|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
template<int Alignment,typename VectorType> void map_class_vector(const VectorType& m) { typedef typename VectorType::Index Index; typedef typename VectorType::Scalar Scalar;
Index size = m.size();
VectorType v = VectorType::Random(size);
Index arraysize = 3*size; Scalar* a_array = internal::aligned_new<Scalar>(arraysize+1); Scalar* array = a_array; if(Alignment!=Aligned) array = (Scalar*)(ptrdiff_t(a_array) + (internal::packet_traits<Scalar>::AlignedOnScalar?sizeof(Scalar):sizeof(typename NumTraits<Scalar>::Real)));
{ Map<VectorType, Alignment, InnerStride<3> > map(array, size); map = v; for(int i = 0; i < size; ++i) { VERIFY(array[3*i] == v[i]); VERIFY(map[i] == v[i]); } }
{ Map<VectorType, Unaligned, InnerStride<Dynamic> > map(array, size, InnerStride<Dynamic>(2)); map = v; for(int i = 0; i < size; ++i) { VERIFY(array[2*i] == v[i]); VERIFY(map[i] == v[i]); } }
internal::aligned_delete(a_array, arraysize+1); }
template<int Alignment,typename MatrixType> void map_class_matrix(const MatrixType& _m) { typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar;
Index rows = _m.rows(), cols = _m.cols();
MatrixType m = MatrixType::Random(rows,cols); Scalar s1 = internal::random<Scalar>();
Index arraysize = 2*(rows+4)*(cols+4);
Scalar* a_array1 = internal::aligned_new<Scalar>(arraysize+1); Scalar* array1 = a_array1; if(Alignment!=Aligned) array1 = (Scalar*)(std::ptrdiff_t(a_array1) + (internal::packet_traits<Scalar>::AlignedOnScalar?sizeof(Scalar):sizeof(typename NumTraits<Scalar>::Real)));
Scalar a_array2[256]; Scalar* array2 = a_array2; if(Alignment!=Aligned) array2 = (Scalar*)(std::ptrdiff_t(a_array2) + (internal::packet_traits<Scalar>::AlignedOnScalar?sizeof(Scalar):sizeof(typename NumTraits<Scalar>::Real))); else array2 = (Scalar*)(((std::size_t(a_array2)+EIGEN_MAX_ALIGN_BYTES-1)/EIGEN_MAX_ALIGN_BYTES)*EIGEN_MAX_ALIGN_BYTES); Index maxsize2 = a_array2 - array2 + 256; // test no inner stride and some dynamic outer stride
for(int k=0; k<2; ++k) { if(k==1 && (m.innerSize()+1)*m.outerSize() > maxsize2) break; Scalar* array = (k==0 ? array1 : array2); Map<MatrixType, Alignment, OuterStride<Dynamic> > map(array, rows, cols, OuterStride<Dynamic>(m.innerSize()+1)); map = m; VERIFY(map.outerStride() == map.innerSize()+1); for(int i = 0; i < m.outerSize(); ++i) for(int j = 0; j < m.innerSize(); ++j) { VERIFY(array[map.outerStride()*i+j] == m.coeffByOuterInner(i,j)); VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j)); } VERIFY_IS_APPROX(s1*map,s1*m); map *= s1; VERIFY_IS_APPROX(map,s1*m); }
// test no inner stride and an outer stride of +4. This is quite important as for fixed-size matrices,
// this allows to hit the special case where it's vectorizable.
