject(11)); this->ht_.insert(this->UniqueObject(111)); this->ht_.insert(this->UniqueObject(1111)); this->ht_.insert(this->UniqueObject(11111)); this->ht_.insert(this->UniqueObject(111111)); this->ht_.insert(this->UniqueObject(1111111)); this->ht_.insert(this->UniqueObject(11111111)); this->ht_.insert(this->UniqueObject(111111111)); typename TypeParam::iterator it = this->ht_.begin(); for (int i = 1; i <= 9; i++) { // start at 1 so i is never 0
// && here makes it easier to tell what loop iteration the test failed on.
EXPECT_TRUE(i && (it++ != this->ht_.end())); } EXPECT_TRUE(it == this->ht_.end()); }
TYPED_TEST(HashtableIntTest, Constructors) { // The key/value types don't matter here, so I just test on one set
// of tables, the ones with int keys, which can easily handle the
// placement-news we have to do below.
Hasher hasher(1); // 1 is a unique id
int alloc_count = 0; Alloc<typename TypeParam::key_type> alloc(2, &alloc_count);
TypeParam ht_noarg; TypeParam ht_onearg(100); TypeParam ht_twoarg(100, hasher); TypeParam ht_threearg(100, hasher, hasher); // hasher serves as key_equal too
TypeParam ht_fourarg(100, hasher, hasher, alloc);
// The allocator should have been called at most once, for the last ht.
EXPECT_GE(1, alloc_count); int old_alloc_count = alloc_count;
const typename TypeParam::value_type input[] = { this->UniqueObject(1), this->UniqueObject(2), this->UniqueObject(4), this->UniqueObject(8) }; const int num_inputs = sizeof(input) / sizeof(input[0]); const typename TypeParam::value_type *begin = &input[0]; const typename TypeParam::value_type *end = begin + num_inputs; TypeParam ht_iter_noarg(begin, end); TypeParam ht_iter_onearg(begin, end, 100); TypeParam ht_iter_twoarg(begin, end, 100, hasher); TypeParam ht_iter_threearg(begin, end, 100, hasher, hasher); TypeParam ht_iter_fourarg(begin, end, 100, hasher, hasher, alloc); // Now the allocator should have been called more.
EXPECT_GT(alloc_count, old_alloc_count); old_alloc_count = alloc_count;
// Let's do a lot more inserting and make sure the alloc-count goes up
for (int i = 2; i < 2000; i++) ht_fourarg.insert(this->UniqueObject(i)); EXPECT_GT(alloc_count, old_alloc_count);
EXPECT_LT(ht_noarg.bucket_count(), 100u); EXPECT_GE(ht_onearg.bucket_count(), 100u); EXPECT_GE(ht_twoarg.bucket_count(), 100u); EXPECT_GE(ht_threearg.bucket_count(), 100u); EXPECT_GE(ht_fourarg.bucket_count(), 100u); EXPECT_GE(ht_iter_onearg.bucket_count(), 100u);
// When we pass in a hasher -- it can serve both as the hash-function
// and the key-equal function -- its id should be 1. Where we don't
// pass it in and use the default Hasher object, the id should be 0.
EXPECT_EQ(0, ht_noarg.hash_funct().id()); EXPECT_EQ(0, ht_noarg.key_eq().id()); EXPECT_EQ(0, ht_onearg.hash_funct().id()); EXPECT_EQ(0, ht_onearg.key_eq().id()); EXPECT_EQ(1, ht_twoarg.hash_funct().id()); EXPECT_EQ(0, ht_twoarg.key_eq().id()); EXPECT_EQ(1, ht_threearg.hash_funct().id()); EXPECT_EQ(1, ht_threearg.key_eq().id());
EXPECT_EQ(0, ht_iter_noarg.hash_funct().id()); EXPECT_EQ(0, ht_iter_noarg.key_eq().id()); EXPECT_EQ(0, ht_iter_onearg.hash_funct().id()); EXPECT_EQ(0, ht_iter_onearg.key_eq().id()); EXPECT_EQ(1, ht_iter_twoarg.hash_funct().id()); EXPECT_EQ(0, ht_iter_twoarg.key_eq().id()); EXPECT_EQ(1, ht_iter_threearg.hash_funct().id()); EXPECT_EQ(1, ht_iter_threearg.key_eq().id());
// Likewise for the allocator
EXPECT_EQ(0, ht_threearg.get_allocator().id()); EXPECT_EQ(0, ht_iter_threearg.get_allocator().id()); EXPECT_EQ(2, ht_fourarg.get_allocator().id()); EXPECT_EQ(2, ht_iter_fourarg.get_allocator().id()); }
TYPED_TEST(HashtableAllTest, OperatorEquals) { { TypeParam ht1, ht2; ht1.set_deleted_key(this->UniqueKey(1)); ht2.set_deleted_key(this->UniqueKey(2));
ht1.insert(this->UniqueObject(10)); ht2.insert(this->UniqueObject(20)); EXPECT_FALSE(ht1 == ht2); ht1 = ht2; EXPECT_TRUE(ht1 == ht2); } { TypeParam ht1, ht2; ht1.insert(this->UniqueObject(30)); ht1 = ht2; EXPECT_EQ(0u, ht1.size()); } { TypeParam ht1, ht2; ht1.set_deleted_key(this->UniqueKey(1)); ht2.insert(this->UniqueObject(1)); // has same key as ht1.delkey
ht1 = ht2; // should reset deleted-key to 'unset'
EXPECT_EQ(1u, ht1.size()); EXPECT_EQ(1u, ht1.count(this->UniqueKey(1))); } }
TYPED_TEST(HashtableAllTest, Clear) { for (int i = 1; i < 200; i++) { this->ht_.insert(this->UniqueObject(i)); } this->ht_.clear(); EXPECT_EQ(0u, this->ht_.size()); // TODO(csilvers): do we want to enforce that the hashtable has or
// has not shrunk? It does for dense_* but not sparse_*.
}
TYPED_TEST(HashtableAllTest, ClearNoResize) { if (!this->ht_.supports_clear_no_resize()) return; typename TypeParam::size_type empty_bucket_count = this->ht_.bucket_count(); int last_element = 1; while (this->ht_.bucket_count() == empty_bucket_count) { this->ht_.insert(this->UniqueObject(last_element)); ++last_element; } typename TypeParam::size_type last_bucket_count = this->ht_.bucket_count(); this->ht_.clear_no_resize(); EXPECT_EQ(last_bucket_count, this->ht_.bucket_count()); EXPECT_TRUE(this->ht_.empty());
// When inserting the same number of elements again, no resize
// should be necessary.
for (int i = 1; i < last_element; ++i) { this->ht_.insert(this->UniqueObject(last_element + i)); EXPECT_EQ(last_bucket_count, this->ht_.bucket_count()); } }
TYPED_TEST(HashtableAllTest, Swap) { // Let's make a second hashtable with its own hasher, key_equal, etc.
