|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <limits>
#include <Eigen/Eigenvalues>
template<typename MatrixType> void eigensolver(const MatrixType& m) { typedef typename MatrixType::Index Index; /* this test covers the following files:
EigenSolver.h */ Index rows = m.rows(); Index cols = m.cols();
typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType; typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;
MatrixType a = MatrixType::Random(rows,cols); MatrixType a1 = MatrixType::Random(rows,cols); MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1;
EigenSolver<MatrixType> ei0(symmA); VERIFY_IS_EQUAL(ei0.info(), Success); VERIFY_IS_APPROX(symmA * ei0.pseudoEigenvectors(), ei0.pseudoEigenvectors() * ei0.pseudoEigenvalueMatrix()); VERIFY_IS_APPROX((symmA.template cast<Complex>()) * (ei0.pseudoEigenvectors().template cast<Complex>()), (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal()));
EigenSolver<MatrixType> ei1(a); VERIFY_IS_EQUAL(ei1.info(), Success); VERIFY_IS_APPROX(a * ei1.pseudoEigenvectors(), ei1.pseudoEigenvectors() * ei1.pseudoEigenvalueMatrix()); VERIFY_IS_APPROX(a.template cast<Complex>() * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); VERIFY_IS_APPROX(ei1.eigenvectors().colwise().norm(), RealVectorType::Ones(rows).transpose()); VERIFY_IS_APPROX(a.eigenvalues(), ei1.eigenvalues());
EigenSolver<MatrixType> ei2; ei2.setMaxIterations(RealSchur<MatrixType>::m_maxIterationsPerRow * rows).compute(a); VERIFY_IS_EQUAL(ei2.info(), Success); VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors()); VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues()); if (rows > 2) { ei2.setMaxIterations(1).compute(a); VERIFY_IS_EQUAL(ei2.info(), NoConvergence); VERIFY_IS_EQUAL(ei2.getMaxIterations(), 1); }
EigenSolver<MatrixType> eiNoEivecs(a, false); VERIFY_IS_EQUAL(eiNoEivecs.info(), Success); VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues()); VERIFY_IS_APPROX(ei1.pseudoEigenvalueMatrix(), eiNoEivecs.pseudoEigenvalueMatrix());
MatrixType id = MatrixType::Identity(rows, cols); VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1));
if (rows > 2 && rows < 20) { // Test matrix with NaN
a(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN(); EigenSolver<MatrixType> eiNaN(a); VERIFY_IS_EQUAL(eiNaN.info(), NoConvergence); }
// regression test for bug 1098
{ EigenSolver<MatrixType> eig(a.adjoint() * a); eig.compute(a.adjoint() * a); } }
template<typename MatrixType> void eigensolver_verify_assert(const MatrixType& m) { EigenSolver<MatrixType> eig; VERIFY_RAISES_ASSERT(eig.eigenvectors()); VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors()); VERIFY_RAISES_ASSERT(eig.pseudoEigenvalueMatrix()); VERIFY_RAISES_ASSERT(eig.eigenvalues());
MatrixType a = MatrixType::Random(m.rows(),m.cols()); eig.compute(a, false); VERIFY_RAISES_ASSERT(eig.eigenvectors()); VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors()); }
void test_eigensolver_generic() { int s = 0; for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( eigensolver(Matrix4f()) ); s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); CALL_SUBTEST_2( eigensolver(MatrixXd(s,s)) ); TEST_SET_BUT_UNUSED_VARIABLE(s)
// some trivial but implementation-wise tricky cases
CALL_SUBTEST_2( eigensolver(MatrixXd(1,1)) ); CALL_SUBTEST_2( eigensolver(MatrixXd(2,2)) ); CALL_SUBTEST_3( eigensolver(Matrix<double,1,1>()) ); CALL_SUBTEST_4( eigensolver(Matrix2d()) ); }
CALL_SUBTEST_1( eigensolver_verify_assert(Matrix4f()) ); s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); CALL_SUBTEST_2( eigensolver_verify_assert(MatrixXd(s,s)) ); CALL_SUBTEST_3( eigensolver_verify_assert(Matrix<double,1,1>()) ); CALL_SUBTEST_4( eigensolver_verify_assert(Matrix2d()) );
// Test problem size constructors
CALL_SUBTEST_5(EigenSolver<MatrixXf> tmp(s));
// regression test for bug 410
CALL_SUBTEST_2( { MatrixXd A(1,1); A(0,0) = std::sqrt(-1.); // is Not-a-Number
Eigen::EigenSolver<MatrixXd> solver(A); VERIFY_IS_EQUAL(solver.info(), NumericalIssue); } ); // regression test for bug 793
#ifdef EIGEN_TEST_PART_2
{ MatrixXd a(3,3); a << 0, 0, 1, 1, 1, 1, 1, 1e+200, 1; Eigen::EigenSolver<MatrixXd> eig(a); VERIFY_IS_APPROX(a * eig.pseudoEigenvectors(), eig.pseudoEigenvectors() * eig.pseudoEigenvalueMatrix()); VERIFY_IS_APPROX(a * eig.eigenvectors(), eig.eigenvectors() * eig.eigenvalues().asDiagonal()); } #endif
TEST_SET_BUT_UNUSED_VARIABLE(s) }
|