for(int k=0; k<2; ++k) { if(k==1 && (m.innerSize()+4)*m.outerSize() > maxsize2) break; Scalar* array = (k==0 ? array1 : array2); enum { InnerSize = MatrixType::InnerSizeAtCompileTime, OuterStrideAtCompileTime = InnerSize==Dynamic ? Dynamic : InnerSize+4 }; Map<MatrixType, Alignment, OuterStride<OuterStrideAtCompileTime> > map(array, rows, cols, OuterStride<OuterStrideAtCompileTime>(m.innerSize()+4)); map = m; VERIFY(map.outerStride() == map.innerSize()+4); for(int i = 0; i < m.outerSize(); ++i) for(int j = 0; j < m.innerSize(); ++j) { VERIFY(array[map.outerStride()*i+j] == m.coeffByOuterInner(i,j)); VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j)); } VERIFY_IS_APPROX(s1*map,s1*m); map *= s1; VERIFY_IS_APPROX(map,s1*m); }
// test both inner stride and outer stride
for(int k=0; k<2; ++k) { if(k==1 && (2*m.innerSize()+1)*(m.outerSize()*2) > maxsize2) break; Scalar* array = (k==0 ? array1 : array2); Map<MatrixType, Alignment, Stride<Dynamic,Dynamic> > map(array, rows, cols, Stride<Dynamic,Dynamic>(2*m.innerSize()+1, 2)); map = m; VERIFY(map.outerStride() == 2*map.innerSize()+1); VERIFY(map.innerStride() == 2); for(int i = 0; i < m.outerSize(); ++i) for(int j = 0; j < m.innerSize(); ++j) { VERIFY(array[map.outerStride()*i+map.innerStride()*j] == m.coeffByOuterInner(i,j)); VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j)); } VERIFY_IS_APPROX(s1*map,s1*m); map *= s1; VERIFY_IS_APPROX(map,s1*m); }
internal::aligned_delete(a_array1, arraysize+1); }
void test_mapstride() { for(int i = 0; i < g_repeat; i++) { int maxn = 30; CALL_SUBTEST_1( map_class_vector<Aligned>(Matrix<float, 1, 1>()) ); CALL_SUBTEST_1( map_class_vector<Unaligned>(Matrix<float, 1, 1>()) ); CALL_SUBTEST_2( map_class_vector<Aligned>(Vector4d()) ); CALL_SUBTEST_2( map_class_vector<Unaligned>(Vector4d()) ); CALL_SUBTEST_3( map_class_vector<Aligned>(RowVector4f()) ); CALL_SUBTEST_3( map_class_vector<Unaligned>(RowVector4f()) ); CALL_SUBTEST_4( map_class_vector<Aligned>(VectorXcf(internal::random<int>(1,maxn))) ); CALL_SUBTEST_4( map_class_vector<Unaligned>(VectorXcf(internal::random<int>(1,maxn))) ); CALL_SUBTEST_5( map_class_vector<Aligned>(VectorXi(internal::random<int>(1,maxn))) ); CALL_SUBTEST_5( map_class_vector<Unaligned>(VectorXi(internal::random<int>(1,maxn))) );
CALL_SUBTEST_1( map_class_matrix<Aligned>(Matrix<float, 1, 1>()) ); CALL_SUBTEST_1( map_class_matrix<Unaligned>(Matrix<float, 1, 1>()) ); CALL_SUBTEST_2( map_class_matrix<Aligned>(Matrix4d()) ); CALL_SUBTEST_2( map_class_matrix<Unaligned>(Matrix4d()) ); CALL_SUBTEST_3( map_class_matrix<Aligned>(Matrix<float,3,5>()) ); CALL_SUBTEST_3( map_class_matrix<Unaligned>(Matrix<float,3,5>()) ); CALL_SUBTEST_3( map_class_matrix<Aligned>(Matrix<float,4,8>()) ); CALL_SUBTEST_3( map_class_matrix<Unaligned>(Matrix<float,4,8>()) ); CALL_SUBTEST_4( map_class_matrix<Aligned>(MatrixXcf(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) ); CALL_SUBTEST_4( map_class_matrix<Unaligned>(MatrixXcf(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) ); CALL_SUBTEST_5( map_class_matrix<Aligned>(MatrixXi(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) ); CALL_SUBTEST_5( map_class_matrix<Unaligned>(MatrixXi(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) ); CALL_SUBTEST_6( map_class_matrix<Aligned>(MatrixXcd(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) ); CALL_SUBTEST_6( map_class_matrix<Unaligned>(MatrixXcd(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) ); TEST_SET_BUT_UNUSED_VARIABLE(maxn); } }
|