Hasher hasher(1); // 1 is a unique id
TypeParam other_ht(200, hasher, hasher);
this->ht_.set_deleted_key(this->UniqueKey(1)); other_ht.set_deleted_key(this->UniqueKey(2));
for (int i = 3; i < 2000; i++) { this->ht_.insert(this->UniqueObject(i)); } this->ht_.erase(this->UniqueKey(1000)); other_ht.insert(this->UniqueObject(2001)); typename TypeParam::size_type expected_buckets = other_ht.bucket_count();
this->ht_.swap(other_ht);
EXPECT_EQ(this->UniqueKey(2), this->ht_.deleted_key()); EXPECT_EQ(this->UniqueKey(1), other_ht.deleted_key());
EXPECT_EQ(1, this->ht_.hash_funct().id()); EXPECT_EQ(0, other_ht.hash_funct().id());
EXPECT_EQ(1, this->ht_.key_eq().id()); EXPECT_EQ(0, other_ht.key_eq().id());
EXPECT_EQ(expected_buckets, this->ht_.bucket_count()); EXPECT_GT(other_ht.bucket_count(), 200u);
EXPECT_EQ(1u, this->ht_.size()); EXPECT_EQ(1996u, other_ht.size()); // because we erased 1000
EXPECT_EQ(0u, this->ht_.count(this->UniqueKey(111))); EXPECT_EQ(1u, other_ht.count(this->UniqueKey(111))); EXPECT_EQ(1u, this->ht_.count(this->UniqueKey(2001))); EXPECT_EQ(0u, other_ht.count(this->UniqueKey(2001))); EXPECT_EQ(0u, this->ht_.count(this->UniqueKey(1000))); EXPECT_EQ(0u, other_ht.count(this->UniqueKey(1000)));
// We purposefully don't swap allocs -- they're not necessarily swappable.
// Now swap back, using the free-function swap
// NOTE: MSVC seems to have trouble with this free swap, not quite
// sure why. I've given up trying to fix it though.
#ifdef _MSC_VER
other_ht.swap(this->ht_); #else
std::swap(this->ht_, other_ht); #endif
EXPECT_EQ(this->UniqueKey(1), this->ht_.deleted_key()); EXPECT_EQ(this->UniqueKey(2), other_ht.deleted_key()); EXPECT_EQ(0, this->ht_.hash_funct().id()); EXPECT_EQ(1, other_ht.hash_funct().id()); EXPECT_EQ(1996u, this->ht_.size()); EXPECT_EQ(1u, other_ht.size()); EXPECT_EQ(1u, this->ht_.count(this->UniqueKey(111))); EXPECT_EQ(0u, other_ht.count(this->UniqueKey(111)));
// A user reported a crash with this code using swap to clear.
// We've since fixed the bug; this prevents a regression.
TypeParam swap_to_clear_ht; swap_to_clear_ht.set_deleted_key(this->UniqueKey(1)); for (int i = 2; i < 10000; ++i) { swap_to_clear_ht.insert(this->UniqueObject(i)); } TypeParam empty_ht; empty_ht.swap(swap_to_clear_ht); swap_to_clear_ht.set_deleted_key(this->UniqueKey(1)); for (int i = 2; i < 10000; ++i) { swap_to_clear_ht.insert(this->UniqueObject(i)); } }
TYPED_TEST(HashtableAllTest, Size) { EXPECT_EQ(0u, this->ht_.size()); for (int i = 1; i < 1000; i++) { // go through some resizes
this->ht_.insert(this->UniqueObject(i)); EXPECT_EQ(static_cast<typename TypeParam::size_type>(i), this->ht_.size()); } this->ht_.clear(); EXPECT_EQ(0u, this->ht_.size());
this->ht_.set_deleted_key(this->UniqueKey(1)); EXPECT_EQ(0u, this->ht_.size()); // deleted key doesn't count
for (int i = 2; i < 1000; i++) { // go through some resizes
this->ht_.insert(this->UniqueObject(i)); this->ht_.erase(this->UniqueKey(i)); EXPECT_EQ(0u, this->ht_.size()); } }
TEST(HashtableTest, MaxSizeAndMaxBucketCount) { // The max size depends on the allocator. So we can't use the
// built-in allocator type; instead, we make our own types.
sparse_hash_set<int, Hasher, Hasher, Alloc<int> > ht_default; sparse_hash_set<int, Hasher, Hasher, Alloc<int, unsigned char> > ht_char; sparse_hash_set<int, Hasher, Hasher, Alloc<int, unsigned char, 104> > ht_104;
EXPECT_GE(ht_default.max_size(), 256u); EXPECT_EQ(255u, ht_char.max_size()); EXPECT_EQ(104u, ht_104.max_size());
// In our implementations, MaxBucketCount == MaxSize.
EXPECT_EQ(ht_default.max_size(), ht_default.max_bucket_count()); EXPECT_EQ(ht_char.max_size(), ht_char.max_bucket_count()); EXPECT_EQ(ht_104.max_size(), ht_104.max_bucket_count()); }
TYPED_TEST(HashtableAllTest, Empty) { EXPECT_TRUE(this->ht_.empty());
this->ht_.insert(this->UniqueObject(1)); EXPECT_FALSE(this->ht_.empty());
this->ht_.clear(); EXPECT_TRUE(this->ht_.empty());
TypeParam empty_ht; this->ht_.insert(this->UniqueObject(1)); this->ht_.swap(empty_ht); EXPECT_TRUE(this->ht_.empty()); }
TYPED_TEST(HashtableAllTest, BucketCount) { TypeParam ht(100); // constructor arg is number of *items* to be inserted, not the
// number of buckets, so we expect more buckets.
EXPECT_GT(ht.bucket_count(), 100u); for (int i = 1; i < 200; i++) { ht.insert(this->UniqueObject(i)); } EXPECT_GT(ht.bucket_count(), 200u); }
TYPED_TEST(HashtableAllTest, BucketAndBucketSize) { const typename TypeParam::size_type expected_bucknum = this->ht_.bucket( this->UniqueKey(1)); EXPECT_EQ(0u, this->ht_.bucket_size(expected_bucknum));
this->ht_.insert(this->UniqueObject(1)); EXPECT_EQ(expected_bucknum, this->ht_.bucket(this->UniqueKey(1))); EXPECT_EQ(1u, this->ht_.bucket_size(expected_bucknum));
// Check that a bucket we didn't insert into, has a 0 size. Since
// we have an even number of buckets, bucknum^1 is guaranteed in range.
EXPECT_EQ(0u, this->ht_.bucket_size(expected_bucknum ^ 1)); }
TYPED_TEST(HashtableAllTest, LoadFactor) { const typename TypeParam::size_type kSize = 16536; // Check growing past various thresholds and then shrinking below
// them.
for (float grow_threshold = 0.2f; grow_threshold <= 0.8f; grow_threshold += 0.2f) { TypeParam ht; ht.set_deleted_key(this->UniqueKey(1)); ht.max_load_factor(grow_threshold); ht.min_load_factor(0.0); EXPECT_EQ(grow_threshold, ht.max_load_factor()); EXPECT_EQ(0.0, ht.min_load_factor());
ht.resize(kSize); size_t bucket_count = ht.bucket_count(); // Erase and insert an element to set consider_shrink = true,
// which should not cause a shrink because the threshold is 0.0.
ht.insert(this->UniqueObject(2)); ht.erase(this->UniqueKey(2)); for (int i = 2;; ++i) { ht.insert(this->UniqueObject(i)); if (static_cast<float>(ht.size())/bucket_count < grow_threshold) { EXPECT_EQ(bucket_count, ht.bucket_count()); } else { EXPECT_GT(ht.bucket_count(), bucket_count); break; } } // Now set a shrink threshold 1% below the current size and remove
// items until the size falls below that.
const float shrink_threshold = static_cast<float>(ht.size()) / ht.bucket_count() - 0.01f;
// This time around, check the old set_resizing_parameters interface.
ht.set_resizing_parameters(shrink_threshold, 1.0); EXPECT_EQ(1.0, ht.max_load_factor()); EXPECT_EQ(shrink_threshold, ht.min_load_factor());
bucket_count = ht.bucket_count(); for (int i = 2;; ++i) { ht.erase(this->UniqueKey(i)); // A resize is only triggered by an insert, so add and remove a
// value every iteration to trigger the shrink as soon as the
// threshold is passed.
ht.erase(this->UniqueKey(i+1)); ht.insert(this->UniqueObject(i+1)); if (static_cast<float>(ht.size())/bucket_count > shrink_threshold) { EXPECT_EQ(bucket_count, ht.bucket_count()); } else { EXPECT_LT(ht.bucket_count(), bucket_count); break; } } } }
TYPED_TEST(HashtableAllTest, ResizeAndRehash) { // resize() and rehash() are synonyms. rehash() is the tr1 name.
TypeParam ht(10000); ht.max_load_factor(0.8f); // for consistency's sake
for (int i = 1; i < 100; ++i) ht.insert(this->UniqueObject(i)); ht.resize(0); // Now ht should be as small as possible.
EXPECT_LT(ht.bucket_count(), 300u);
ht.rehash(9000); // use the 'rehash' version of the name.
// Bucket count should be next power of 2, after considering max_load_factor.
EXPECT_EQ(16384u, ht.bucket_count()); for (int i = 101; i < 200; ++i) ht.insert(this->UniqueObject(i)); // Adding a few hundred buckets shouldn't have caused a resize yet.
EXPECT_EQ(ht.bucket_count(), 16384u); }
TYPED_TEST(HashtableAllTest, FindAndCountAndEqualRange) { pair<typename TypeParam::iterator, typename TypeParam::iterator> eq_pair; pair<typename TypeParam::const_iterator, typename TypeParam::const_iterator> const_eq_pair;
EXPECT_TRUE(this->ht_.empty()); EXPECT_TRUE(this->ht_.find(this->UniqueKey(1)) == this->ht_.end()); EXPECT_EQ(0u, this->ht_.count(this->UniqueKey(1))); eq_pair = this->ht_.equal_range(this->UniqueKey(1)); EXPECT_TRUE(eq_pair.first == eq_pair.second);
this->ht_.insert(this->UniqueObject(1)); EXPECT_FALSE(this->ht_.empty()); this->ht_.insert(this->UniqueObject(11)); this->ht_.insert(this->UniqueObject(111)); this->ht_.insert(this->UniqueObject(1111)); this->ht_.insert(this->UniqueObject(11111)); this->ht_.insert(this->UniqueObject(111111)); this->ht_.insert(this->UniqueObject(1111111)); this->ht_.insert(this->UniqueObject(11111111)); this->ht_.insert(this->UniqueObject(111111111)); EXPECT_EQ(9u, this->ht_.size()); typename TypeParam::const_iterator it = this->ht_.find(this->UniqueKey(1)); EXPECT_EQ(it.key(), this->UniqueKey(1));
// Allow testing the const version of the methods as well.
const TypeParam ht = this->ht_;
// Some successful lookups (via find, count, and equal_range).
EXPECT_TRUE(this->ht_.find(this->UniqueKey(1)) != this->ht_.end()); EXPECT_EQ(1u, this->ht_.count(this->UniqueKey(1))); eq_pair = this->ht_.equal_range(this->UniqueKey(1)); EXPECT_TRUE(eq_pair.first != eq_pair.second); EXPECT_EQ(eq_pair.first.key(), this->UniqueKey(1)); ++eq_pair.first; EXPECT_TRUE(eq_pair.first == eq_pair.second);
EXPECT_TRUE(ht.find(this->UniqueKey(1)) != ht.end()); EXPECT_EQ(1u, ht.count(this->UniqueKey(1))); const_eq_pair = ht.equal_range(this->UniqueKey(1)); EXPECT_TRUE(const_eq_pair.first != const_eq_pair.second); EXPECT_EQ(const_eq_pair.first.key(), this->UniqueKey(1)); ++const_eq_pair.first; EXPECT_TRUE(const_eq_pair.first == const_eq_pair.second);
EXPECT_TRUE(this->ht_.find(this->UniqueKey(11111)) != this->ht_.end()); EXPECT_EQ(1u, this->ht_.count(this->UniqueKey(11111))); eq_pair = this->ht_.equal_range(this->UniqueKey(11111)); EXPECT_TRUE(eq_pair.first != eq_pair.second); EXPECT_EQ(eq_pair.first.key(), this->UniqueKey(11111)); ++eq_pair.first; EXPECT_TRUE(eq_pair.first == eq_pair.second);
EXPECT_TRUE(ht.find(this->UniqueKey(11111)) != ht.end()); EXPECT_EQ(1u, ht.count(this->UniqueKey(11111))); const_eq_pair = ht.equal_range(this->UniqueKey(11111)); EXPECT_TRUE(const_eq_pair.first != const_eq_pair.second); EXPECT_EQ(const_eq_pair.first.key(), this->UniqueKey(11111)); ++const_eq_pair.first; EXPECT_TRUE(const_eq_pair.first == const_eq_pair.second);
// Some unsuccessful lookups (via find, count, and equal_range).
EXPECT_TRUE(this->ht_.find(this->UniqueKey(11112)) == this->ht_.end()); EXPECT_EQ(0u, this->ht_.count(this->UniqueKey(11112))); eq_pair = this->ht_.equal_range(this->UniqueKey(11112)); EXPECT_TRUE(eq_pair.first == eq_pair.second);
EXPECT_TRUE(ht.find(this->UniqueKey(11112)) == ht.end()); EXPECT_EQ(0u, ht.count(this->UniqueKey(11112))); const_eq_pair = ht.equal_range(this->UniqueKey(11112)); EXPECT_TRUE(const_eq_pair.first == const_eq_pair.second);
EXPECT_TRUE(this->ht_.find(this->UniqueKey(11110)) == this->ht_.end()); EXPECT_EQ(0u, this->ht_.count(this->UniqueKey(11110))); eq_pair = this->ht_.equal_range(this->UniqueKey(11110)); EXPECT_TRUE(eq_pair.first == eq_pair.second);
EXPECT_TRUE(ht.find(this->UniqueKey(11110)) == ht.end()); EXPECT_EQ(0u, ht.count(this->UniqueKey(11110))); const_eq_pair = ht.equal_range(this->UniqueKey(11110)); EXPECT_TRUE(const_eq_pair.first == const_eq_pair.second); }
TYPED_TEST(HashtableAllTest, BracketInsert) { // tests operator[], for those types that support it.
if (!this->ht_.supports_brackets()) return;
// bracket_equal is equivalent to ht_[a] == b. It should insert a if
// it doesn't already exist.
EXPECT_TRUE(this->ht_.bracket_equal(this->UniqueKey(1), this->ht_.default_data())); EXPECT_TRUE(this->ht_.find(this->UniqueKey(1)) != this->ht_.end());
// bracket_assign is equivalent to ht_[a] = b.
this->ht_.bracket_assign(this->UniqueKey(2), this->ht_.get_data(this->UniqueObject(4))); EXPECT_TRUE(this->ht_.find(this->UniqueKey(2)) != this->ht_.end()); EXPECT_TRUE(this->ht_.bracket_equal( this->UniqueKey(2), this->ht_.get_data(this->UniqueObject(4))));
this->ht_.bracket_assign( this->UniqueKey(2), this->ht_.get_data(this->UniqueObject(6))); EXPECT_TRUE(this->ht_.bracket_equal( this->UniqueKey(2), this->ht_.get_data(this->UniqueObject(6)))); // bracket_equal shouldn't have modified the value.
EXPECT_TRUE(this->ht_.bracket_equal( this->UniqueKey(2), this->ht_.get_data(this->UniqueObject(6))));
// Verify that an operator[] that doesn't cause a resize, also
// doesn't require an extra rehash.
TypeParam ht(100); EXPECT_EQ(0, ht.hash_funct().num_hashes()); ht.bracket_assign(this->UniqueKey(2), ht.get_data(this->UniqueObject(2))); EXPECT_EQ(1, ht.hash_funct().num_hashes());
// And overwriting, likewise, should only cause one extra hash.
ht.bracket_assign(this->UniqueKey(2), ht.get_data(this->UniqueObject(2))); EXPECT_EQ(2, ht.hash_funct().num_hashes()); }
TYPED_TEST(HashtableAllTest, InsertValue) { // First, try some straightforward insertions.
EXPECT_TRUE(this->ht_.empty()); this->ht_.insert(this->UniqueObject(1)); EXPECT_FALSE(this->ht_.empty()); this->ht_.insert(this->UniqueObject(11)); this->ht_.insert(this->UniqueObject(111)); this->ht_.insert(this->UniqueObject(1111)); this->ht_.insert(this->UniqueObject(11111)); this->ht_.insert(this->UniqueObject(111111)); this->ht_.insert(this->UniqueObject(1111111)); this->ht_.insert(this->UniqueObject(11111111)); this->ht_.insert(this->UniqueObject(111111111)); EXPECT_EQ(9u, this->ht_.size()); EXPECT_EQ(1u, this->ht_.count(this->UniqueKey(1))); EXPECT_EQ(1u, this->ht_.count(this->UniqueKey(1111)));
// Check the return type.
pair<typename TypeParam::iterator, bool> insert_it; insert_it = this->ht_.insert(this->UniqueObject(1)); EXPECT_EQ(false, insert_it.second); // false: already present
EXPECT_TRUE(*insert_it.first == this->UniqueObject(1));
insert_it = this->ht_.insert(this->UniqueObject(2)); EXPECT_EQ(true, insert_it.second); // true: not already present
EXPECT_TRUE(*insert_it.first == this->UniqueObject(2)); }
TYPED_TEST(HashtableIntTest, InsertRange) { // We just test the ints here, to make the placement-new easier.
TypeParam ht_source; ht_source.insert(this->UniqueObject(10)); ht_source.insert(this->UniqueObject(100)); ht_source.insert(this->UniqueObject(1000)); ht_source.insert(this->UniqueObject(10000)); ht_source.insert(this->UniqueObject(100000)); ht_source.insert(this->UniqueObject(1000000));
const typename TypeParam::value_type input[] = { // This is a copy of the first element in ht_source.
*ht_source.begin(), this->UniqueObject(2), this->UniqueObject(4), this->UniqueObject(8) };
set<typename TypeParam::value_type> set_input; set_input.insert(this->UniqueObject(1111111)); set_input.insert(this->UniqueObject(111111)); set_input.insert(this->UniqueObject(11111)); set_input.insert(this->UniqueObject(1111)); set_input.insert(this->UniqueObject(111)); set_input.insert(this->UniqueObject(11));
// Insert from ht_source, an iterator of the same type as us.
typename TypeParam::const_iterator begin = ht_source.begin(); typename TypeParam::const_iterator end = begin; std::advance(end, 3); this->ht_.insert(begin, end); // insert 3 elements from ht_source
EXPECT_EQ(3u, this->ht_.size()); EXPECT_TRUE(*this->ht_.begin() == this->UniqueObject(10) || *this->ht_.begin() == this->UniqueObject(100) || *this->ht_.begin() == this->UniqueObject(1000) || *this->ht_.begin() == this->UniqueObject(10000) || *this->ht_.begin() == this->UniqueObject(100000) || *this->ht_.begin() == this->UniqueObject(1000000));
// And insert from set_input, a separate, non-random-access iterator.
typename set<typename TypeParam::value_type>::const_iterator set_begin; typename set<typename TypeParam::value_type>::const_iterator set_end; set_begin = set_input.begin(); set_end = set_begin; std::advance(set_end, 3); this->ht_.insert(set_begin, set_end); EXPECT_EQ(6u, this->ht_.size());
// Insert from input as well, a separate, random-access iterator.
// The first element of input overlaps with an existing element
// of ht_, so this should only up the size by 2.
this->ht_.insert(&input[0], &input[3]); EXPECT_EQ(8u, this->ht_.size()); }
TEST(HashtableTest, InsertValueToMap) { // For the maps in particular, ensure that inserting doesn't change
// the value.
sparse_hash_map<int, int> shm; pair<sparse_hash_map<int,int>::iterator, bool> shm_it; shm[1] = 2; // test a different method of inserting
shm_it = shm.insert(pair<int, int>(1, 3)); EXPECT_EQ(false, shm_it.second); EXPECT_EQ(1, shm_it.first->first); EXPECT_EQ(2, shm_it.first->second); shm_it.first->second = 20; EXPECT_EQ(20, shm[1]);
shm_it = shm.insert(pair<int, int>(2, 4)); EXPECT_EQ(true, shm_it.second); EXPECT_EQ(2, shm_it.first->first); EXPECT_EQ(4, shm_it.first->second); EXPECT_EQ(4, shm[2]); }
TYPED_TEST(HashtableStringTest, EmptyKey) { // Only run the string tests, to make it easier to know what the
// empty key should be.
if (!this->ht_.supports_empty_key()) return; EXPECT_EQ(kEmptyString, this->ht_.empty_key()); }
TYPED_TEST(HashtableAllTest, DeletedKey) { if (!this->ht_.supports_deleted_key()) return; this->ht_.insert(this->UniqueObject(10)); this->ht_.insert(this->UniqueObject(20)); this->ht_.set_deleted_key(this->UniqueKey(1)); EXPECT_EQ(this->ht_.deleted_key(), this->UniqueKey(1)); EXPECT_EQ(2u, this->ht_.size()); this->ht_.erase(this->UniqueKey(20)); EXPECT_EQ(1u, this->ht_.size());
// Changing the deleted key is fine.
this->ht_.set_deleted_key(this->UniqueKey(2)); EXPECT_EQ(this->ht_.deleted_key(), this->UniqueKey(2)); EXPECT_EQ(1u, this->ht_.size()); }
TYPED_TEST(HashtableAllTest, Erase) { this->ht_.set_deleted_key(this->UniqueKey(1)); EXPECT_EQ(0u, this->ht_.erase(this->UniqueKey(20))); this->ht_.insert(this->UniqueObject(10)); this->ht_.insert(this->UniqueObject(20)); EXPECT_EQ(1u, this->ht_.erase(this->UniqueKey(20))); EXPECT_EQ(1u, this->ht_.size()); EXPECT_EQ(0u, this->ht_.erase(this->UniqueKey(20))); EXPECT_EQ(1u, this->ht_.size()); EXPECT_EQ(0u, this->ht_.erase(this->UniqueKey(19))); EXPECT_EQ(1u, this->ht_.size());
typename TypeParam::iterator it = this->ht_.find(this->UniqueKey(10)); EXPECT_TRUE(it != this->ht_.end()); this->ht_.erase(it); EXPECT_EQ(0u, this->ht_.size());
for (int i = 10; i < 100; i++) this->ht_.insert(this->UniqueObject(i)); EXPECT_EQ(90u, this->ht_.size()); this->ht_.erase(this->ht_.begin(), this->ht_.end()); EXPECT_EQ(0u, this->ht_.size()); }
TYPED_TEST(HashtableAllTest, EraseDoesNotResize) { this->ht_.set_deleted_key(this->UniqueKey(1)); for (int i = 10; i < 2000; i++) { this->ht_.insert(this->UniqueObject(i)); } const typename TypeParam::size_type old_count = this->ht_.bucket_count(); for (int i = 10; i < 1000; i++) { // erase half one at a time
EXPECT_EQ(1u, this->ht_.erase(this->UniqueKey(i))); } this->ht_.erase(this->ht_.begin(), this->ht_.end()); // and the rest at once
EXPECT_EQ(0u, this->ht_.size()); EXPECT_EQ(old_count, this->ht_.bucket_count()); }
TYPED_TEST(HashtableAllTest, Equals) { // The real test here is whether two hashtables are equal if they
// have the same items but in a different order.
TypeParam ht1; TypeParam ht2;
EXPECT_TRUE(ht1 == ht1); EXPECT_FALSE(ht1 != ht1); EXPECT_TRUE(ht1 == ht2); EXPECT_FALSE(ht1 != ht2); ht1.set_deleted_key(this->UniqueKey(1)); // Only the contents affect equality, not things like deleted-key.
EXPECT_TRUE(ht1 == ht2); EXPECT_FALSE(ht1 != ht2); ht1.resize(2000); EXPECT_TRUE(ht1 == ht2);
// The choice of allocator/etc doesn't matter either.
Hasher hasher(1); Alloc<typename TypeParam::key_type> alloc(2, NULL); TypeParam ht3(5, hasher, hasher, alloc); EXPECT_TRUE(ht1 == ht3); EXPECT_FALSE(ht1 != ht3);
ht1.insert(this->UniqueObject(2)); EXPECT_TRUE(ht1 != ht2); EXPECT_FALSE(ht1 == ht2); // this should hold as well!
ht2.insert(this->UniqueObject(2)); EXPECT_TRUE(ht1 == ht2);
for (int i = 3; i <= 2000; i++) { ht1.insert(this->UniqueObject(i)); } for (int i = 2000; i >= 3; i--) { ht2.insert(this->UniqueObject(i)); } EXPECT_TRUE(ht1 == ht2); }
TEST(HashtableTest, IntIO) { // Since the set case is just a special (easier) case than the map case, I
// just test on sparse_hash_map. This handles the easy case where we can
// use the standard reader and writer.
sparse_hash_map<int, int> ht_out; ht_out.set_deleted_key(0); for (int i = 1; i < 1000; i++) { ht_out[i] = i * i; } ht_out.erase(563); // just to test having some erased keys when we write.
ht_out.erase(22);
string file(TmpFile("intio")); FILE* fp = fopen(file.c_str(), "wb"); if (fp) { EXPECT_TRUE(fp != NULL); EXPECT_TRUE(ht_out.write_metadata(fp)); EXPECT_TRUE(ht_out.write_nopointer_data(fp)); fclose(fp); }
sparse_hash_map<int, int> ht_in; fp = fopen(file.c_str(), "rb"); if (fp) { EXPECT_TRUE(fp != NULL); EXPECT_TRUE(ht_in.read_metadata(fp)); EXPECT_TRUE(ht_in.read_nopointer_data(fp)); fclose(fp); }
EXPECT_EQ(1, ht_in[1]); EXPECT_EQ(998001, ht_in[999]); EXPECT_EQ(100, ht_in[10]); EXPECT_EQ(441, ht_in[21]); EXPECT_EQ(0, ht_in[22]); // should not have been saved
EXPECT_EQ(0, ht_in[563]); }
TEST(HashtableTest, StringIO) { // Since the set case is just a special (easier) case than the map case,
// I just test on sparse_hash_map. This handles the difficult case where
// we have to write our own custom reader/writer for the data.
typedef sparse_hash_map<string, string, Hasher, Hasher> SP; SP ht_out; ht_out.set_deleted_key(string(""));
for (int i = 32; i < 128; i++) { // This maps 'a' to 32 a's, 'b' to 33 b's, etc.
ht_out[string(1, (char)i)] = string((size_t)i, (char)i); } ht_out.erase("c"); // just to test having some erased keys when we write.
ht_out.erase("y");
string file(TmpFile("stringio")); FILE* fp = fopen(file.c_str(), "wb"); if (fp) { EXPECT_TRUE(fp != NULL); EXPECT_TRUE(ht_out.write_metadata(fp));
for (SP::const_iterator it = ht_out.cbegin(); it != ht_out.cend(); ++it) { const string::size_type first_size = it->first.length(); fwrite(&first_size, sizeof(first_size), 1, fp); // ignore endianness issues
fwrite(it->first.c_str(), first_size, 1, fp);
const string::size_type second_size = it->second.length(); fwrite(&second_size, sizeof(second_size), 1, fp); fwrite(it->second.c_str(), second_size, 1, fp); } fclose(fp); }
sparse_hash_map<string, string, Hasher, Hasher> ht_in; fp = fopen(file.c_str(), "rb"); if (fp) { EXPECT_TRUE(fp != NULL); EXPECT_TRUE(ht_in.read_metadata(fp)); for (sparse_hash_map<string, string, Hasher, Hasher>::iterator it = ht_in.begin(); it != ht_in.end(); ++it) { string::size_type first_size; EXPECT_EQ(1u, fread(&first_size, sizeof(first_size), 1, fp)); char* first = new char[first_size]; EXPECT_EQ(1u, fread(first, first_size, 1, fp));
string::size_type second_size; EXPECT_EQ(1u, fread(&second_size, sizeof(second_size), 1, fp)); char* second = new char[second_size]; EXPECT_EQ(1u, fread(second, second_size, 1, fp));
// it points to garbage, so we have to use placement-new to initialize.
// We also have to use const-cast since it->first is const.
new(const_cast<string*>(&it->first)) string(first, first_size); new(&it->second) string(second, second_size); delete[] first; delete[] second; } fclose(fp); } EXPECT_EQ(string(" "), ht_in[" "]); EXPECT_EQ(string("+++++++++++++++++++++++++++++++++++++++++++"), ht_in["+"]); EXPECT_EQ(string(""), ht_in["c"]); // should not have been saved
EXPECT_EQ(string(""), ht_in["y"]); }
TYPED_TEST(HashtableAllTest, Serialization) { if (!this->ht_.supports_serialization()) return; TypeParam ht_out; ht_out.set_deleted_key(this->UniqueKey(2000)); for (int i = 1; i < 100; i++) { ht_out.insert(this->UniqueObject(i)); } // just to test having some erased keys when we write.
ht_out.erase(this->UniqueKey(56)); ht_out.erase(this->UniqueKey(22));
string file(TmpFile("serialization")); FILE* fp = fopen(file.c_str(), "wb"); if (fp) { EXPECT_TRUE(fp != NULL); EXPECT_TRUE(ht_out.serialize(ValueSerializer(), fp)); fclose(fp); }
TypeParam ht_in; fp = fopen(file.c_str(), "rb"); if (fp) { EXPECT_TRUE(fp != NULL); EXPECT_TRUE(ht_in.unserialize(ValueSerializer(), fp)); fclose(fp); }
EXPECT_EQ(this->UniqueObject(1), *ht_in.find(this->UniqueKey(1))); EXPECT_EQ(this->UniqueObject(99), *ht_in.find(this->UniqueKey(99))); EXPECT_FALSE(ht_in.count(this->UniqueKey(100))); EXPECT_EQ(this->UniqueObject(21), *ht_in.find(this->UniqueKey(21))); // should not have been saved
EXPECT_FALSE(ht_in.count(this->UniqueKey(22))); EXPECT_FALSE(ht_in.count(this->UniqueKey(56))); }
TYPED_TEST(HashtableIntTest, NopointerSerialization) { if (!this->ht_.supports_serialization()) return; TypeParam ht_out; ht_out.set_deleted_key(this->UniqueKey(2000)); for (int i = 1; i < 100; i++) { ht_out.insert(this->UniqueObject(i)); } // just to test having some erased keys when we write.
ht_out.erase(this->UniqueKey(56)); ht_out.erase(this->UniqueKey(22));
string file(TmpFile("nopointer_serialization")); FILE* fp = fopen(file.c_str(), "wb"); if (fp) { EXPECT_TRUE(fp != NULL); EXPECT_TRUE(ht_out.serialize(typename TypeParam::NopointerSerializer(), fp)); fclose(fp); }
TypeParam ht_in; fp = fopen(file.c_str(), "rb"); if (fp) { EXPECT_TRUE(fp != NULL); EXPECT_TRUE(ht_in.unserialize(typename TypeParam::NopointerSerializer(), fp)); fclose(fp); }
EXPECT_EQ(this->UniqueObject(1), *ht_in.find(this->UniqueKey(1))); EXPECT_EQ(this->UniqueObject(99), *ht_in.find(this->UniqueKey(99))); EXPECT_FALSE(ht_in.count(this->UniqueKey(100))); EXPECT_EQ(this->UniqueObject(21), *ht_in.find(this->UniqueKey(21))); // should not have been saved
EXPECT_FALSE(ht_in.count(this->UniqueKey(22))); EXPECT_FALSE(ht_in.count(this->UniqueKey(56))); }
// We don't support serializing to a string by default, but you can do
// it by writing your own custom input/output class.
class StringIO { public: explicit StringIO(string* s) : s_(s) {} size_t Write(const void* buf, size_t len) { s_->append(reinterpret_cast<const char*>(buf), len); return len; } size_t Read(void* buf, size_t len) { if (s_->length() < len) len = s_->length(); memcpy(reinterpret_cast<char*>(buf), s_->data(), len); s_->erase(0, len); return len; } private: StringIO& operator=(const StringIO&); string* const s_; };
TYPED_TEST(HashtableIntTest, SerializingToString) { if (!this->ht_.supports_serialization()) return; TypeParam ht_out; ht_out.set_deleted_key(this->UniqueKey(2000)); for (int i = 1; i < 100; i++) { ht_out.insert(this->UniqueObject(i)); } // just to test having some erased keys when we write.
ht_out.erase(this->UniqueKey(56)); ht_out.erase(this->UniqueKey(22));
string stringbuf; StringIO stringio(&stringbuf); EXPECT_TRUE(ht_out.serialize(typename TypeParam::NopointerSerializer(), &stringio));
TypeParam ht_in; EXPECT_TRUE(ht_in.unserialize(typename TypeParam::NopointerSerializer(), &stringio));
EXPECT_EQ(this->UniqueObject(1), *ht_in.find(this->UniqueKey(1))); EXPECT_EQ(this->UniqueObject(99), *ht_in.find(this->UniqueKey(99))); EXPECT_FALSE(ht_in.count(this->UniqueKey(100))); EXPECT_EQ(this->UniqueObject(21), *ht_in.find(this->UniqueKey(21))); // should not have been saved
EXPECT_FALSE(ht_in.count(this->UniqueKey(22))); EXPECT_FALSE(ht_in.count(this->UniqueKey(56))); }
// An easier way to do the above would be to use the existing stream methods.
TYPED_TEST(HashtableIntTest, SerializingToStringStream) { if (!this->ht_.supports_serialization()) return; TypeParam ht_out; ht_out.set_deleted_key(this->UniqueKey(2000)); for (int i = 1; i < 100; i++) { ht_out.insert(this->UniqueObject(i)); } // just to test having some erased keys when we write.
ht_out.erase(this->UniqueKey(56)); ht_out.erase(this->UniqueKey(22));
std::stringstream string_buffer; EXPECT_TRUE(ht_out.serialize(typename TypeParam::NopointerSerializer(), &string_buffer));
TypeParam ht_in; EXPECT_TRUE(ht_in.unserialize(typename TypeParam::NopointerSerializer(), &string_buffer));
EXPECT_EQ(this->UniqueObject(1), *ht_in.find(this->UniqueKey(1))); EXPECT_EQ(this->UniqueObject(99), *ht_in.find(this->UniqueKey(99))); EXPECT_FALSE(ht_in.count(this->UniqueKey(100))); EXPECT_EQ(this->UniqueObject(21), *ht_in.find(this->UniqueKey(21))); // should not have been saved
EXPECT_FALSE(ht_in.count(this->UniqueKey(22))); EXPECT_FALSE(ht_in.count(this->UniqueKey(56))); }
// Verify that the metadata serialization is endianness and word size
// agnostic.
TYPED_TEST(HashtableAllTest, MetadataSerializationAndEndianness) { TypeParam ht_out; string kExpectedDense("\x13W\x86""B\0\0\0\0\0\0\0 \0\0\0\0\0\0\0\0\0\0\0\0", 24);
// GP change - switched size from 20 to formula, because the sparsegroup bitmap is 4 or 8 bytes and not 6
string kExpectedSparse("$hu1\0\0\0 \0\0\0\0\0\0\0\0\0\0\0", 12 + sizeof(group_bm_type));
if (ht_out.supports_readwrite()) { size_t num_bytes = 0; string file(TmpFile("metadata_serialization")); FILE* fp = fopen(file.c_str(), "wb"); if (fp) { EXPECT_TRUE(fp != NULL);
EXPECT_TRUE(ht_out.write_metadata(fp)); EXPECT_TRUE(ht_out.write_nopointer_data(fp));
num_bytes = (const size_t)ftell(fp); fclose(fp); } char contents[24] = {0}; fp = fopen(file.c_str(), "rb"); if (fp) { EXPECT_LE(num_bytes, static_cast<size_t>(24)); EXPECT_EQ(num_bytes, fread(contents, 1, num_bytes <= 24 ? num_bytes : 24, fp)); EXPECT_EQ(EOF, fgetc(fp)); // check we're *exactly* the right size
fclose(fp); } // TODO(csilvers): check type of ht_out instead of looking at the 1st byte.
if (contents[0] == kExpectedDense[0]) { EXPECT_EQ(kExpectedDense, string(contents, num_bytes)); } else { EXPECT_EQ(kExpectedSparse, string(contents, num_bytes)); } }
// Do it again with new-style serialization. Here we can use StringIO.
if (ht_out.supports_serialization()) { string stringbuf; StringIO stringio(&stringbuf); EXPECT_TRUE(ht_out.serialize(typename TypeParam::NopointerSerializer(), &stringio)); if (stringbuf[0] == kExpectedDense[0]) { EXPECT_EQ(kExpectedDense, stringbuf); } else { EXPECT_EQ(kExpectedSparse, stringbuf); } } }
// ------------------------------------------------------------------------
// The above tests test the general API for correctness. These tests
// test a few corner cases that have tripped us up in the past, and
// more general, cross-API issues like memory management.
TYPED_TEST(HashtableAllTest, BracketOperatorCrashing) { this->ht_.set_deleted_key(this->UniqueKey(1)); for (int iters = 0; iters < 10; iters++) { // We start at 33 because after shrinking, we'll be at 32 buckets.
for (int i = 33; i < 133; i++) { this->ht_.bracket_assign(this->UniqueKey(i), this->ht_.get_data(this->UniqueObject(i))); } this->ht_.clear_no_resize(); // This will force a shrink on the next insert, which we want to test.
this->ht_.bracket_assign(this->UniqueKey(2), this->ht_.get_data(this->UniqueObject(2))); this->ht_.erase(this->UniqueKey(2)); } }
// For data types with trivial copy-constructors and destructors, we
// should use an optimized routine for data-copying, that involves
// memmove. We test this by keeping count of how many times the
// copy-constructor is called; it should be much less with the
// optimized code.
struct Memmove { public: Memmove(): i(0) {} explicit Memmove(int ival): i(ival) {} Memmove(const Memmove& that) { this->i = that.i; num_copies++; } int i; static int num_copies; }; int Memmove::num_copies = 0;
struct NoMemmove { public: NoMemmove(): i(0) {} explicit NoMemmove(int ival): i(ival) {} NoMemmove(const NoMemmove& that) { this->i = that.i; num_copies++; } int i; static int num_copies; }; int NoMemmove::num_copies = 0;
} // unnamed namespace
#if 0
// This is what tells the hashtable code it can use memmove for this class:
namespace google {
template<> struct has_trivial_copy<Memmove> : true_type { }; template<> struct has_trivial_destructor<Memmove> : true_type { };
}; #endif
namespace {
TEST(HashtableTest, SimpleDataTypeOptimizations) { // Only sparsehashtable optimizes moves in this way.
sparse_hash_map<int, Memmove, Hasher, Hasher> memmove; sparse_hash_map<int, NoMemmove, Hasher, Hasher> nomemmove; sparse_hash_map<int, Memmove, Hasher, Hasher, Alloc<int> > memmove_nonstandard_alloc;
Memmove::num_copies = 0; for (int i = 10000; i > 0; i--) { memmove[i] = Memmove(i); } // GP change - const int memmove_copies = Memmove::num_copies;
NoMemmove::num_copies = 0; for (int i = 10000; i > 0; i--) { nomemmove[i] = NoMemmove(i); } // GP change - const int nomemmove_copies = NoMemmove::num_copies;
Memmove::num_copies = 0; for (int i = 10000; i > 0; i--) { memmove_nonstandard_alloc[i] = Memmove(i); } // GP change - const int memmove_nonstandard_alloc_copies = Memmove::num_copies;
// GP change - commented out following two lines
//EXPECT_GT(nomemmove_copies, memmove_copies);
//EXPECT_EQ(nomemmove_copies, memmove_nonstandard_alloc_copies);
}
TYPED_TEST(HashtableAllTest, ResizeHysteresis) { // We want to make sure that when we create a hashtable, and then
// add and delete one element, the size of the hashtable doesn't
// change.
this->ht_.set_deleted_key(this->UniqueKey(1)); typename TypeParam::size_type old_bucket_count = this->ht_.bucket_count(); this->ht_.insert(this->UniqueObject(4)); this->ht_.erase(this->UniqueKey(4)); this->ht_.insert(this->UniqueObject(4)); this->ht_.erase(this->UniqueKey(4)); EXPECT_EQ(old_bucket_count, this->ht_.bucket_count());
// Try it again, but with a hashtable that starts very small
TypeParam ht(2); EXPECT_LT(ht.bucket_count(), 32u); // verify we really do start small
ht.set_deleted_key(this->UniqueKey(1)); old_bucket_count = ht.bucket_count(); ht.insert(this->UniqueObject(4)); ht.erase(this->UniqueKey(4)); ht.insert(this->UniqueObject(4)); ht.erase(this->UniqueKey(4)); EXPECT_EQ(old_bucket_count, ht.bucket_count()); }
TEST(HashtableTest, ConstKey) { // Sometimes people write hash_map<const int, int>, even though the
// const isn't necessary. Make sure we handle this cleanly.
sparse_hash_map<const int, int, Hasher, Hasher> shm; shm.set_deleted_key(1); shm[10] = 20; }
TYPED_TEST(HashtableAllTest, ResizeActuallyResizes) { // This tests for a problem we had where we could repeatedly "resize"
// a hashtable to the same size it was before, on every insert.
// -----------------------------------------------------------------
const typename TypeParam::size_type kSize = 1<<10; // Pick any power of 2
const float kResize = 0.8f; // anything between 0.5 and 1 is fine.
const int kThreshold = static_cast<int>(kSize * kResize - 1); this->ht_.set_resizing_parameters(0, kResize); this->ht_.set_deleted_key(this->UniqueKey(kThreshold + 100));
// Get right up to the resizing threshold.
for (int i = 0; i <= kThreshold; i++) { this->ht_.insert(this->UniqueObject(i+1)); } // The bucket count should equal kSize.
EXPECT_EQ(kSize, this->ht_.bucket_count());
// Now start doing erase+insert pairs. This should cause us to
// copy the hashtable at most once.
const int pre_copies = this->ht_.num_table_copies(); for (int i = 0; i < static_cast<int>(kSize); i++) { this->ht_.erase(this->UniqueKey(kThreshold)); this->ht_.insert(this->UniqueObject(kThreshold)); } EXPECT_LT(this->ht_.num_table_copies(), pre_copies + 2);
// Now create a hashtable where we go right to the threshold, then
// delete everything and do one insert. Even though our hashtable
// is now tiny, we should still have at least kSize buckets, because
// our shrink threshhold is 0.
// -----------------------------------------------------------------
TypeParam ht2; ht2.set_deleted_key(this->UniqueKey(kThreshold + 100)); ht2.set_resizing_parameters(0, kResize); EXPECT_LT(ht2.bucket_count(), kSize); for (int i = 0; i <= kThreshold; i++) { ht2.insert(this->UniqueObject(i+1)); } EXPECT_EQ(ht2.bucket_count(), kSize); for (int i = 0; i <= kThreshold; i++) { ht2.erase(this->UniqueKey(i+1)); EXPECT_EQ(ht2.bucket_count(), kSize); } ht2.insert(this->UniqueObject(kThreshold+2)); EXPECT_GE(ht2.bucket_count(), kSize); }
TEST(HashtableTest, CXX11) { #if !defined(SPP_NO_CXX11_HDR_INITIALIZER_LIST)
{ // Initializer lists
// -----------------
typedef sparse_hash_map<int, int> Smap;
Smap smap({ {1, 1}, {2, 2} }); EXPECT_EQ(smap.size(), 2);
smap = { {1, 1}, {2, 2}, {3, 4} }; EXPECT_EQ(smap.size(), 3);
smap.insert({{5, 1}, {6, 1}}); EXPECT_EQ(smap.size(), 5); EXPECT_EQ(smap[6], 1); EXPECT_EQ(smap.at(6), 1); try { EXPECT_EQ(smap.at(999), 1); } catch (...) {};
sparse_hash_set<int> sset({ 1, 3, 4, 5 }); EXPECT_EQ(sset.size(), 4); } #endif
}
TEST(HashtableTest, NestedHashtables) { // People can do better than to have a hash_map of hash_maps, but we
// should still support it. I try a few different mappings.
sparse_hash_map<string, sparse_hash_map<int, string>, Hasher, Hasher> ht1;
ht1["hi"]; // create a sub-ht with the default values
ht1["lo"][1] = "there"; sparse_hash_map<string, sparse_hash_map<int, string>, Hasher, Hasher> ht1copy = ht1; }
TEST(HashtableDeathTest, ResizeOverflow) { sparse_hash_map<int, int> ht2; EXPECT_DEATH(ht2.resize(static_cast<size_t>(-1)), "overflows size_type"); }
TEST(HashtableDeathTest, InsertSizeTypeOverflow) { static const int kMax = 256; vector<int> test_data(kMax); for (int i = 0; i < kMax; ++i) { test_data[(size_t)i] = i+1000; }
sparse_hash_set<int, Hasher, Hasher, Alloc<int, uint8, 10> > shs;
// Test we are using the correct allocator
EXPECT_TRUE(shs.get_allocator().is_custom_alloc());
// Test size_type overflow in insert(it, it)
EXPECT_DEATH(shs.insert(test_data.begin(), test_data.end()), "overflows size_type"); }
TEST(HashtableDeathTest, InsertMaxSizeOverflow) { static const int kMax = 256; vector<int> test_data(kMax); for (int i = 0; i < kMax; ++i) { test_data[(size_t)i] = i+1000; }
sparse_hash_set<int, Hasher, Hasher, Alloc<int, uint8, 10> > shs;
// Test max_size overflow
EXPECT_DEATH(shs.insert(test_data.begin(), test_data.begin() + 11), "exceed max_size"); }
TEST(HashtableDeathTest, ResizeSizeTypeOverflow) { // Test min-buckets overflow, when we want to resize too close to size_type
sparse_hash_set<int, Hasher, Hasher, Alloc<int, uint8, 10> > shs;
EXPECT_DEATH(shs.resize(250), "overflows size_type"); }
TEST(HashtableDeathTest, ResizeDeltaOverflow) { static const int kMax = 256; vector<int> test_data(kMax); for (int i = 0; i < kMax; ++i) { test_data[(size_t)i] = i+1000; }
sparse_hash_set<int, Hasher, Hasher, Alloc<int, uint8, 255> > shs;
for (int i = 0; i < 9; i++) { shs.insert(i); } EXPECT_DEATH(shs.insert(test_data.begin(), test_data.begin() + 250), "overflows size_type"); }
// ------------------------------------------------------------------------
// This informational "test" comes last so it's easy to see.
// Also, benchmarks.
TYPED_TEST(HashtableAllTest, ClassSizes) { std::cout << "sizeof(" << typeid(TypeParam).name() << "): " << sizeof(this->ht_) << "\n"; }
} // unnamed namespace
int main(int, char **) { // All the work is done in the static constructors. If they don't
// die, the tests have all passed.
cout << "PASS\n"; return 0; }
|